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Abstract

Different anomalies have appeared in the interest rate market after the
burst of the credit crunch. A wide wedge has opened between the mar-
ket quotes of Forward Rate Agreements and their standard spot Libor
replication, and large Basis Spreads have appeared for exchanging float-
ing payments with different tenors. Here we tackle these issues under two
aspects.
In Part 1 we focus on issues of direct interest to market practitioners. We
show that the gap between FRA rates and their spot Libor replication
can be explained by using the quoted Basis spreads. Then we explain the
market patterns of the Basis spreads by modelling them as options on the
credit worthiness of the counterparty. We also investigate analytically the
FRA market payoff.
In Part 2 we study the mathematical representation of the interest rate
market in the post-crisis reality. We introduce credit risk at market level,
allowing for no-fault standard rule and collateralization. We use sub-
filtrations to model Libor rates, which now embed relevant credit risk
although no default event is possible on Libor itself. We compute change
of numeraire and convexity adjustments for collateralized derivatives tied
to risky Libor.
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“Basis Virtutum Constantia”
Constancy is the basis of virtues. Latin saying.

1 Introduction

A number of anomalies have appeared in the interest rate market after the burst
of the credit crunch in August 2007. Before this date Libor and OIS rates were
tracking each other closely, the market quotes of Forward Rate Agreements
(FRA) had a precise relationship with the spot Libor rates they are indexed to,
flows of interest rate payments differing only for their frequency were considered
equivalent, apart from a very little Basis spreads. After the beginning of the
crisis large wedges have opened between quantities that were considered prac-
tically equivalent: there is a relevant gap between Libor and OIS, FRA rates
cannot be anymore replicated using Libor spot rates, and floating legs differing
only for the tenor are now separated by large Basis spreads.

These facts had a very strong impact on the financial community, since they
questioned both our understanding of the working of the interest rate market
during the credit crisis, and the techniques and relations used by all banks to
construct the term structure of discount factors to be used for pricing all finan-
cial products. Various papers dealing with this new situation were recently put
forward in the literature. Among the most relevant we recall Mercurio (2008),
Ametrano and Bianchetti (2009), Bianchetti (2009), Henrard (2009). Most of
these works focus on finding methodologies for building consistent interest rate
models or curves also in the context of anomalous interest rate quotes, and fo-
cus on abstract frameworks. Mercurio (2008) takes FRA quotes as new separate
inputs for a larger Libor market model, Bianchetti (2008) recognizes an anal-
ogy between FX pricing and the pricing of interest rate derivatives when the
discounting is decoupled from the indexation of the rates in the payoff, Henrard
(2008) follows an axiomatic approach to make the standard framework to term
structure bootstrapping consistent with the multicurve situation generated by
the presence of large Basis spreads.

In Part 1 we follow a different approach from the above literature, since
we aim at explaining the new market patterns at a more fundamental and
structural level. At the same time we aim at understanding the relationships
among the different anomalies appeared in the market. We first show that the
gap between FRA rates and their replication using spot Libor can be explained
and replicated using the basis swap spreads, so that the two problems mentioned
at the beginning can be reduced to only one. Then we develop a model that
takes into account that the reference Libor rates embed options on the credit
worthiness of the counterparty, and show that this model explains the basis
swaps patterns during the crisis by taking as input the level of counterparty
risk in the money market and credit volatility. This gives indications on how
the post-crisis interest rate market can be modelled, showing in particular that
flows of floating rates with different tenors should embed different levels of
default risk and different level of default risk volatility.
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Our analysis has some relation with the introductory part of Mercurio (2008),
that defines FRA rates in terms of expectations of future survival probabilities.
There such expectations are not modelled and can be higher or lower than
the probabilities implied by spot quotes. In this work, instead, after showing
that FRA rates can be fully explained via a tenor premium expressed by Basis
swap spreads, we develop a credit model for Basis spreads as mentioned above.
This model allows to understand why in the crisis there was always a negative
difference between FRA rates and their standard Libor spot replication, and
allows to replicate it approximately, based on credit data. Meanwhile we address
the issue of reconciling the actual FRA market payoff and the payoff considered
in their replication strategy, another issue arisen in Mercurio (2008).

The issues in Part 1 are of more interest to traders and market practitioners.
In Part 2 we address issues of more interest to quantitative researchers involved
in updating the standard tools of mathematical finance to the new post-crisis in-
terest rate reality. The difference from the above literature is that we introduce
a specific risk factor, credit risk, and we analyze how this alters the mathematics
to link spot and forward quotes. We allow for realistic market features such as
ISDA no-fault standard rule and collateralization. The tools used are mainly
change of measure and subfiltrations. By allowing to separate default probabil-
ities from default indicators, subfiltrations permit to model Libor, a rate which
in these days embeds credit risk but with the peculiarity that no default event
is possible on Libor itself.

Some results of Part 2 are related to the issues dealt with in Bianchetti (2008)
and Henrard (2009). In our framework we work with different bonds (such as
Libor bond and OIS bond) that embed different risks in spite of the fact that
they all have the same non-defaultable unitary payoff at maturity. We show this
does not represent a contradiction, since some of them are not tradable asset,
and only a modification of them can be used as numeraires in pricing. Then we
compute change of numeraire for collateralized products indexed to risky rates,
and we see that the analogy between FX and pricing with discounting decoupled
by indexing, first noticed in Bianchetti (2008), emerges here as an output. In our
setting we also have an explicit equivalent of the spot rate of exchange, which is
here a survival probability, a further element of analogy that is not made explicit
in Bianchetti (2008). We also investigate the convexity adjustments involved
in the decoupling of discounting from indexing, and estimate them numerically,
finding very small numbers. A relevant consequence of Part 2 is the conclusion
that credit risk alone would not explain the market patterns without the other
elements introduced in Part 1.

The two parts are related by the fact that Part 2 provides a more formal
foundation to some aspects that in Part 1 are only intuitive, while Part 1 releases
some of the simplifications of Part 2. The seeming inversion in the order is due
to the fact that the mathematics used in Part 1 is lighter, thus Part 2 can be
skipped by the reader not interested in mathematical issues.

Part 1 is composed of 5 Sections. In Section 2 we present the standard
“risk free” interest rate market model and we show on market data why it is
not valid anymore. In Section 3 we summarize those results of Part 2 that
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can be of more practical interest. In Section 4 we analyze the FRA payoff
and show the relationship between FRA’s and basis spreads, finding an almost
exact replication. In Section 5 we analyze qualitatively the possible financial
motivations for large basis spreads. In Section 6 we implement this analysis in
a credit volatility model that explains approximately the Basis spread patterns
(or equivalently the FRA patterns) in the crisis.

Part 2 is composed of 3 Sections. In Section 7 we introduce counterparty risk
and compute how the relations among rates are affected by this. In Section 8
we introduce subfiltrations to model products indexed to Libor. In Section 9 we
compute the convexity adjustment due to the fact that collateralized derivatives
linked to risky rates must be priced with two curves, and show a change of
numeraire formally similar to FX change of measure.

Part I

Explaining Basis swaps and FRA
in the credit crunch

2 The Rates Market before and after the crisis

Before August 2007, market operators usually thought in terms of one single
term structure of risk-free or riskless interest rates. The concept of riskless
does not refer to absence of interest rate risk, but to the absence of elements
of credit or liquidity risk influencing in a non-negligible way the fair level of
interest rates. In the next section we first review this classic setting, and then
we show on recent market data why it is not valid anymore.

2.1 Before the Crisis

The setting reviewed in this section is known to most practitioners, however we
find it important to recall it since what comes later puts just this setting under
discussion.

We consider a set of contractual dates T0, . . . , Ti, . . . , TN . The spot riskless
interest rate at time t with maturity Ti is the interest rate R (t, Ti) applying to
a deposit contract where a bank A lends a unit of money to a bank B from t
(today) until Ti. In building a term structure of discount bonds to be used in
the valuation of financial products, a relation is introduced between R (t, Ti) and
P (t, Ti), the price of the riskless zero-coupon bonds maturity Ti. In standard
no-arbitrage pricing, the latter is defined as

P (t, Ti) = Et [D (t, Ti)] ,

where Et indicates expectation under the risk-adjusted or risk-neutral probabil-
ity measure, given the information up to t. The flow of all market information
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is represented by a filtration F = (Ft)t≥0. There exists a riskless money market
account Bt and D (t, Ti) = Bt

BTi
is the riskless discount factor from Ti to t. In

a market free of arbitrage opportunities, the relationship between P (t, Ti) and
R (t, Ti) is clear. Buying a riskless bond with price P (t, Ti) and maturity Ti,
and lending an amount P (t, Ti) of money until Ti to a riskless counterparty, are
two strategies that expose an investor to the same cost at t and the same risk,
so that also the return at Ti must be the same, leading to

P (t, Ti) [1 + R(t, Ti)α (t, Ti)] = 1,(1)

R(t, Ti) =
1

α(t, Ti)

[
1

P (t, Ti)
− 1

]
,

where we are using simple compounding and α (t, Ti) is the year fraction between
t and Ti.

The real-world interbank market is not populated by completely riskless
banks. Nonetheless the way market operators used to deal with the quotes of
interest rate sensitive products to build curves of zero-coupon bonds corresponds
to the assumption that the risk in the interbank lending market is negligible.
This was justified by the actually low level of risk for the large majority of banks,
and by the fact that interest rate derivatives products were usually indexed to
Libor rates (or other similar rates such as Euribor in the Euro market). Libor
is a trimmed average1 of the unsecured inter-bank deposit rates at which funds
can be borrowed by designated contributor banks. The banks belonging to the
Libor world are selected to be the upper part of the banks world in terms of
credit standing, a population that was considered virtually riskless before the
crisis.

Thus the Libor rate LM (t, Ti) with maturity Ti was considered a good ap-
proximation to R (t, Ti), in the sense that one could treat LM (t, Ti) as the
riskless rate, and use it as a reference to define derivatives, and to build a curve
of discount bonds,

R (t, Ti) = LM (t, Ti) ,(2)

P (t, Ti) =
1

1 + R (t, Ti)α(t, Ti)
=

1
1 + LM (t, Ti)α(t, Ti)

=: PL(t, Ti).

This leads to the possibility of very simple replication procedures to price fun-
damental interest rate derivatives such as swaps. The most basic swap is the
Forward Rate Agreement (FRA). A Ti-maturity, Ti−1-fixing FRA has a payoff
at Ti that, for the payer of the fixed rate, is given by2

(3) α(Ti−1, Ti)(LM (Ti−1, Ti)−K)
1Before averaging, the highest and the lowest quartiles of the distribution are eliminated.
2As pointed out in Mercurio (2008), formula (3) is the textbook representation of the

FRA payoff but it does not exactly coincide with the market termsheet payoff. Mercurio
(2008) presents the termsheet formula in the introductory section, although then he uses (3)
to build his Market Model consistent with FRA quotes. Similarly we focus on (3) that is more
tractable, but in Section 4.2 we present the termsheet formula and some analytic evidence
that, for practical purposes, the two formulas are equivalent.
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The FRA is quoted through its equilibrium rate FM (t; Ti−1, Ti), corresponding
to the level of K making such a deal fair at t. Under (2), in an arbitrage-free
market this rate is not difficult to compute based on Libor spot quotes, even
without observing quotes in the FRA market. In this setting Libor is both
the rate at which the contract is indexed and the rate used to build a curve of
discount bonds, so the FRA has a simple Libor-based replication.

Remark 1 (FRA Replication Strategy) The unitary FRA payoff can be
replicated at time t by the payer by borrowing (1 + Kα(Ti−1, Ti)) PL (t, Ti) with
maturity Ti , and lending P (t, Ti−1) with maturity Ti−1, reinvesting then the
proceedings (an amount equal to 1) from Ti−1 to Ti at Libor.

In fact the payoff (3) is equivalent to

1 + LM (Ti−1, Ti)α(Ti−1, Ti)− (1 + Kα(Ti−1, Ti)) .

The term 1 + Kα(Ti−1, Ti), being deterministic, can be easily replicated by
shorting at t a corresponding amount of Ti-maturity bonds. The first term is
instead 1 + LM (Ti−1, Ti)α(Ti−1, Ti) = 1/PL(Ti−1, Ti), which can be replicated
at Ti−1 by buying an amount 1/PL (Ti−1, Ti) of Ti-maturity bonds with price
PL (Ti−1, Ti). This strategy has a unit cost at Ti−1, leading to a price at t for
the replication strategy which is

(4) FRAStd (t; Ti−1, Ti; K) = PL (t, Ti−1)− (1 + Kα(Ti−1, Ti)) PL (t, Ti) .

The level of the fixed rate K that gives a null price to the FRA at t is

(5) FStd (t; Ti−1, Ti) :=
(

PL (t, Ti−1)
PL (t, Ti)

− 1
)

1
α(Ti−1, Ti)

.

This is the textbooks’ Libor Standard Replication forward rate for fixing at Ti−1

and payment at Ti, set at t. A remark on the choices made about the notation
is now in order.

Notation 2 We indicate market quotes by the subscript M like in LM (t, Ti) or
FM (t;Ti−1, Ti). Variables which are defined as model-independent, unambigu-
ous functions of market quotes have subscript that indicates the market quote
they refer to, such as PL(t, Ti). Variables that represent the model replication
of a market quote are identified by a subscript that indicates the model they
are based upon, such as FStd (t; Ti−1, Ti). Most other variables are theoretical
quantities defined by a set of properties, such as the riskless rate R (t, Ti).

In the above setting it is also easy to price a Money-Market Basis Swap.
This is a contract where: counterparty Y pays every αY units of time (tenor)
the αY -Libor rate, while counterparty X pays every αX < αY units of time the
αX -Libor rate plus a spread Z. The spread is added to the leg with shorter
tenor/higher frequency and set to the level that makes the deal fair at incep-
tion, see Tuckman and Porfirio (2003). According to Ametrano and Bianchetti
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(2008), the current EUR market practice is slightly different since Basis Swaps
are quoted as portfolios of two standard receiver fixed-for-floating swaps with
the same 12m-tenor fixed legs, and floating legs paying Libor with two different
tenors.

Irrespective of the quotation system, when the two counterparties are riskless
and the market is free of arbitrage opportunities, any floating leg fixing first time
at T0 and paying last time at TN is worth P (t, T0) − P (t, TN ), no matter the
frequency/tenor. In fact, if the fixing and payment dates are [T0, . . . , TN ], the
time-t discounted payoff is

At =
N∑

i=1

D (t, Ti)α(Ti−1, Ti)LM (Ti−1, Ti)

From the above FRA pricing one can derive the price

ΠAt =
N∑

i=1

P (t, Ti)α(Ti−1, Ti)FStd (t; Ti−1, Ti) = P (t, T0)− P (t, TN )

Thus the value of the spread Z setting the Basis swap price to zero is always
Z = 0. This corresponds to intuition, in fact the deal could apparently be
replicated without any basis spread.

Remark 3 (Basis swap replication strategy). If Y is a highly rated bank
that can lend and borrow at libor, Y could lend 1 unit of currency at 6m frequency
at the prevailing 6m-Libor rate to another Libor counterparty X and borrow the
same amount, for the same maturity, with the same Libor counterparty X, at
12m frequency. The cash flows for X and Y would be the same as in a basis swap
and the deal would be fair since the two legs have the same value at inception.

2.2 After the Crisis

If the above relationships are an acceptable, albeit approximate, representation
of reality, then the equilibrium Basis Swap spreads in the market should be very
low and the difference between the FRA market equilibrium rate FM (t; Ti−1, Ti)
and the level of the Standard Replication forward rate Fstd (t; Ti−1, Ti) com-
puted based on the prevailing Libor quotes LM (t, Ti) should also be in practice
negligible. We see in Figure 1, reporting the difference between Fstd (t; t + 6m, t + 12m)
and FM (t; t + 6m, t + 12m) with t covering a period of more than 6 years, that
this corresponds to the market situation until July 2007.
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Figure 1. Standard Replication - Market FRA (6m fixing, 12m payment)
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Figure 2. Market FRA and Standard Replication (6m fixing, 12m payment)

Although the market FRA rate FM and the Standard Replication Fstd never
exactly coincide, the difference averages 0.88bp (0.000088) in the three years
preceding July 2007. After July 2007, a gap Fstd − FM explodes, and remains
clearly positive, averaging to 50bp from August 2007 to May 2009. In Figure 2
we can see in more detail both Fstd and FM in the second half of 2008 and first
half of 2009.

Analogously, the Basis swap spreads widened from very few basis points to
much larger values after the crisis. From August 2008 to April 2009, the Basis
swap spread to exchange 6 Month Libor with 12 Month Libor over 1 year was
strongly positive and averaged 40bps, as we see in Figure 3.
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The Market 6x12 Basis Spread
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Figure 3. Basis swap spread 6X12, maturity 1y.

These events questioned the setting we reviewed in Section 2, that for the
majority of banks was the foundation of the construction of the term structure
of discount bonds, a fundamental object since it underlies the valuation of all
financial derivatives. There are several assumptions underlying the setting of
Section 2, and it is not immediate to understand which ones can still be kept
as a reasonable approximation to the reality and which ones should instead
be discarded and replaced with new ones. The task of detecting these new
assumptions is particularly complex since they should be able to explain not
only the existence of the discrepancies, but also their size and in particular
their sign, analogously to how the previous assumptions could justify a negligible
discrepancy.

The current large discrepancy could be simply explained by assuming that
the market has become arbitrage-prone and thus even objects that should in
principle be very close have diverged. This, however, could not explain why
discrepancies showed clear patterns and even an unambiguous sign.

We recalled in the Introduction that Morini (2008) and Mercurio (2008) focus
on the discrepancies between FRA’s and the Standard Replication forward, and
invoke credit and liquidity issues to justify such discrepancies. This corresponds
to discarding the assumption of riskless counterparties in the language of Section
2, and appears to be a view which is shared by most market operators and
financial researchers. The evidence is that actually the above discrepancies
erupted when another major discrepancy arose in the market: the discrepancy
between Libor and OIS (Overnight Indexed Swaps) rates, as we can see in Figure
4.
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An OIS is a fixed/floating interest rate swap with the floating leg tied to a

published index of a daily overnight reference rate, for example the Eonia rate
in the Euro market. Since an overnight rate refers to lending for an extremely
short period of time, it is assumed to incorporate negligible credit or liquidity
risk.3 The OIS rate is usually intended as good indications of market expec-
tations about future overnight lending transactions over the swap term. Thus
the relevant difference between OIS and Libor is considered as an indication of
credit or liquidity problems that may affect the counterparties over lending for
periods longer than one day.

Before the crisis the spread between Libor and OIS was so little that it
was acceptable consider both quotes risk free, and it was reasonable to use (2).
When the spread grows OIS is definitely a better approximation for a riskless
rate, as confirmed by OIS rates being lower than Libor (by 90 bps on average
for a 6m maturity from August 2007 to April 2009). It is therefore becoming
frequent among financial players to use the OIS swap curve to build a riskless
term structure, see Wood (2009). In our simple context, we can follow this by
replacing (2) with

R (t, Ti) = EM (t, Ti) ,

P (t, Ti) =
1

1 + R (t, Ti)α(t, Ti)
=

1
1 + EM (t, Ti)α(t, Ti)

=: PE(t, Ti).

where EM indicates a OIS rate and PE will be called the OIS bond.
Now we need a different definition for Libor, and a different way to deal with

FRA quotes, that take into account Libor default and liquidity risk. Morini
(2008) introduces bilateral counterparty credit risk, without explicitly consider-
ing liquidity. We follow this approach for the reasons recalled below.

3We will go back later to this market wisdom, that the reader may find not a foregone
conclusion.
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2.3 Liquidity or credit risk?

Liquidity problems for Libor banks are among of the main reasons advocated
to explain the gap opened between Libor and OIS in the crisis, besides credit
(see for example the Bank of International Settlements research by Michaud and
Upper (2008)). Since the FRA-forward gap and the Basis swap spread widened
when the Libor-OIS gap did, it appears a crucial element to consider. However
we need some precision in defining what we mean by liquidity problems. As
shown in Acerbi and Scandolo (2008), by Liquidity risk one may mean:

1. Funding Liquidity risk: the risk of running short of available funds.

2. Market Liquidity risk: the risk of having large exposures to markets where
it is difficult to sell a security.

3. Systemic liquidity risk: the risk of a global crisis where it is difficult to
borrow.

We add two elements to the analysis in Acerbi and Scandolo (2008). First
we point out that these three aspects do not really appear a problem for a bank
unless we have them together. In fact, if a banks has problem 1), but not 2),
it will be able to liquidate its assets to get funding liquidity. Even if 1) and
2) are present, when 3) is lacking the bank should be able to borrow funds to
overcome 1) and 2), at least in the short term.

Secondly, we notice that it is difficult to disentangle these elements from
credit risk, in particular when one is analyzing not the default risk of one coun-
terparty in a single derivative deal but a money market with bilateral credit
risk. In fact, funding liquidity risk for a bank X is normally strongly correlated
to the risk of default of X, since funding liquidity is measured by the cost of
financing of a bank and an increase of this cost is usually both a cause and
consequence of an increase in risk of default. As for market liquidity risk, since
we are analyzing a deposit market, it refers to the difficulties of transferring a
specific deposit for a specific counterparty Y, and as such it is always strongly
correlated to the risk of default of Y. As for the systemic risk, we now know even
too well that this is strongly correlated to the risk of default of the generic Libor
counterparty. Thus for the problem at hands one has to be careful to draw too
precise a line between credit and liquidity risk, since it may lead to an unnec-
essary multiplication of the actual risk factors. The same view is expressed in
Duffie and Singleton (1997), where the credit spread modelled must be intended
as including both credit risk and liquidity differentials, and in Collin-Dufresne
and Solnik (2001) where the authors claim that the two effects cannot be dis-
entangled, absent a theory for liquidity. In spite of this, we hint at some model
possibilities to separate credit and liquidity at the end of Section 6.

3 The Rates Market when banks can default

This section is a summary of those findings of Part 2 that can be relevant to
Part 1, since they introduce some important concepts or quantities. To simplify
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the notation, in the following we concentrate on FRA contracts that fix in 6
months and pay in 12m, and on 6m/12m Basis swaps. We set α = 6m, and we
take payments happening exactly at multiples of α, so that α is to be intended
both as a calendar time (6m after the beginning of our time line) and as a year
fraction (a period of 6m).

Following Morini (2008), in Part 2 we analyze in detail what happens to the
above setting if we introduce risk of default for Libor banks. In Section 7 we
first compute the price of the FRA replicating strategy of Remark 1 as if it was
put in place by two defaultable counterparties A (receiver of the fixed rate) and
B (payer) whose defaultable bonds are PA (t, α) and PB (t, α), and there are
no clauses that can mitigate default risk. The resulting equilibrium rate of this
deal is

FA,B
Def (t; α, 2α) =

1
α

(
PA (t, α)
PB (t, 2α)

− 1
)

.

This rate is different for any different couples of counterparties. However we
work with two counterparties A and B that we consider typical players in the
Libor world, namely two potential Libor contributors, so that Libor quotes
should give an indication for their default or liquidity risk. We define Lt to
be the set of Libor counterparties at t and we make the following homogeneity
assumption:

Assumption 4 (Homogeneity) For any counterparty Xt ∈ Lt the interest
rate applying at t to a deposit until Ti is LXt

(t, Ti), and we assume

LXt

(t, Ti) = LM (t, Ti),

PXt

(t, Ti) =
1

1 + LM (t, Ti)α(t, Ti)
= PL (t, Ti)

With this assumption the equilibrium rate for A,B ∈ Lt is unique for any
couple of counterparties and given by

FDef (t;α, 2α) =
1
α

(
PL (t, α)
PL (t, 2α)

− 1
)

.

This rate FDef (t;α, 2α) coincides with the trivial replication Fstd (t;α, 2α).
This result shows that when counterparties are defaultable the classic forward
Fstd (t;α, 2α) keeps a precise financial meaning as the equilibrium rate of a
tradable defaultable lending-borrowing strategy with different maturities, put
in place by two risky counterparties that are typical Libor counterparties. Thus
Fstd (t;α, 2α) can still be considered the “forward rate” for Libor counterparties.

In Section 8 we point out that the real market FRA does not coincide with
this replication strategy since there are counterparty risk mitigation clauses.
The first one is the “no-fault” or “two-way payment rule”: in case of default
of one of the two counterparties, the other counterparty loses (assuming null
recovery) the positive part of the net present value of the residual deal. With
this provision, that must be introduced bilaterally, namely taking into account
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that both counterparties can default, it becomes not anymore possible to price
simply through replication, but we have to introduce a framework for credit
modelling.

We work in a modelling framework whose special case is the classic reduced-
form or intensity model of Duffie and Singleton (1997, 1999) and Lando (1998),
the market standard for the pricing of simple credit derivatives such as credit
default swaps. In this framework we show that it is possible to model the fact
that Libor is tied to risky counterparties but it never defaults, because, thanks
to the use of subfiltrations, one can separate the counterparty-specific default
indicator 1{τX>s} from default probabilities. Second, this setting allows to deal
consistently with different bonds which embed different risks in spite of the fact
that they give the same non-defaultable payoff of 1 at T , such as the Libor bond
PL (t, T ) and the OIS bond PE (t, T ). We show that the latter is considered a
tradable asset, while the Libor bond PL (t, T ) is not a tradable asset, but it can
be used to define a numeraire to perform a change of measure that provides the
FRA equilibrium rate in closed form.

In order to reach this closed-form, we make an additional assumption:

Assumption 5 (Persistency, or Libor today remains Libor) We assume
for counterparty A that

A ∈ Lt, τ
A > α =⇒ A ∈ Lα,

where τA is the default time of A. This means that a counterparty which is
today a good representative of the Libor world will remain a good representative
of the Libor world until the fixing of the deal if it does not default. To put it
differently, we model a market where future Libor contributors will be so similar
to how current Libor contributors will be in the future that we can identify Libor
in the future with any survived counterparty that is Libor today.

Even with this more realistic payoff the equilibrium rate of the FRA is

FNet (t; α, 2α) =
1
α

(
PL (t, α)
PL (t, 2α)

− 1
)

,

so that it coincides with the standard replication forward rate Fstd (t; α, 2α)4,
confirming that this rate has a precise financial meaning also in the presence of
credit risk but leaving market anomalies unexplained.

4The fact that, under a standard symmetric credit risk setting, the definition of the equi-
librium rate of swaps in terms of Libor rates is independent from the riskiness of the coun-
terparties has confirmations in the literature, although derived in frameworks different from
the change of measure used here. Under assumptions similar to those made above, but in an
econometric setting, Duffie and Huang (1996) and Sorensen and Bollier (1994) find indeed
that “a swap between two parties of similar credit quality should entail no default risk pre-
mium in either direction because of the symmetric nature of the contract”, to put it as in
Collin-Dufresne and Solnik (2001), who add that, in spite of this “the swap term structure will
be different from (and above) the risk-free term structure, because the swap rate payments
are indexed on six-month Libor, which is a default risky rate”.
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Finally in Section 9 of Part 2 we point out that in the FRA market there
is an additional provision we have not yet taken into account: collateralization.
We introduce it while keeping the above assumptions 4 and 5. Collateralization
is seen by market operators as eliminating risk of default, thus the FRA payoff
needs to be discounted with a default-free discount factor. The price is

(6) FRACol (t; α, 2α; K) = Et [D (t, 2α)α (LM (α, 2α)−K)] .

Thus there is an inconsistency between the indexing of the payoff rate, which
is Libor, and the indexing of the discount factor, which is the riskless discount
factor, namely OIS. This gives rise to a convexity adjustment similar to the
one that enters the pricing of futures, in-arrears swaps and CMS swaps. We
compute that the equilibrium rate of the FRA is

FCol (t; α, 2α) = FStd (t; α, 2α) + CA (t; α, 2α) ,

where CA (t;α, 2α) is the convexity adjustment. On estimated parameters we
compute that CA (t;α, 2α) < 1bp, even changing the period selected for the
historical estimation. This shows that the convexity adjustment can account
only for a very small fraction of the discrepancy between FM (t; α, 2α) and
FStd (t; α, 2α), that in the crisis has been on average 50bp. Thus in the following
we neglect CA (t;α, 2α).

The convexity adjustment is computed in Part 2 via change of numeraire
from a measure associated to a default-dependent numeraire to a measure asso-
ciated to a default-free numeraire. In this context change of numeraire depends
on the dynamics of a quantity that recalls the forward rate of exchange of FX
modelling, with the Libor bond from the indexing curve that plays the role of
the foreign bond, the OIS bond from the discounting playing the role of the do-
mestic bond, and a conditional survival probability that replaces the spot rate
of exchange. This is similar to the FX analogy detected by Bianchetti (2008) in
a more abstract setting.

Part 2 introduces a number of techniques that can be of some use in updating
the standard mathematical representation of the interest rate market. But for
the purposes of Part 1 the most relevant conclusion of Part 2 is that credit
risk associated to Assumptions 4 and 5 does not explain the market patterns.
There are in market reality important elements which are different from the
representation given in this section. The issue is tackled in the following sections.

4 The Link between Forward rate Agreements
and Basis swaps

We first show in this section that the large discrepancy between the market FRA
and the Standard Replication forward rate during the credit crunch is just one
aspect of the large quotes for Basis swaps observed in the market in the same
period. This appears a fact overlooked in the literature, although not unknown
to experienced practitioners (Schiavi (2009)).
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4.1 A Basis-consistent replication of the FRA rate

We analyze Basis swaps in order to understand if there is a relationship between
the growth of Basis swap spreads in the crisis and the anomalies in the FRA
market. It is clear that in the crisis Basis Swaps cannot be dealt with in the
riskless setting of Section 2. As we did with FRA’s, now we have to take
into account that Basis swaps are collateralized contracts that suffer no risk of
default, but they are indexed to Libor rates that are now perceived as risky.

We recalled in Section 2 that in the current EUR market practice Basis
Swaps are quoted as portfolios of two standard receiver fixed-for-floating swaps
with the same 12m-tenor fixed legs and different floating legs. The Basis spread
Z is given as the difference between the fixed leg of the swap whose floating leg
has longer tenor, and the fixed leg of the other swap.

We consider a simple Basis swap: the 6m/12m (α/2α) basis swap with
maturity 12m, a quoted contract. In 6m/12m Basis swap the spread Z is
actually an addition to the fixed leg of the 12m-tenor swap. In this special case
where for the 12m swap the floating and the fixed leg have the same frequency,
we can neglect the fixed legs and say that the two counterparties pay two floating
legs, one with 6m frequency and one with 12m frequency, and the spread Z is
subtracted to the 12m-tenor leg. This is the convention we follow in the rest
of the paper. We omit the frequencies of the two legs since they remain α/2α.
Once the relations are clear for this example, the generalization to more tenors
or longer maturities should not be difficult.

The price of the Basis swap is computed as the expectation of the Libor-
dependent payoff discounted with riskless rate, as we did with FRA in (6):

Basis (0; 2α;Z) =
E0 [D (0, α)αLM (0, α) + D (0, 2α) αLM (α, 2α)−D (0, 2α) 2α (LM (0, 2α)− Z)] ,

that is

Basis (0; 2α; Z) = E0 [D (0, 2α)α (LM (α, 2α)] +

−PE (0, 2α)
(

1
PL(0, 2α)

− 1− 2Zα− PE (0, α)
PE (0, 2α)

(
1

PL(0, α)
− 1

))
.

If we define

K̃ (Z) =
(

1
PL(0, 2α)

− 1− 2Zα− PE (0, α)
PE (0, 2α)

(
1

PL(0, α)
− 1

))
/α

we have

(7) Basis (0; 2α; Z) = E0 [D (0, 2α)α (LM (α, 2α)]− PE (0, 2α) K̃ (Z) α.
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We now analyze further K̃ (Z):

K̃ (Z) =
(

1
PL(0, 2α)

− PE (0, α)
PE (0, 2α)

1
PL(0, α)

+
PE (0, α)
PE (0, 2α)

− 1− 2Zα

)
/α

=
1

PL(0, α)

(
PL(0, α)
PL(0, 2α)

− PE (0, α)
PE (0, 2α)

)
+

(
PE (0, α)
PE (0, 2α)

− 1− 2Zα

)
/α

= EStd(0; α, 2α) +
1

PL(0, α)
(FStd(0; α, 2α)− EStd(0; α, 2α))− 2Z

or alternatively

K̃ (Z) = FStd(0; α, 2α)+
(

1
PL(0, α)

− 1
)

(FStd(0; α, 2α)− EStd(0; α, 2α))−2Z.

Now compare the Basis swap price (7) with the FRA price (6). We see that if
one sets K = K̃ (Z) the FRA price is equal to the price of a Basis swap where
the spread is set to Z.

In fact both FRA and Basis swap involve the exchange of two legs. One leg
is deterministic and fixed today: for the FRA it is the payment of the fixed leg
at 2α, for the basis swap it is given by the payment of the 2α leg at 2α minus
the first payment of the α leg. The other leg is the only one stochastic and for
both contracts it corresponds to the payment of LM (α, 2α) at α. Both contracts
are collateralized and therefore discounting must be done at the riskless rate.

Another way to understand the equivalence between FRA and Basis swap is
analyzing the FRA replication strategy of Remark 3. The fixed leg is replicated
by a strategy with maturity 2α, while the floating leg is replicated by a strategy
with maturity α, followed by another lending from α to 2α. One leg has α tenor,
the other leg has 2α tenor. It is clear that a FRA replication is affected by the
presence of non-negligible Basis swap spreads in the market.

We see from the above relations that a FRA is fair when we set K =
K̃ (B (0; 2α)), where B (0; 2α) is the equilibrium value for the Basis spread Z.
Thus we have found a replication

FB (0; α, 2α) =

FStd(0; α, 2α) +
(

1
PL(0, α)

− 1
)

(FStd(0; α, 2α)− EStd(0; α, 2α))− 2B (0; 2α) .

of the equilibrium value of the FRA rate. For the crisis period the relevant
term in the difference FB − FStd is the term −2B (0; 2α), while the other term
is much smaller. Now we check if replacing the trivial replication FStd of the
equilibrium FRA with our new replication FB that takes into account the basis
we are able to reduce the large discrepancy we observed in Figure 2.

This is done in Figure 6, where we see that the basis-consistent replication
FB of the FRA rate is indistinguishable from the market FRA rate, even though
this replication uses Libor spot data, Basis swap data and no information from
market FRA. We are now able to replicate the FRA with other market quotes as
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well as the Standard Replication forward was able to replicate the FRA before
the crisis. This evidence confirms that the reason for the gap between market
FRA’s and their standard replication is the presence of a large Basis spread that
must introduced in the replication, as we did above. This leads to the remark
made in the next section.
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Figure 6. 6X12 Market FRA, Standard Replication, and Basis-consistent Replication

4.2 Reconciling Textbooks’ FRA with Real Market’s FRA

In the definition of the Forward Rate Agreement used so far, the payoff is paid
at 2α and it is given by

(8) (LM (α, 2α)−K)α.

so that the price is

FRA (0; α, 2α,K) = E0 [D (0, 2α)α (LM (α, 2α)−K)] .

We recall that according to the Change of Numeraire technique, see Brigo and
Mercurio (2006), given two numeraires N1, N2, the following holds for any
tradable X

X0 = EN1

[
N10

N1T
XT

]
= EN2

[
N20

N2T
XT

]

where EN indicates the probability measure associated to numeraire N . We can
apply change of numeraire to FRA pricing, finding

FRA (0; α, 2α, K) = E0 [D (0, 2α)α (LM (α, 2α)−K)]

= E0

[
B (0)
B (2α)

α (LM (α, 2α)−K)
]

= PE (0, 2α)αEPE(·,2α)
0 [LM (α, 2α)−K] .

where EPE(·,2α)
0 indicates expectation under the measure associated to the bond

numeraire PE (·, 2α).
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The payoff (8) is the FRA payoff reported in most textbooks, with few
exceptions (for example Myron and Swannell (1991)). The termsheet payoff of
FRA used in the market is different, since it provides for the payment at α of a
payoff given by

(9)
LM (α, 2α)−K

1 + LM (α, 2α)α
α,

namely, compared to (8), it pays earlier a payoff which is Libor-discounted.
Thus the price is

FRAMKT (0; α, 2α, K) = E0

[
D (0, α)α

(
LM (α, 2α)−K

1 + LM (α, 2α)α

)]
.

This is pointed out in also in Mercurio (2008), that presents (9) in the intro-
ductory section, although then he uses (8) to build his Market Model consistent
with FRA quotes. In order to understand the relation between (8) and (9) we
perform a few transformations to (9):

FRAMKT (0; α, 2α, K) = E0

[
D (0, α)α

(
LM (α, 2α)−K

1 + LM (α, 2α)α

)]

= αE0

[
B (0)
B (α)

PL (α, 2α) (LM (α, 2α)−K)
]

.

If we assume that PL (·, 2α) is a valid numeraire, we have

FRAMKT (0; α, 2α, K) = PL (0, 2α)αEPL(·,2α)
0

[
PL (α, 2α)
PL (α, 2α)

(LM (α, 2α)−K)
]

= PL (0, 2α)αEPL(·,2α)
0 [(LM (α, 2α)−K)] .

Thus under this precise market payoff (9) the equilibrium rate is

EPL(·,2α)
0 [LM (α, 2α)]

to be compared with the equilibrium rate

EPE(·,2α)
0 [LM (α, 2α)]

that we obtain under the text-book payoff (8) used so far.
In Section 8 and 9 of Part 2, under the hypothesis made there, we do not con-

sider PL (t, 2α) as a numeraire, but rather we use a slight modification P̃ (t, 2α)
that appears a more natural and correct numeraire. Then we compute, on
market estimated parameters, that the expectation of LM under the measure
associated to P̃ (t, 2α) differs from the expectation of LM under the measure
associated to PE (·, 2α) by less than one basis point. Thus, if we neglect the
technicality associated to the slight mathematical difference between P̃ (t, 2α)
and PL (t, 2α), we can conclude that the difference between the market payoff
(9) and the text-book payoff (8) is of little practical relevance for the compu-
tation of the equilibrium FRA rate. This conclusion is strongly confirmed by
the fact that the Basis-consistent replication of the FRA equilibrium rate we
outlined in the previous section captures the market rate even though we have
used the text-book payoff (8) and not the market payoff (9).
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5 Explaining FRA and Basis Swaps in the crisis

The previous section has shown that the gap between FRA market quotes and
the Standard Replication can be bridged using the Basis swap spreads, so that
the two problems we are analyzing can be reduced to a single one. This moves
our focus from explaining the FRA gap to explaining why we have such large
Basis swaps in the crisis. By “explaining” we mean the possibility to replicate,
at least approximately, the behaviour of Basis swap spread during the crisis
using more fundamental market quantities, and clarify analytically why in the
market, during the crisis, the spread Bα/2α paid by the leg with shorter tenor
to the leg with longer tenor has been large and positive. Which is equivalent to
explaining why the market FRA rate has been, in the crisis, remarkably smaller
than the Standard Replication forward.

We have already seen that we have to abandon the riskless setting of Section
2 and that Basis swaps in a credit crisis are different from the replication of
Remark 3, since

1. In a basis swap no-one really borrows or lends to a Libor counterparty.

2. A basis swap is a collateralized derivative, so there is no counterparty
default risk.

3. Payments are indexed to risky unsecured Libor.

We have also seen that default risk for Libor banks is not sufficient, in itself,
to explain anomalies like those we have seen in the crisis, not even considering
collateralization. This can be based on the analysis of Part 2 reported in Section
3, on a FRA which is equivalent to a Basis swap α/2α with maturity α. We
have to move to considering additional issues.

Market operators appear to have an intuitive justification of the fact that in
the crisis a large positive spread needs to be paid by the payer of the leg with
shorter tenor to the payer of the leg with longer tenor. The market explanation
usually starts from a conjecture that one can find, given as an unexplained
axiom, for example in Tuckman and Porfirio (2003).

Conjecture 6 (An axiom for the market) Lending at 12m Libor involves
more counterparty/liquidity risk than rolling lending at 6m Libor.

As a consequence, in the replication strategy of Remark 3 applied in a risky
world, the receiver of the leg with longer tenor (12m) suffers a higher counter-
party/liquidity risk, that will be compensated by a higher market level of the
12m-Libor compared to the one implied by the 6m-Libor. When in a Basis
swap one exchanges the same flows as in the replicating strategy but eliminat-
ing any counterparty/liquidity risk by collateralization and indexing to Libor
rather than actual lending, this higher level of the 12m-Libor will is not justified
anymore by a higher risk. Thus in the Basis swap the receiver of the leg with
longer tenor (12m) will have to compensate this advantage by adding a spread
to her payments.
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If the reader agrees with Conjecture 6, the above reasoning explains why
the non-negative basis Bx/y needs always to be added to the shorter-tenor leg
of a basis swap and thus why the FRA rate needs always to be lower than (or
equal to) the corresponding replicated forward rate. However now we want to
analyze qualitatively the foundations of Conjecture 6, and then we want find a
quantitative framework to express Basis swap spreads.

The first step is to consider the various fundamental explanations usually
given to justify Conjecture 6.

5.1 Lower loss due to default: only one coupon

There is one obvious advantage for the 6m roller in the risky Libor world of
Conjecture 6. When default happens in the period 6m − 12m (between 6m
from now and 12m from now) the 12m lender loses all the interest, while the
6m lender loses only the interest for the period 6m − 12m, having already
cashed-in the interest for 0 − 6m. We will take this into account, but we will
see later that quantitatively the advantage is largely insufficient to justify the
basis observed in 2007, 2008 and 2009.

On the other hand, lending lasts 12m for both the 12m lender and the 6m
roller. If the counterparty default happens in the 12m period, both lenders lose
the notional.

5.2 Exiting at par when credit conditions worsen

One may see another credit advantage in 6m rolling under risky Libor. The
advantage is that after 6m, if the counterparty credit conditions have strongly
worsened, one can stop lending with no cost, and move to lending to a better
counterparty. The 12m lender, instead, for doing the same will have first to un-
wind or transfer its deposit (if possible) at a cost that incorporates the increased
risk of default, to be compared to the 6m lender that exits at par.

However, by itself this does not imply that the 6m roller has a monetary
advantage. In fact the 6m roller does not have an option to exit at par after
6m. He will always exit at par after 6m, including the opposite situations:
when the counterparty credit conditions have improved rather than worsened.
In these cases the 6m lender will exit at par while the 12m lender will have a
gain. Thus the expected gain of the 6m lender compared to the 12m lender
when the counterparty worsens is compensated by its expected loss when the
counterparty gets better.

This symmetry can be broken down by some considerations on how the
market works, but that are difficult to model. Unwinding a financing contract
is not so common in the market. A first reason is that, due to bid-ask spread,
this cannot be done at a theoretical fair value. Secondly, and more importantly,
there are commercial reasons that restrain banks from unwinding a funding
contract. However a worsening in the credit quality of a borrower can have non-
linear negative effects for the lender, for example if the rating worsens there can
be negative consequences also on the regulatory capital point of view, let alone
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raising concerns on the solvability of the lending bank itself (the 2002 ISDA
Master agreement even provides for a clause of automatic unwinding of a deal
if the rating of the counterparty worsens (ATE)).

These considerations can be more important of commercial considerations.
As a consequence, unwinding is likely not to happen when it would be convenient
for the 12m borrower, but only when it involves a loss in fair value, and when
the bid-ask spread is likely to be large. This breaks the above symmetry, but
this effect is difficult to quantify.

5.3 A liquidity advantage in 6m lending?

Michaud and Upper (2008) claim explicitly that in the analysis of the money
market in the crisis “it is difficult to disentangle credit and liquidity factors”, as
we already pointed out in Section 2.3. The liquidity risk considered by Michaud
and Upper (2008) appears to be mainly funding liquidity. With reference to
funding liquidity, it can be an advantage to exit at par after 6m since the lender
may be in need of funding liquidity (its credit risk has grown, or in any case it
funding costs have increased). Here the considerations of 5.2 apply. One may
exit also in the 12m contract, and exiting at fair value can be more ore less
convenient than exiting at par, so that a longer tenor by itself on average does
not represent either an advantage of a disadvantage. We have seen in 5.2 that
there are elements in market reality that can break the symmetry. One is bid-
ask spread. The other element is the bias towards unwinding when it involves a
fair value loss, but this is true only when the unwinding is performed for credit
reasons (the credit risk of the borrower) rather than funding liquidity reasons
(the credit risk of the lender). In case of liquidity reasons, under this aspect
the symmetry is broken only if we also assume correlation between credit risk
of the borrower and credit risk of the lender.

5.4 Libor anomalies

Practitioners from large Libor contributors hint that Libor was not a reliable
indication for inter-bank borrowing during the crisis, see Peng et al. (2008). The
argument is that Libor was understating actual interbank lending, as confirmed
by a number of market observations, since “any bank posting a high Libor level
runs the risk of being perceived as needing funding”. Thus we can infer that
banks in higher need of funding were not posting their actual funding cost but
a lower rate. As Cho and Rosemberg (2008) put it, for the purposes of the
fixing the bank has an incentive to quote a lower interest rate publicly than it
would be prepared to pay in a private transaction. Some confirmation of this
hypothesis come also from Michaud and Upper (2008), that mention that banks
with increasing credit risk, as measured by the CDS market, do not appear to
have quoted significantly higher Libor rates than banks with lower credit risk.
This can be interpreted in two ways: either credit risk was not relevant to the
cost of term funding of Libor banks, or, as hinted by Peng et al. (2008), Libor did
not reflect the actual term funding particularly for distressed banks. Another
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anomaly observed during the crisis is the so-called turn-of-the-year effect : the
Libor-OIS spread showed a positive jump when the maturity of the contracts
reached the end of the year.

5.5 Borrower (and lender) will not be Libor for ever

Only in the above paragraph we have explicitly taken into account the first
characteristic of a Basis swap that makes it different from a standard replica-
tion strategy: here no-one really borrows or lends to a Libor counterparty, but
simply payments are indexed to the prevailing Libor fixing rate. The Instruc-
tions to BBA Libor contributor Banks state that a Libor contributor bank will
contribute the rate at which it could borrow funds for unsecured deposits. Ad-
ditionally, according to British Bank Association (2009a),
”Decisions on individual banks were taken on the basis of scale of activity in the
London market, perceived expertise in the currency concerned, reputation, and
due consideration of credit standing
“The BBA is committed to reviewing the Panels at least twice annually.
and according to British Bank Association (2009b)
“The banks represented on the panels are the most active in the cash markets
and have the highest credit ratings

This shows that when the credit standing of a bank in the Libor panel
worsens compared to the rest of the banks in the panel, its borrowing (and
lending) rate cannot anymore be a representative of Libor. The bank will go
out of the panel, which is periodically revised (or it will adjust its contribution
to make it acceptable, but this is discussed below). Thus there is a floor to
how much a current Libor bank’s credit standing can worsen for it to influence
the future Libor fixing. This floor turns into a cap on the borrowing rate of a
Libor counterparty, that needs to be respected for the bank to remain a Libor
counterparty. This cap regards only the spread of a counterparty vs OIS, since
the component in each lending rate which is riskless OIS is the same for all
counterparties. As a consequence the expected spread over OIS of a future
Libor counterparty is constantly lower than the expected spread over OIS in
the future of a bank which is now a Libor counterparty. Indeed when the latter
increases too much the bank will not be Libor anymore at that future date.

Thus there is an additional reason why the replication strategy of the basis
swap in Remark 3, that appears to justify a zero Basis swap spread, is naive.
If an investor wants to replicate the actual flows of the shorter-tenor leg of a
Basis swap, she should lend 1 for 6m at the prevailing 6m-Libor rate to another
Libor counterparty X, then after 6m she should check if the credit standing
of X is still sufficiently high for the bank to belong to the uppermost group
of banks in terms of credit standing. If the answer is yes, she can actually
lend the money again to the same counterparty X. Otherwise she will have to
choose another counterparty Y with a higher credit standing. Thus the 6m leg
implicitly embeds this bias towards the uppermost group of banks.

The counterparty risk in the 6m leg is obviously lower than in the 12m leg
because the replication strategy of the 6m leg includes the possible requirement
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of moving after 6m to a counterparty that is better than the previous one in
terms of credit standing, by definition of Libor . Thus the expectation of the
survival probability of the borrower of the 6m leg in the 6m-12m period is
higher than the survival probability of the borrower of the 12m in the same
period, explaining why, on average, the 6m leg embeds less counterparty risk
than the 12m leg. This justifies the existence of a positive basis to be added to
the 6m leg when the flows are replicated in the collateralized Basis swap free of
counterparty risk.

Differently from some of the considerations above, this fact is unambiguous.
It is also mentioned in the previous literature, although in contexts different
from this one. To the best of our knowledge, the first to mention this issue in
Libor modeling is Grinblatt (1995). He points out that longer term Libor is the
rate of a loan to an AA or AAA-rated borrower, and that an investor which is
AA or AAA at an initial date may not be an AA or AAA investor some time
later, while a sequence of shorter term Libor investments has the AA or AAA
rating of the borrower “refreshed” periodically. Subsequently Collin-Dufresne
and Solnik (2001) use this fact to build an econometric explanation of the spread
between swaps and corporate bonds. Instead in the following we will implement
this fact in a simpler model where Libor turns out to include an option on a
forward spread.

Also the considerations of Section 5.3 enter the picture, telling us that not
only a deal can exit from the Libor world because of a worsening of the credit
conditions of the borrowers, but also because of a worsening of the lender’s
funding cost (credit conditions of the lender). The analysis of Section 5.4 tells
that not necessarily the worsening of the conditions of a bank lead it to go out
of the Libor panel. More simply, the bank may not update its contributions to
its higher perceived credit risk, and give instead a more optimistic contribution.
The effect on the Libor fixing is the same as exiting from the panel and being
replaced by a healthier bank. This can be considered particularly important
in the latter crisis when the interbank market had become strongly illiquid, so
that Libor was less linked to actually traded quotes.

As regards the “turn-of-the year” effect observed in the Libor-OIS spread,
it seems that when a date of balance-sheet report is between inception and
maturity of a deal it is more likely that one of the two counterparties will have
its credit standing revised during the life of the deal, increasing pressure on
longer tenor rates versus shorter tenor rates.

Finally, Michaud and Upper (2008) and Cho and Rosemberg (2008) make
a precise analysis of the Libor contributions from the different panel banks
and find that in the Euro money market, that we consider in our empirical
application, the dispersion was particularly high during the crisis (from 2 bps
pre-crisis to around 20bps when the crisis erupted), which should increase the
relevance of the “counterparty replacement” factor under analysis.

Although this is surely a partial representation of the problem it seems the
single most relevant aspect to introduce in our analysis.
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6 A model for Basis and FRA. Libor as an op-
tion

In this section we implement the above ideas in a simple model that we test on
market data. We start from the expression of the Basis swap price given by (7),
that implies a Basis equilibrium spread B (0, 2α) which is

B (0, 2α) =
1
2
FStd(0; α, 2α) +

1
2

(
1

PL(0, α)
− 1

)
×(10)

× (FStd(0; α, 2α)− EStd(0; α, 2α))− 1
2
E [D (0, 2α)α (LM (α, 2α)]

PE (0, 2α)α

The only quantity that is now model-dependent is E [D (0, 2α)α (LM (α, 2α)].
Before introducing the model that according to Section 5.5 is most realistic, we
see what would happen to the Basis spread in simpler models.

First we consider the case of a riskless market where LM (0, T ) = EM (0, T ),
as it was, approximately, before the crisis. The Basis price would be:

Basis (0, 2α;B) = PE (0, 2α)αEStd(0; α, 2α)−PE (0, 2α) αEStd(0; α, 2α)+PE (0, 2α) α2B,

leading to an equilibrium spread B (0, 2α) = 0.
In case the market is not riskless, as it happens in a credit crisis, we have

LM (t, T ) 6= EM (t, T ). There are now different possible hypothesis on the mean-
ing of Libor, that lead to different results. We keep the homogeneity of Assump-
tion 4, that implies

LX0
(0, α) = LM (0, α) = FStd (0; 0, α) ,

LXα

(α, 2α) = LM (α, 2α) = FStd (α; α, 2α) ,

recalling that LXt

is the rate applying to a counterparty which is Libor at
t. We need to make additional assumptions to reach results about FRA or
Basis swaps. In the setting of Section 3, we added Assumption 5, namely that
the future Libor LM (α, 2α) will coincide, at fixing, with the rate LX0

(α, 2α)
applying in the future to the current Libor counterparty X0, that is

LM (α, 2α) = LX0
(α, 2α) , τX0

> α.

This is true only when a generic counterparty which is Libor today will remain
Libor if it does not default (or equivalently when we consider a theoretical
synthetic forward rate agreement tied to the future spot rate LX0

(α, 2α), rather
than being tied to LXα

(α, 2α)). In this case we have, neglecting the small
convexity adjustment

E [D (0, 2α) α (LM (α, 2α)] = PE (0, 2α) αFStd(0; α, 2α)

so that

B (0, 2α) =
1
2

[(
1

PL(0, α)
− 1

)
(FStd(0; α, 2α)− EStd(0; α, 2α))

]
.
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This assumes that there is no upper bias in Libor due to the refreshment of
Libor counterparty described in Section 5.5. However it includes consideration
mentioned in Section 5.1: in 6m rolling the interest payment is broken into two
payments of which the one at 6m is subject to lower default risk. In Figure 7 we
show the Basis spread during the crisis computed according to these hypotheses,
compared to the actual behaviour of the market Basis spread. We are far away
from explaining the market patterns.
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Now we can drop Assumption 5. We do not assume anymore that the future
Libor LM (α, 2α) will coincide, at fixing, with the future rate LX0

(α, 2α) ap-
plying to the generic current Libor counterparty X0. We start again from (10),
but now

LM (α, 2α) = LXα

(α, 2α) 6= LX0
(α, 2α) .

What is LM (α, 2α) in this new context? How it relates to LX0
(α, 2α)?

We saw in Section 5.5 that the difference between LM (α, 2α) and LX0
(α, 2α)

can only regard the spread of such rates over the riskless OIS rate, which is a
component that does not depend on the specific counterparty considered. Thus
we define the spread over OIS implicit in Libor,

SM (α, 2α) := LM (α, 2α)− EM (α, 2α) ,

and the spread over OIS for the generic X0 Libor counterparty,

SX0
(α, 2α) := LX0

(α, 2α)− EM (α, 2α) .

For the generic X0 Libor counterparty it makes sense also to define a forward
spread

SX0
(t, α, 2α) := FStd(t; α, 2α)− EStd(t;α, 2α).

To implement the ideas of Section 5.5, we assume that Libor starts evolving
like the rate of the generic libor counterparty X0, but it is capped by the fact
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X0 will be excluded from the Libor panel at α if its spread over OIS is higher
than the forward spread implicit in spot quotations at 0,

SX0
(α, 2α) > SX0

(0, α, 2α) .

We could have chosen a different level for a counterparty to be excluded from the
Libor world, but this choice has the advantage to be the simplest representation
of an underperformer. This changes the strategy we have to implement to
replicate the value of a Libor-indexed Basis swap:

Proposition 7 (An option in Libor quotes) In the replication of a Libor
floating leg the initial counterparty X0 will be changed at α, to move to a Libor
counterparty Y α with a different spread SY α

(α, 2α), whenever the spread over
OIS of the original counterparty, SX0

(α, 2α), is higher than the forward spread
computed at 0. This means

SM (α, 2α) = SX0
(α, 2α) 1{SX0 (α,2α)<SX0 (0,α,2α)} + SY α

(α, 2α) 1{SX0 (α,2α)>SX0 (0,α,2α)}
= SX0

(α, 2α)− 1{SX0 (α,2α)>SX0 (0,α,2α)}
(
SX0

(α, 2α)− SY α

(α, 2α)
)

.

We need to compute, with E = EPE(·,2α),

E [D (0, 2α)αLM (α, 2α)]
PE (0, 2α) α

(11)

= E [LM (α, 2α)] = E [EM (α, 2α) + SM (α, 2α)]

= E
[
EM (α, 2α) + SX0

(α, 2α)− 1{SX0 (α,2α)>SX0 (0,α,2α)}
(
SX0

(α, 2α)− SY α

(α, 2α)
)]

= E
[
LX0

(α, 2α)− 1{SX0 (α,2α)>SX0 (0,α,2α)}
(
SX0

(α, 2α)− SY α

(α, 2α)
)]

= FStd(0; α, 2α)− E
[
1{SX0 (α,2α)>SX0 (0,α,2α)}

(
SX0

(α, 2α)− SY α

(α, 2α)
)]

.

When, because of the above condition, the counterparty is changed, we move to
a counterparty Y α that, differently from the original one, has outperformed. It
must be SY α

(α, 2α) ≤ SX0
(0, α, 2α), but what precisely will be SY α

(α, 2α)?
We make again the simplest assumption: if the spread of our counterparty

SX0
(α, 2α) is higher than SX0

(0, α, 2α), we move to a counterparty Y α that
took a symmetric path with respect to SX0

(0, α, 2α) (we may say that when
the ”barrier” SX0

(0, α, 2α) is touched, the path of the Libor spread is bounced
back/reflected). This means that when the spread of our counterparty is higher
than the forward spread by an amount SX0

(α, 2α) − SX0
(0, α, 2α), we move

to a counterparty whose spread is lower than the forward spread by the same
amount, so that SY α

(α, 2α) = SX0
(0, α, 2α)−

(
SX0

(α, 2α)− SX0
(0, α, 2α)

)
=
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2SX0
(0, α, 2α)− SX0

(α, 2α). This leads to

E
[
1{SX0 (α,2α)>SX0 (0,α,2α)}

(
SX0

(α, 2α)− SY α

(α, 2α)
)]

= E
[
1{SX0 (α,2α)>SX0 (0,α,2α)}

(
SX0

(α, 2α)− 2SX0
(0, α, 2α) + SX0

(α, 2α)
)]

= 2× E
[
1{SX0 (α,2α)>SX0 (0,α,2α)}

(
SX0

(α, 2α)− SX0
(0, α, 2α)

)]

If we go on neglecting no-arbitrage drifts and we assume that SX0
(t, α, 2α)

evolves as a geometric brownian motion

(12) dSX0
(t, α, 2α) = SX0

(t, α, 2α)σαdWα (t) ,

we can price the above option with the standard Black and Scholes formula,

BlackCall
(
X, K, σ

√
T

)
= XN (d1)−KN (d2)

d1 =
ln (X/K) + 1

2σ2T

σ
√

T
, d2 =

ln (X/K)− 1
2σ2T

σ
√

T
.

We obtain that implies

B (0, 2α) =
1
2

(
1

PL(0, α)
− 1

)
(FStd(0; α, 2α)− EStd(0; α, 2α)) +(13)

+BlackCall
(
SX0

(0, α, 2α) , SX0
(0, α, 2α) , σα

√
α
)

.

This formula for the Basis is extremely simple. The only input we do not have
available is the volatility. Since we are working on Euro data, as a proxy we use
the volatility of the i-Traxx Index spread, the average credit spread of the 125
most liquid entities in the Euro market. We extract the volatility information
from the ATM options on the 5y i-Traxx spread with expiry α = 6m, that
are quoted daily. Options with 6m expiry for a 6m spread would be more
appropriate, but such options are not traded in the market.

The simple formula (13), based uniquely on Euribor and Eonia OIS data,
with a credit volatility input, yields a good replication of the historical behaviour
of the traded 6m/12m basis, as shown in Figure 8.

27



-10.000

10.000

30.000

50.000

70.000

90.000

110.000

21.7.08

9.9.08

29.10.08

18.12.08

6.2.09

28.3.09

17.5.09

The Market
6x12 Basis

Replicated
Basis when
Libor is an
option with  i-
Traxx Vol

Figure 8
Some of the discrepancies between the historical pattern and our replication

can be explained also by the lack of a more appropriate volatility input. For
example, in the aftermath of Lehman default, the option replication tends to
underestimate the historical pattern. This can be related to the fact that we are
using as volatility proxy a value that refers to the 125 most liquid companies
in Europe, an index composed by more than a half by corporate, nonfinancial
firms, while the Libor spread should refer to financials only. The volatility
of financials was perceived higher than the average volatility after Lehman’s
default, so that our volatility input may underestimate the correct one. This
issue may partially explain also why, in the final part of the sample, referring to
a period where banks reported very positive results and were perceived as less
risky, the replicated basis is higher than the quoted one.

In spite of the details, the relevance of this result is to show that an ex-
tremely simple explanatory model based on counterparty risk in Libor, and on
the optionality implicit in Libor, allows an approximate replication of the Basis
swap (and FRA) market patterns, even though in the model there are no pa-
rameters used to fit to the Basis swap or FRA market. This representation of
the Basis as an option has also the advantage of giving a general explanation
of why the Basis gets higher the higher the difference in tenor between the two
legs of the swap. A 6m-tenor Libor leg is lower than a 1y-tenor Libor leg since
6m leg involves a stream of counterparties whose credit risk is checked and re-
freshed every 6m, down to reaching an overnight leg (OIS) whose risk of default
is checked and refreshed overnight. This risk is sufficiently low to consider such
a leg approximately riskless.

This result could be a starting point for a more general model where flows of
Libor rates with different tenors embed different levels of default risk and differ-
ent levels of default risk volatility, to be consistent with the financial evidence
that there is a periodic updating of credit risk in Libor, and with the empirical
patterns observed in the crisis.

Then some critical observations are in order. The model is obviously too
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simple to represent a detailed representation of the Basis swap or FRA dynam-
ics. The spread behaviour could be represented by more realistic stochastic
dynamics. Various elements of realism could be added even without changing
the assumptions on the stochastic dynamics. For example, we modelled Libor
as a kind of cap contract, but one may notice that in normal market conditions
Libor is rather a collar, since there is not only a cap on the level of the forward
rate of a counterparty for it to be considered Libor, but also a floor. In fact
there are counterparties which are considered less risky than Libor, and in any
case Libor is a trimmed average where both the lowest and highest quartiles
are excluded. This may justify, in market conditions different from the recent
crisis, even negative Basis Swap spreads.

We also point out that the choice made about SY α

(α, 2α) has the implica-
tion that this spread over OIS can turn negative in some case. More generally
the choice appears optimistic about the Libor counterparty that substitutes the
original one when the latter underperforms. A less optimistic choice, however,
would underestimate the market basis, if the remaining assumptions are un-
changed. With this regard, we point out that there are certainly few reasonable
alternative assumptions that would lead to a result similar to (13). For exam-
ple we could be less optimistic about the substitute counterparty SY α

, but we
could bring into the picture some of the elements mentioned in Section 5 and
not introduced explicitly in the final simple model. In particular we could allow
for the fact that the conditions of a lending contract depend not only on the
borrower’s credit conditions, but also on the lender’s credit/liquidity conditions.
And a lending contract can exit the Libor world non only because of credit prob-
lems of the borrower, as we assumed here, but also for liquidity problems of the
lender, as we only hinted at in Section 5.3. Research is being carried on in this
direction, as remarked in the Conclusions, where we present some possible di-
rections for application, extension and improvement of the framework outlined
here.

Part II

Modelling the Rates Market
when banks can default
This Part starts from the standard results for a riskless market presented in Sec-
tion 2, and explores how the mathematical no-arbitrage relations are modified
when we introduce market-wide counterparty risk, with increasing level of real-
ism. Our focus will be on Forward Rate Agreements, and techniques used are
either replication, when possible, or change of measure/numeraire/filtration.
The latter techniques are somewhat an extension of replication when simple
replication is not possible, and in fact include replication as a special, lucky
case.
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This can be seen also in the context of a riskless market. If, instead of
replication, we had used change of numeraire for pricing a FRA, we would have
reached the same result. Setting αi = α (Ti−1, Ti), the FRA price is

FRAStd (t;Ti−1, Ti;K) = Et [D (t, Ti)αi (LM (Ti−1, Ti)−K)]

We can move from the risk neutral measure to the forward measure QPL(·,Ti)

associated to the Libor bond PL (t, Ti) (that in a riskless market is simply a
riskless tradable bond), finding

FRAStd (t; Ti−1, Ti; K) = PL (t, Ti)αiEPL(·,Ti)
t [(LM (Ti−1, Ti)−K)] .

Finding K that sets this to zero, we have

FStd (t; Ti−1, Ti) = EPL(·,Ti)
t [LM (Ti−1, Ti)] .

Thanks to (2),

EPL(·,Ti)
t [LM (Ti−1, Ti)] = EPL(·,Ti)

t

[
1
αi

(
1

PL(Ti−1, Ti)
− 1

)]

= EPL(·,Ti)
t [Fstd (Ti−1; Ti−1, Ti)]

But Fstd (t;Ti−1, Ti) is a martingale under QPL(·,Ti) since it is a tradable asset
PL(t, Ti−1) divided by the numeraire PL(t, Ti), so that we have

EPL(·,Ti)
t [Fstd (Ti−1; Ti−1, Ti)] = Fstd (t;Ti−1, Ti) =

(
PL (t, Ti−1)
PL (t, Ti)

− 1
)

1
αi

.

7 Forward rate Agreements when counterpar-
ties are defaultable

The first consequence of the credit crunch is that we can no longer assume that
bank counterparties are riskless. In a defaultable bond we replace the payoff 1
at Ti with the payoff at Ti

R+ 1{τB>Ti} (1− R) ,

where R is the deterministic recovery rate, τB is default-time of the bond issuer
B and we have assumed that the recovery payments always happen at maturity
Ti, an acceptable approximation particularly for short-term deals like those we
consider in the practical application of our analysis. The price of this defaultable
bond at time t is

PB (t, Ti) : = Et

[
D (t, Ti)

(
R+ 1{τB>Ti} (1− R)

)]
(14)

= P (t, Ti)R+ Et

[
D (t, Ti)

(
1{τB>Ti}

)]
(1− R) .

We look for a no-arbitrage relationship replacing (1) for defaultable counter-
parties. Suppose two counterparties A and B agree on the following deal with
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inception t: at time Ti−1 ≥ t counterparty A pays 1 (if A has not defaulted
earlier, otherwise only a fraction R is paid), while the other counterparty B
pays at Ti ≥ Ti−1 the amount 1 + Kα (Ti−1, Ti) (if B has not defaulted earlier,
otherwise only a fraction R is paid). For the deal to be fair at t we need

Et

[
D (t, Ti−1)

(
R+ 1{τA>Ti−1} (1− R)

)]
(15)

= Et

[
D (t, Ti)

(
R+ 1{τB>Ti} (1− R)

)
(1 + Kα (Ti−1, Ti))

]

If we take Ti−1 = t, we have

(16)
(
R+ 1{τA>t} (1− R)

)
= PB (t, Ti) (1 + Kα (t, Ti))

The equilibrium rate is

LA,B(t, Ti) =
1

α (t, Ti)

(R+ 1{τA>t} (1− R)
PB (t, Ti)

− 1
)

=
1

α (t, Ti)

(
PA (t, t)
PB (t, Ti)

− 1
)

.

If additionally we are sure that both A and B are alive at t (τA, τB > t), we are
describing a B-issued bond bought by A at t (or a deposit where A lends to B),
and (16) expresses the relation of a risky spot rate with a risky bond, leading
to the equilibrium rate

LB(t, Ti) =
1

α (t, Ti)

(
1

PB (t, Ti)
− 1

)
.

If we take Ti−1 > t, we are describing the equivalent of the FRA replicating
strategy of Remark 1 in a defaultable world. The equilibrium relation for this
payoff is derived from (15),

PA (t, Ti−1) = PB (t, Ti) (1 + Kα (Ti−1, Ti))

leading to the following equilibrium rate for this replicating strategy of the
defaultable FRA

FA,B
Def (t;Ti−1, Ti) =

1
αi

(
PA (t, Ti−1)
PB (t, Ti)

− 1
)

.

The last part of the strategy should include a floating payment by A for the
period from Ti−1 to Ti. This makes sense only if we assume A and B to be alive
at Ti−1. In this case the money paid by A at Ti−1 can be reinvested by lending
again to A. This floating payment can actually be introduced without changing
the value of the strategy, since

1 = PA (Ti−1, Ti)
(
1 + LA(Ti−1, Ti)αi

)
,

namely the payment of 1 made by A to B at Ti−1 is financially equivalent to
the payment

(
1 + LA(Ti−1, Ti)αi

)
at Ti.
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Remark 8 (Defaultable FRA?) We will see in the next sections that a FRA
in the market is not a defaultable contract. A theoretical defaultable FRA, how-
ever, should certainly pay a floating leg indexed to Libor. Thus the above strategy
replicates a defaultable FRA contract only when the rate LA(Ti−1, Ti) paid by
the survived counterparty A is very similar to Libor. This introduces an impor-
tant issue considered again in the following of Part 2, and analyzed under an
economic point of view in Part 1.

The rate FA,B
Def (t; Ti−1, Ti) cannot correspond to the FRA market quote

FM (t;Ti−1, Ti) since the former depends on two specific counterparties while
FM (t;Ti−1, Ti) is a rate unique for all the market. When default risk becomes
non-negligible, counterparties become different from one another and therefore
it is not trivial to model how the market comes to a single FRA equilibrium
rate. We can reach a unique FRA equilibrium rate in a simple way if we treat
all counterparties that are potential Libor contributors as having a homoge-
neous default probability expressed by Libor quotes.5 Defining Lt as the set of
counterparties that are potential Libor contributors a t, we have

(17) LB(t, Ti) = LA(t, Ti) = LXt

(t, Ti) = LM (t, Ti) A,B ∈ Lt

where Xt is the generic Libor counterparty at t (Xt ∈ Lt). Consequently, taking
into account that a counterparty must first be alive at t for being a potential
Libor contributor at t,

PB (t, Ti) =
1

1 + LM (t, Ti)α(t, Ti)
= PL (t, Ti) = PXt

(t, Ti) ,

If the two counterparties of a FRA belong to the Libor world Lt,

FA,B
Def (t; Ti−1, Ti) = FXt

Def (t;Ti−1, Ti)(18)

=
1
αi

(
PL (t, Ti−1)
PL (t, Ti)

− 1
)

= FStd (t; Ti−1, Ti)

Thus under this credit setting we are back to (5) and we cannot explain why
FM (t;Ti−1, Ti) has been different from FStd (t;Ti−1, Ti).

8 Forward rate Agreements with netting “no-
fault” rule

In this section we introduce more realism in the treatment of FRA’s and at the
same time we try and keep simple formulas. The current standard for bilateral
contracts such as swaps, supported by ISDA standard documentation, provides
for the “no-fault” or “two-way payment rule”, where if A defaults at τA the
payoff for B will be

[
Rec · (NPV B

τA

)+ − (−NPV B
τA

)+
]
,

5This is called Homogeneity Assumption in Section 3 of Part 1.
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where NPV X
t is the riskless net present value of the residual deal for coun-

terparty X at time t. Furthermore here we have bilateral counterparty risk.
In this context we cannot perform a replication of cashflows like in Remark 1,
but we can still compute the price at inception t of a Forward Rate Agreement
between two Libor counterparties A,B ∈ Lt. To simplify notation and algebra
we consider now the case when recovery is R = 0.

The price of the FRA to the payer B is the risk neutral expectation of its
payoff:

FRAA,B
Net (t; Ti−1, Ti; K) = αiEt [D (t, Ti) (LM (Ti−1, Ti)−K)] +

−αiEt

[
D (t, Ti) 1{τA≤Ti} (LM (Ti−1, Ti)−K)+

]
+

+αiEt

[
D (t, Ti) 1{τB≤Ti} (K − LM (Ti−1, Ti))

+
]
.

where the last two terms take into account bilateral counterparty risk along the
lines of Brigo and Masetti (2005).

Now we need a model for credit risk. We work in a modelling framework
based mainly on Bielecki and Rutkowski (2001) and Jamshidian (2004). The
total market information, expressed by the filtration (Fs)s≥0, is divided into
subfiltrations defined by

Ft = Ht ∨n
J=1 J J

t(19)
J J

t = σ
({

τJ > u
}

, u ≤ t
)
,

where
(J J

s

)
s≥0

is the natural filtration of the default time τJ of the J-th market
player, while Ht is the no-default information, information up to t on economic
quantities which affect default probability, such as the default free interest rates,
but excluding specific information on happening of default. The notation A∨B
indicates the joint σ-algebra generated by the σ-algebras A and B. A more
detailed analysis of the range of financial hypotheses that can specify the rep-
resentation of (19) is beyond the scope of this Part 2, so here we limit ourselves
to the additional explicit and implicit hypothesis made below.

A special case of this setting, in the single name world, is the intensity
model of Duffie and Singleton (1997, 1999) and Lando (1998), a standard in
the Credit Default Swap (CDS) market. There the default time is modelled
as τJ = inf

{
t :

∫ t

0
λJ

s ds ≥ εJ
}

, and the positive process λJ
s , s ≥ 0, called de-

fault intensity of the name J , is adapted to Ht, while εJ is a random variable
independent of no-default quantities. The process driving the default event in
this model is called a Cox Process. We remain in a more general setting, but
we make two assumptions that are typical of the standard market Cox Process
setting. First we assume what Jamshidian (2004) calls conditional independence
for subfiltrations, a property which is called martingale invariance by Bielecki
and Rutkowski (2001), secondly we assume positivity of conditional survival
probabilities.
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Assumption 9 (Martingale Invariance) Every (square-integrable) H-martingale
is also a F-martingale, so that for XT ∈ HT

E [XT |Ht] = E [XT |Ft] , t ≤ T.

Assumption 10 (Positivity) The survival probability conditional on no-default
information is strictly positive

Q
(
τJ > t|Ht

)
> 0, t ≥ 0.

In this framework a defaultable payoff Y = 1{τ>t}Y depending on no-default
information and on the default time τ of a given player can be priced using only
a default indicator and no-default information. Dellacherie (1972) and Bielecki
and Rutkowski (2001) show that

(20) E [Y|Ft] =
1{τ>t}

Q (τ > t|Ht)
E [Y|Ht] .

We continue with the homogeneity assumption (17). Since in (17) Libor is de-
fined on non-defaulted counterparties which are all the same, we assume L(t, Ti)
adapted to no-default information Ht. We can rewrite the FRA price as

FRAA,B
Net (t; Ti−1, Ti; K) = αiEt

[
D (t, Ti) 1{τA>Ti} (LM (Ti−1, Ti)−K)+

]

−αiEt

[
D (t, Ti) 1{τB>Ti} (K − LM (Ti−1, Ti))

+
]

so that we can now apply (20),

FRAA,B
Net (t; Ti−1, Ti; K) =

1{τA>t}
H PrA

t

αiEHt

[
D (t, Ti) 1{τA>Ti} (LM (Ti−1, Ti)−K)+

]

−1{τB>t}
H PrB

t

αiEHt

[
D (t, Ti) 1{τB>Ti} (K − LM (Ti−1, Ti))

+
]
,

where EHt [·] := E [·|Ht] and H PrB
t := Q

(
τB > t|Ht

)
, that is theHt-conditional

survival probability of B up to t. Using law of iterated expectations,

FRAA,B
Net (t; Ti−1, Ti; K) =

1{τA>t}
H PrA

t

αiEHt

[
EHTi

[
D (t, Ti) 1{τA>Ti} (LM (Ti−1, Ti)−K)+

]]

−1{τB>t}
H PrB

t

αiEHt

[
EHTi

[
D (t, Ti) 1{τB>Ti} (K − LM (Ti−1, Ti))

+
]]

Since L(t, Ti) is adapted to no-default information Ht,

FRAA,B
Net (t; Ti−1, Ti; K) =

1{τA>t}
H PrA

t

αiEHt

[
D (t, Ti)H PrA

Ti
(LM (Ti−1, Ti)−K)+

]

−1{τB>t}
H PrB

t

αiEHt

[
D (t, Ti) H PrB

Ti
(K − LM (Ti−1, Ti))

+
]
.
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Thanks to the fact that A,B ∈ Lt, we can set

(21) 1{τB>t} = 1{τA>t} = 1,

while the homogeneity assumption (17) implies

PA (t, Ti) = PB (t, Ti) = PL (t, Ti) = PXt

(t, Ti) .

We can price with (20) also the defaultable bond of the generic counterparty
Xt ∈ Lt. From the bond definition (14), with R = 0,

PXt

(t, Ti) = Et

[
D (t, Ti) 1{τXt >Ti}

]
=

1{τXt>t}
H PrXt

t

EHt

[
D (t, Ti)H PrXt

Ti

]

= EHt

[
D (t, Ti)

H PrXt

Ti

H PrXt

t

]
,

where the last passage comes from (21). At a generic time s > t we have

PXt

(s, Ti) =
1{τXt>s}
H PrXt

s

EHs

[
D (s, Ti) H PrXt

Ti

]
.

Now we understand that the homogeneity assumption (17) leads also to

(22) H PrB
Ti

= H PrA
Ti

= H PrXt

Ti
,

so that the FRA price is

FRAA,B
Net (t; Ti−1, Ti; K) = FRAXt

Net (t; Ti−1, Ti; K) =(23)

αiEHt

[
D (t, Ti)

H PrXt

Ti

H PrXt

t

(LM (Ti−1, Ti)−K)

]
.

This shows that a swap with symmetric counterparty risk can be priced as a
simple defaultable payoff, where the survival probability to use is the one of the

generic counterparty Xt ∈ Lt (replacing
H PrXt

Ti

H PrXt
t

with R +
H PrXt

Ti

H PrXt
t

(1−R) this

holds also for deterministic recovery).
Now we can compute the expectation in (23) by change of numeraire. In line

with Jamshidian (2004), Brigo (2005) and Brigo and Morini (2005), for comput-
ing an Ht-conditional expectation we take as a numeraire the Ht-conditional ex-
pectation of a payoff. We choose the so called “no-default value” of PXt

(s, Ti),
namely the quantity

P̃Xt

(s, Ti) := EHs

[
D (s, Ti) 1{τXt>Ti}

]
= EHs

[
D (s, Ti)H PrXt

Ti

]
.

In the following we set τ = τXt

. As expected for a numeraire, we have

P̃Xt

(s, Ti)
B (s)

= EHs

[
P̃Xt

(Ti−1, Ti)
B (Ti−1)

]
,
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since
(24)

EHs

[
P̃Xt

(Ti−1, Ti)
B (Ti−1)

]
= EHs

[
EHTi−1

[
D (Ti−1, Ti) 1{τ>Ti}

]

B (Ti−1)

]
= EHs

[
1{τ>Ti}
B (Ti)

]
.

Taking as numeraire P̃Xt

(s, Ti), we define onHTi−1 the pricing measureQP̃ Xt
(·,Ti)

through the Radon-Nikodym derivative

Z̃Ti−1 =
dQP̃ Xt

(·,Ti)

dQ

∣∣∣∣∣
HTi−1

=
B0 P̃Xt

(Ti−1, Ti)
P̃Xt (0, Ti) BTi−1

,

which is well defined since one can prove that its restriction to Hs is

Z̃s = E


 dQP̃ Xt

(·,Ti)

dQ

∣∣∣∣∣
HTi−1

∣∣∣∣∣∣
Hs


 =

B0 P̃Xt

(s, Ti)
P̃Xt (0, Ti) Bs

.

We indicate with EP̃ Xt
(·,Ti) [·] the expectation under this pricing measure, and

we find

FRAXt

Net (t;Ti−1, Ti;K) = P̃Xt

(t, Ti) αiEP̃ Xt
(·,Ti)

Ht




H PrXt

Ti

H PrXt
t

(LM (Ti−1, Ti)−K)

P̃Xt (Ti, Ti)




=
P̃Xt

(t, Ti)
H PrXt

t

αiEP̃ Xt
(·,Ti)

Ht

[
H PrXt

Ti
(LM (Ti−1, Ti)−K)

H PrXt

Ti

]

= PL (t, Ti)αiEP̃ Xt
(·,Ti)

Ht [(LM (Ti−1, Ti)−K)] .

Now we can impose this to be 0, finding

FXt

Net (t;Ti−1, Ti) = EP̃ Xt
(·,Ti)

Ht [LM (Ti−1, Ti)] = EP̃ Xt
(·,Ti)

Ht

[
1
αi

(
1

PL (Ti−1, Ti)
− 1

)]
.

Notice that PL (s, Ti) , t < s ≤ Ti, is a variable whose relationship with some
other quantities in the model is not clear yet. In fact in (17) we have assumed
PL (s, Ti) = PXs (s, Ti) , ∀s, namely for any s the Libor bond at s corresponds
to the bond of the generic Libor counterparty at s, Xs. However the numeraire
that defines this pricing measure is P̃Xt

(·, Ti), which is the no-default value
of PXt

(s, Ti), namely the no-default price at s of the bond of a counterparty
which is Libor at t, and not necessary at s, t ≤ s ≤ Ti.

We can solve the expectation easily if we assume further that not only the
credit conditions of my counterparty today are expressed by Libor,

PL (s, Ti) =: PXs (s, Ti) ,
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as implied by homogeneity, but also that, in case counterparty Xt is alive at s,
it will have credit conditions analogous to those expressed by future Libor at
s,6

(25) PL (s, Ti) = PXt (s, Ti) , with s > t, τXt

> s.

The assumption (25) corresponds to modelling a market where future Libor
contributors will be so similar to how current Libor contributors will be in the
future that we can identify Libor in the future with any current Libor counter-
party, until the latter is alive. To put it in different terms, we are modelling
a market where a counterparty which is Libor today will remain Libor until it
defaults.

Under (25) we have that PL (s, Ti) is equal to the bond of any counterparty
Xt alive at s, namely to the value of the bond of Xt without the default indi-

cator, PL (s, Ti) = P̃ Xt
(s,Ti)

H PrXt
s

. We implicitly assume that there will always be at

least one counterparty Xt alive at s to be taken as a reference. We have

EP̃ Xt
(·,Ti)

Ht

[
1
αi

(
1

PL (Ti−1, Ti)
− 1

)]
(26)

= EP̃ Xt
(·,Ti)

Ht

[
1
αi

(
H PrXt

Ti−1

P̃Xt (Ti−1, Ti)
− 1

)]

= EP̃ Xt
(·,Ti)

Ht

[
1
αi

(
P̃Xt

(Ti−1, Ti−1)
P̃Xt (Ti−1, Ti)

− 1

)]

This is the expectation of a quantity which is the no-default price of the bond
of a Libor counterparty divided by the numeraire at Ti−1, and we can prove

that 1
αi

(
P̃ Xt

(s,Ti−1)

P̃ Xt (s,Ti)
− 1

)
is a martingale under the associated pricing mea-

sure, conditional to Ht. According to the Bayes rule for conditional change of
numeraire,

EP̃ Xt
(·,Ti)

Hs

[
1
αi

(
P̃Xt

(Ti−1, Ti−1)
P̃Xt (Ti−1, Ti)

− 1

)]
(27)

= EHs

[
Z̃Ti−1

Z̃s

1
αi

(
P̃Xt

(Ti−1, Ti−1)
P̃Xt (Ti−1, Ti)

− 1

)]

=
1
αi
EHs

[(
EHTi−1

[
D (s, Ti−1) 1{τ>Ti−1} −D (s, Ti) 1{τ>Ti}

]

EHs

[
D (s, Ti) 1{τ>Ti}

]
)]

=
EHs

[
EHTi−1

[
D (s, Ti−1) 1{τ>Ti−1} −D (s, Ti) 1{τ>Ti}

]]

αiEHs

[
D (s, Ti) 1{τ>Ti}

]

=
1
αi

(
P̃Xt

(s, Ti−1)
P̃Xt (s, Ti)

− 1

)
.

6This is called Persistency Assumption in Section 3 of Part 1.
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Additionally, notice that

1
αi

(
P̃Xt

(s, Ti−1)
P̃Xt (s, Ti)

− 1

)
=

1
αi

(
P̃Xt

(s, Ti−1) /H PrXt

s

P̃Xt (s, Ti) /H PrXt

s

− 1

)
(28)

=
1
αi

(
PL (s, Ti−1)
PL (s, Ti)

− 1
)

= FStd (s; Ti−1, Ti) ,

leading to
FNet (t; Ti−1, Ti) = FStd (t; Ti−1, Ti) .

The equilibrium rate is still the standard forward. This confirms that this
rate keeps a financial meaning, under certain hypothesis, even in a defaultable
market, but also implies that this setting based on (25) does not explain the
market rate FM (t;Ti−1, Ti) during the crisis.

The contribution of this section is to show that the formalism of Jamshidian
(2004) and Brigo (2005), where one can separate the default indicator from
the conditional default probability, allows to build a no-arbitrage model where
Libor is the rate tied to the value of the defaultable bond of the generic Libor
counterparty, and at the same time Libor itself never defaults. Additionally we
have the following remark.

Remark 11 (Bonds as numeraires: same payoff but different risk)
With reference to the issues dealt with in Bianchetti (2008) and Henrard (2009),
one can notice that this setting allows to deal consistently with different bonds,
such as the Libor bond PL (t, T ) and the OIS bond PE (t, T ), which embed dif-
ferent risk in spite of the fact that they give the same non-defaultable payoff of
1 at T . In our setting this does not represent an arbitrage or an inconsistency
since we treat only the OIS bond as a tradable asset, and in fact we will use it
as a numeraire in the next section, while PL (t, T ) is not a tradable asset and
only a modification of it can be used as a numeraire.
As a consequence, and differently from what one would expect in standard change
of numeraire, in (26) we do not treat PL (Ti−1, Ti) at the denominator as the
numeraire (in fact PL (t, Ti) is not the H-expectation of a payoff) and we treat
1 at numerator as the value at maturity of a Libor bond PL (t, Ti−1) but this
bond is not intended as a standard tradable asset (otherwise PL (t, Ti−1) would
be indistinguishable from PE (t, Ti−1)). The solution to the conundrum is given
by the fact that, when we use the definition of PL (Ti−1, Ti), we find a new ra-
tio where the denominator is actually the numeraire and the numerator is a
default-dependent quantity such that we can prove the martingale property.

This framework could be of some help in adapting to the new post-crisis
situation the techniques typical in fixed income modelling, that also underlie
curve bootstrapping. On the other hand we point out that in Section 5 and 6
of Part 1 we debate the realism of (25) and then we release it, so the techniques
used here should go along the considerations made there.
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9 Forward rate Agreements with Collateral Agree-
ment

In the above derivations we assumed that the credit risk in a FRA contract is
the same as the credit risk of the counterparties in unsecured lending, so that
the discounting can be associated to the Libor bond PL (t, Ti). However FRA
contracts are usually stipulated within collateral agreements. Thus the credit
risk is commonly considered negligible, justifying the choice of a curve as riskless
as possible for discounting:

FRAXt

Col (t; Ti−1, Ti; K) = αiEt [D (t, Ti) (LM (Ti−1, Ti)−K)]

= PE (t, Ti)αiEPE(·,Ti)
t [(LM (Ti−1, Ti)−K)] ,

FXt

Col (t; Ti−1, Ti) = EPE(·,Ti)
t [LM (Ti−1, Ti)](29)

= EPE(·,Ti)
t

[
1
αi

(
1

PL (Ti−1, Ti)
− 1

)]

= EPE(·,Ti)
t [FStd (Ti−1; Ti−1, Ti)] .

Since FStd (t; Ti−1, Ti) := 1
α(Ti−1,Ti)

(
PL(t,Ti−1)
PL(t,Ti)

− 1
)
, now this is not a martin-

gale under the pricing measure, thus

(30) FXt

Col (t; Ti−1, Ti) 6= FStd (t;Ti−1, Ti) .

Remark 12 (Convexity Adjustment). The above “measure mismatch” means
that the collateralized FRA in a world of non-negligible default risk stands to the
theoretical FRA of a riskless world similarly to how a Futures contract of a risk-
less world stands to a FRA of a riskless world. Futures contracts eliminate
the correlation between discount and payoff that is typical of standard FRA.
Similarly, in the crisis the growth of counterparty risk led, for market collat-
eralized FRA’s, to a reduction in the correlation between discount and payoff
that is typical of standard FRA. In Futures pricing this is dealt with by the
use of a convexity adjustment, which is a simplified way to express a “measure
mismatch”.

We want to verify whether (30) can explain a discrepancy with the sign and
the size we observe in the market. In this setting the FRA rate FXt

Col (t; Ti−1, Ti)
will depend on the dynamics of FStd (t; Ti−1, Ti) under the PE (·, Ti)-measure.
We would like to use the results (27) of the previous section where we have shown
that FStd (t; Ti−1, Ti) is a martingale under the pricing measureQP̃ Xt

(·,Ti) defined
on H, and apply change of numeraire and Girsanov theorem in the setting of
the Libor Market Model of Brace, Gatarek and Musiela (1997).

Thanks to the Martingale Property of Assumption 9, we have

E [XT |Ht] = E [XT |Ft]
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for HT -measurable XT , like in the reduced-form or intensity model which is the
standard for credit derivatives. This implies that the above expectation (29)
can be replaced by an Ht-expectation

EPE(·,Ti)
Ht [FStd (Ti−1; Ti−1, Ti)] ,

so that we are looking for the Ht-expectation under measure QPE(·,Ti) of a
quantity that is an Ht-martingale under QP̃ Xt

(·,Ti) and we can apply standard
change of numeraire.

For computing the change of measure giving the dynamics of FStd (t; Ti−1, Ti)
under the measure associated to the OIS bond PE (t, Ti) we need the dynamics
of the “survival probabilities”

P̃X0
(t, Ti)

PE (t, Ti)
=
Q (τ > t|Ht)PL (t, Ti)

PE (t, Ti)
=: Q (t, Ti)

which is analogous to the default risk factor of Schonbucher (2004), with the
difference that in Schonbucher (2004) Q (τ > t|Ht) does not appear. This fol-
lows from the fact that, differently from us, Schonbucher (2004) works with
probability measures which are not equivalent to the real world or risk-neutral
probability measures.

Remark 13 (Cross-currency analogy) An analogy emerges between FX cross-
currency change of numeraire and the above change of numeraire for collater-
alized interest rate derivatives tied to risky rates. In fact Q (t, Ti) has the same
form as the forward exchange rate X (t, Ti) that regulates cross-currency change
of numeraire,

X (t, Ti) =
x (t) PF (t, Ti)

PD (t, Ti)

where PF (t, Ti), PD (t, Ti) are respectively the foreign and domestic bond prices,
and x (t) is the spot exchange rate that converts the foreign bond in domestic
currency. Such analogy has been first noticed by Bianchetti (2008) in a more
abstract setting. In this setting it is one consequence of the introduction of credit
risk, and additionally we have a further element of analogy. In cross-currency
application, when changing to the domestic measure the foreign bond cannot
be used as a numeraire unless it is converted in domestic currency by the spot
rate of exchange x (t). In our credit setting the Libor bond cannot be used as
a numeraire unless it is converted through the conditional survival probability
Q (τ > t|Ht), that plays the role of the spot rate of exchange x (t). This term is
not made explicit in Bianchetti (2008), where it is set to 1 at t = 0.

We will work with the following vector process, where for notational sim-
plicity we write FStd (t;Ti−1, Ti) = F (t; Ti−1, Ti),

[F (t; T0, T1) , . . . , F (t;TN−1, TN ) , Q (t, T1) , . . . , Q (t, TN )]′
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associated to the set of fixing-payment dates [T0, . . . , TN ], called tenor structure.
We start from the martingale dynamics of F (t; Ti−1, Ti) under P̃X0

(t, Ti) mea-
sure, with brownian motion WLi(t), and of Q (t, Ti) under PE (t, Ti) measure,
with brownian motion WEi(t). We assume for simplicity lognormal dynamics,

dF (t; Ti−1, Ti) = σF
Ti

(t)F (t; Ti−1, Ti) dWLi

Fi
(t), i = 1, . . . , N,

dQ (t, Ti) = σQ
Ti

(t)Q (t, Ti) dWEi

Qi
(t), i = 1, . . . , N.

The instantaneous correlation of the vector brownian motion is Σ. The dynamics
of F (t; Ti−1, Ti) under the PE (t, Ti) measure is regulated by

(31) dWLi(t) = dWEi(t)− ΣDC(ln (Q (t, Ti)))
′
dt,

where DC (·) stands for Diffusion Coefficient, see for example Brigo and Mercurio
(2006).

For simplicity, and for consistency with the rest of the paper, we focus on the
FRA with fixing at α and payment at 2α with underlying rate LM (α, 2α). We
work on a simplified tenor structure [T0 = α, T1 = 2α] with only F (t;α, 2α) =
F (t; T0, T1) and Q (t, 2α) = Q (t, T1). In this simplified context, we have

DC (ln (Q (t, Ti))) =
[
0, σQ

2α(t)
]

Now we take into account the instantaneous correlation matrix Σ, that in this
case is fully expressed by the correlation ρ between dWF1(t) and dWQ1(t),

dWL1(t) = dWE1 −
[

1 ρ
ρ 1

] [
0
σQ

2α(t)

]
dt,

dWL1
F1

(t) = dWE1
F1
− ρσQ

2α(t)dt,

dF (t;α, 2α) = σF
2α(t)F (t; α, 2α) dWL1

F1
(t)

dF (t;α, 2α) = −ρσQ
2α(t)σF

2α(t)F (t; α, 2α) dt + σF
2α(t)F (t;α, 2α) dWE1

F1

Under flat parameters

FX0
Col (0; α, 2α) = EPE(·,2α)

0 [F (α; α, 2α)] = EPE(·,2α)
0 [FStd (α;α, 2α)] ,

FX0
Col (0; α, 2α) = FStd (0; α, 2α) exp

(
−αρσQ

2ασF
2α

)
,

a result that, as expected, reminds of Bianchetti (2008) quanto-adjusted rate,
with the differences pointed out above.

If we could estimate the value of the variables and parameters in the above
relation, we would have a model estimation of the gap between the market FRA
FM , as replicated by FXt

Col (t; α, 2α), and the standard replication FStd. The
gap in the market was around −50bp. It is immediate to see that if there was
negligible credit volatility (σQ

2α ≈ 0), like in the pre-crisis time, FM -FStd ≈ 0.
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Otherwise the sign of the gap depends on the correlation between conditional
default probability and rates. If the correlation was positive, the gap would be
negative, as it was in the market.

We now use market guesses on the values of the parameters to assess the
model gap. Based on a simple historical estimation on Libor and OIS data,
considering the crisis period from July 2007 to May 2009,

σF
2α = 12%, σQ

2α = 0.7%, ρ = 0.6%

while on a longer period, from January 2003 to May 2009,

σF
2α = 19%, σQ

2α = 0.4%, ρ = 0.8%

The average value of FStd (0; α, 2α) was 4.3% in the crisis period and 3.2% in
the longer one. This would lead to

FXt

Col (t; α, 2α)− FStd (0; α, 2α) ≈
{

-0.02bp (based on crisis period)
-0.01bp (based on longer period)

The estimations of the parameters are very rough. In spite of this, the resulting
numbers are so low that they strongly suggest that the gap due to this measure-
mismatch/convexity-adjustment is much smaller than the average 50bp observed
during the crisis. These results are confirmed by the analysis of Section 4.2,
where we show that even neglecting the above no-arbitrage drift we replicate
very well market quotes, so that the no-arbitrage drift appears really negligible.
This leads to the relevant conclusion that credit risk alone does not explain the
market patterns, and that there must be some relevant point in market reality
which is different from the representation given in Part 2.

This issue is tackled in Part 1. Indeed in Section 6 we abandon (25), as-
suming instead, consistently with market reality, that in terms of credit quality
the future Libor counterparties will be on average better than current Libor
counterparties in the future. Within the focus of Part 1, this point is crucial
since it allows to explain market patterns. In this Part 2, instead, the focus
is on proposing a formal framework to model the interest rate market in the
presence of counterparty risk. This framework should be joined with the results
of Part 1. In Section 6 we show how, in a less formal context, one can take into
account the properties of Libor by representing this rate as an option.

10 Conclusions

In this work we studied the changes that happened to the interest rate market
after the burst of the credit crisis. We focused on two issues: the gap that
opened between forward rate agreement (FRA) quotes and their Libor based
replication, and the appearance of large Basis spreads required to set fair swaps
exchanging floating payments with different tenors.

In Part 1 we have shown that the two problems can be reduced to only one,
since by using explicitly Basis spreads one can still replicate FRA exactly. We
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analyze different financial issues that may explain the patterns that FRA’s and
Basis swaps had in the crisis. Based on this we build a model, where Libor is
an option on the credit spread of the counterparty, that approximately fits the
empirical evidence. We also investigate how the market payoff of FRA’s can be
written as a simpler payoff priced under a particular measure.

In Part 2 we have analyzed how an interest rate market with default risk
can be modelled. We use subfiltrations to model Libor as a market rate tied to
risky contracts. We show a change of measure for a market with collateralized
counterparty risk that turns out similar to cross-currency change of measure
where survival probability replaces the rate of exchange. We analyze the con-
vexity adjustments that can enter the pricing of collateralized derivatives tied
to risky rates.

The results shown here give a number of indications on how to model an
interest rates market with counterparty risk , supported by analytic results,
empirical testing and financial considerations. Flows of floating rates with dif-
ferent frequency should embed different levels of default risk and different level
of default risk volatility, to represent the fact that the credit quality of the
Libor counterparty is periodically updated. Otherwise credit risk alone does
not explain the market patterns. Products like FRAs are affected by this and
must be priced taking this into account. Convexity adjustments can arise from
the decoupling of the interest rate curves, but they may be negligible. We also
propose a framework based on change of measure and subfiltrations to price
collateralized derivatives depending on non-defaultable Libor rates tied to risky
products, and make some financial considerations for the introduction in the
model of other factors beside counterparty risk, in particular liquidity risk.

Many of the issues dealt with here are open to further research in the direc-
tion of making interest rate modelling more consistent with the real situation
of the market after the credit crunch. In particular the simple structural model
we develop in Part 1 to explain Basis spreads could be elaborated and extended
to include explicitly liquidity risk, and to become a general model for all tenors
down to the overnight, almost riskless, tenor. As for the more formal framework
of Part 2, it proposes some solutions to open issues that still require analysis
and investigation.

References

[1] Acerbi C. and G. Scandolo (2008). Liquidity Risk
Theory and Coherent Measures of Risk, availabe at
http://papers.ssrn.com/sol3/papers.cfm?abstract id=1048322.

[2] Ametrano, F. and M. Bianchetti (2009). Bootstrapping the Illiquidity, in
Modelling Interest Rates: Advances for Derivatives Pricing, edited by F.
Mercurio, Risk Books.

[3] Bianchetti, M. (2009). Two Curves, One Price. Available at:
http://papers.ssrn.com/sol3/papers.cfm?abstract id=1334356.

43



[4] Bielecki T., Rutkowski M. (2001), Credit risk: Modeling, Valuation and
Hedging. Springer Verlag.

[5] Brace, A., D. Gatarek, and M. Musiela (1997) “The market model of in-
terest rate dynamics”. Mathematical Finance, 7 , pp. 127–154.

[6] Brigo, D. (2005), Market Models for CDS Options and Callable Floaters,
Risk Magazine, January issue.

[7] Brigo D. and Masetti M. (2005), Risk Neutral Pricing of Counterparty
Risk. In: Pykhtin, M. (Editor), Counterparty Credit Risk Modeling: Risk
Management, Pricing and Regulation. Risk Books, London. Forthcoming.

[8] Brigo, D., and F. Mercurio Interest-Rate Models: Theory and Practice.
With Smile, Inflation and Credit. Springer Finance, 2006.

[9] Brigo, D., and Morini, M. (2005), CDS Market Models and Formulas, Pro-
ceedings of the 18th Annual Warwick Option Conference, September, 30,
2005.

[10] British Bank Association (2009a) ”BBALiborTM Panels” available at
http://www.bbalibor.com.

[11] British Bank Association (2009b) ”BBALiborTM Explained” available at
http://www.bbalibor.com.

[12] Cho, M. and J. Rosemberg (2008). Cross Product Debt Research, Bank of
America, April 2008.

[13] Collin-Dufresne, P. and B. Solnik (2001) On the Term Structure of Default
Premia in the Swap and LIBOR Markets, Journal of Finance, Vol. 56, No.
3, pp. 1095-1115.

[14] Dellacherie, C. Capacités et processus stochastiques, Springer-Verlag,
Berlin, 1972.

[15] Duffie, D. and M. Huang (1996) Swap rates and credit quality, Journal of
Finance, 51 (4), 921-949.

[16] Duffie, D. and K. Singleton (1997) An Econometric Model of the Term
Structure of Interest-Rate Swap Yields, Journal of Finance, 52 (4), 1287-
1321.

[17] Duffie, D. e and K. Singleton (1999): Modeling Term Structures of Default-
able Bonds, Review of Financial Studies, 12, 687 - 720.

[18] Grinblatt, M. (1995). An Analytic Solution for Interest Rate Swap Spreads.
UCLA working paper published in the International Review of Finance,
Vol. 2, Issue 3, 113-149, 2003.

44



[19] Henrard, M. (2009). The Irony in the Derivatives Discounting Part II: The
Crisis. Preprint, Dexia Bank, Brussels.

[20] Jamshidian, F.. (1997). Libor and swap market models and measures. Fi-
nance and Stochastics, 4, pp. 293–330.

[21] Jamshidian, F. (2004). Valuation of Credit Default Swaps and Swaptions.
Finance and Stochastics 8, 343-371.

[22] Lando, D. (1998). On Cox Processes and Credit Risky Securities, Review
of Derivatives Research, 2,99-120.

[23] Mercurio, F (2008). Interest Rates and The Credit
Crunch:New Formulas and Market Models, available at
http://papers.ssrn.com/sol3/papers.cfm?abstract id=1332205.

[24] Michaud, F. and C. Upper (2008). What drives interbank rates? Evidence
from the Libor panel. BIS Quarterly Review, March 2008.

[25] Miron, P. and P. Swannell (1991). Pricing and hedging swaps. Euromoney.

[26] Morini, M.(2008). Credit modelling after the subprime crisis. Fixed Income
Conference, WBS, Budapest, September 2008.

[27] Peng, S., Gandhi, C., and A. Tyo (2008). Is Libor broken? Citi Fixed
Income Strategy, Citigroup, April 2008.

[28] Schiavi, S. (2009). Capital Management group, Banca IMI. Personal com-
munication.

[29] Schlogl, E. (2002). A Multicurrency Extension of the Lognormal Interest
Rate Market Models, Finance and Stochastics, 6, (2).
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