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Abstract

We extend the LIBOR market model to accommodate the new market practice of
using different forward and discount curves in the pricing of interest-rate derivatives.
Our extension is based on modeling the joint evolution of forward rates belonging to
the discount curve and corresponding spreads with FRA rates. We start by consid-
ering general stochastic-volatility dynamics and show how to address both the caplet
and swaption pricing problems in general. We then consider specific examples, in-
cluding a model for the simultaneous evolution of different rate and spread tenors.
We conclude the article with an example of calibration to real market data.

A reduced version of this article can be downloaded at:
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1583081

1 Introduction

Until the 2007 credit crunch, market quotes of interest rates consistently followed classic no-
arbitrage rules. For instance, a floating rate bond where rates are set in advance and paid in
arrears, was worth par at inception, irrespectively of the underlying tenor. Also, a forward
rate agreement (FRA) could be replicated by long and short positions in two deposits, with
the implied forward rate differing only slightly from the corresponding quantity obtained
through OIS rates.

When August 2007 arrived, the market had to face an unprecedented scenario. Interest
rates that until then had been almost equivalent, suddenly became unrelated, with the
degree of incompatibility that worsened as time passed by. For instance, the forward rate
implied by two deposits, the corresponding FRA rate and the forward rate implied by the
corresponding OIS quotes became substantially different, and started to be quoted with
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large, non-negligible spreads. This discrepancy of values immediately raised issues in the
construction of zero-coupon curves, which clearly could no longer be based on traditional
bootstrapping procedures. A new judgment was needed, for example, to decide what
market rates made sense to calibrate to and for what purpose.

In fact, differences between (same-currency) rates referring to the same time interval
have always been present in the market. For instance, deposit rates and OIS rates for
the same maturity would closely track each other, but keeping a distance (spread) of few
basis points. Likewise, swap rates with the same maturity, but based on LIBOR rates
with different tenors, would be quoted at a non-zero (basis) spread. All these spreads were
generally regarded as negligible and, in fact, often assumed to be zero when constructing
zero-coupon curves or pricing interest-rate derivatives.

To comply with the new market features, as far as yield curves are concerned, prac-
titioners seem to agree on an empirical approach. For each given contract, they select a
specific discount curve, which they use to calculate the net present value (NPV) of the
contract’s future payments, consistently with the contract’s features and the counterparty
in question. They then build as many forward LIBOR curves as given market tenors (1m,
3m, 6m, 1y), see e.g. Ametrano and Bianchetti (2009). With this approach, future cash
flows are generated by the curves associated with the underlying rate tenors and their NPV
is calculated through the selected discount curve.1

The assumption of distinct discount and forward curves, for a same currency and in
absence of default risk, immediately invalidates the classic pricing principles, which were
built on the cornerstone of a unique, and fully consistent, zero-coupon curve, containing
all relevant information about the (risk-neutral) projection of future rates and the NPV
calculation of associated pay-outs. A new model paradigm is thus needed to accommodate
the market practice of using multiple interest-rate curves for each given currency.

In this article, we will show how to extend the general (stochastic-volatility) LIBOR
market model (LMM) to the multi-curve setting. Our extended version of the LMM is
based on modeling the joint evolution of FRA rates, that is the fixed rates that give zero
value to the related forward rate agreements, and forward rates belonging to the selected
discount curve. This extension was first proposed by Mercurio (2009, 2010), who considered
lognormal dynamics for given-tenor FRA rates, and then added stochastic volatility to their
evolution. We here follow a different approach, and explicitly model the basis between
OIS and FRA rates. This makes our LMM extension closer to the market practice of
building (forward) LIBOR curves at a spread over the OIS one. Remarkably, introducing a
stochastic basis adds flexibility to the model, without compromising its tractability, as we
will show by deriving closed-form formulas for cap and swaption prices and by considering
an example of calibration to market caplet data. A similar approach has been recently
proposed by Fujii et al. (2009b) who model stochastic basis spreads in a HJM framework
both in single- and multi-currency cases, but without providing examples of dynamics or

1Different curves for generating future rates and for discounting have been used to value cross currency
swaps by Fruchard et al. (1995), Boenkost and Schmidt (2005) and Kijima et al. (2009). To our knowledge,
Henrard (2007) is the first to apply the methodology to the single-currency case, whereas Bianchetti (2009)
is the first to deal with the post subprime-crisis environment.
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explicit formulas for the main calibration instruments. An alternative route is chosen by
Henrard (2009) who hints at the modeling of basis swap spreads, but without addressing
typical issues of a market model, such as the modeling of joint dynamics or the pricing of
plain-vanilla derivatives.

Modeling a stochastic basis creates no issue as far as the calibration of our extended
LMM is concerned. In particular, no market data on basis volatility is needed to fit the
model parameters of the basis. In fact, a LIBOR rate can be decomposed as the sum of the
respective OIS rate and basis, so that the stochastic basis can be viewed as a factor driving
the evolution of LIBOR rates (in conjunction with OIS rates). This is similar to what we
observe in some short rate models, where the instantaneous short rate is defined as the sum
of two (or more) additive factors. Such factors do not need specific options to be calibrated
to but their parameters can be fitted to market quotes of standard (LIBOR-based) caps
and swaptions.

In this article, we will assume that the discount curve coincides with that stripped
from OIS swap rates. Since OIS rates can be regarded as the best available proxy for
risk-neutral rates, this amounts to assume zero counterparty risk in the market plain-
vanilla instruments (swaps, caps, swaptions). This assumption is reasonable due to the
current practice of underwriting collateral agreements to mitigate, possibly eliminate, the
counterparty risk affecting a given transaction between banks. When cash, the interest
rate earned by the collateral is the overnight rate. Other collateral rates are present
in the market, with clear implications as far as derivative pricing is concerned, see e.g.
Johannes and Sundaresan (2007) or the more recent works by Fujii et al. (2009a, 2009b)
and Piterbarg (2010). Here, however, we will assume that collateral rates coincide with
overnight rates, which will allow us to work in a risk-neutral environment. This can also be
viewed as the necessary initial step for a sensible valuation of deals affected by counterparty
risk, which may be in part, but not completely, immunized by the collateral agreement in
place. In fact, one may first obtain risk-neutral parameters by calibrating his/her model
to the relevant market data and then apply suitable corrections to the risk-neutral prices
of contracts that are characterized by collateral rates different than overnight rates.

The article is organized as follows. In Section 2, we describe stylized facts of the
market and introduce our assumptions on the discount curve. We then define FRA rates,
describe the valuation formula for swaps in a multi-curve context, and hint at the dual-
curve bootstrapping of LIBOR projections from market interest-rate data. In Section
3, we illustrate possible ways of extending the LMM, and analyze pros and cons of the
different formulations. In Section 4, we introduce the framework assumed in this article,
namely a model for the joint evolution of forward OIS rates and related basis spreads for
a given tenor. We derive caplet pricing formulas for general stochastic-volatility models
and consider a specific example based on SABR dynamics. We then describe a general
methodology for pricing swaptions in closed-form, analyzing the particular case of spreads
that evolve according to a one-factor model. In Section 5, we propose a specific model for
the joint evolution of rates and spreads based on different tenors. Section 6 considers a
simple example of calibration to real market data. Section 7 concludes the paper.



4

Figure 1: Basis between 3m EONIA rates and 3m deposit rates, from 2 Jan, 2006 to 2 Jan,
2010, EUR market. Source: Bloomberg.

2 The new multiple-curve environment

With the 2007 credit crunch, the basis between market rates referring to the same time
interval, started to diverge sensibly. As an example, historical difference of deposit and
OIS rates with the same maturity and of swap rates with the same maturity, but different
floating legs (in terms of payment frequency and tenor of the paid rate) are plotted in
Figures 1 and 2. In Figure 3, we plot the historical difference between 6mx12m forward
EONIA rates and 6mx12m FRA rates.

The widening of the basis, and the consequent divergence of previously-equivalent mar-
ket rates, can be formally explained in terms of credit, liquidity and other effects.2 However,
instead of resorting to fancy and sophisticated hybrid models, financial institutions have
adopted two main empirical solutions to comply with this unprecedented interest rate sce-
nario. The first is the separation of rate projection from NPV calculation (discounting):
future rates are forecast using a corresponding zero-coupon curve and discounted using
another. The rationale behind this is that LIBOR rates incorporate risk premiums that
may be different from those embedded in the rates to be used for discounting. The second
is the segmentation of market rates, which are grouped into separate classes according
to the tenor of the underlying rate, typically 1, 3, 6 months and 1 year. For instance,
the three-month bucket can be defined by the market quotes of the three-month deposit,
the (3-month-LIBOR) futures (or 3-month FRAs) for the liquid maturities, and the swaps
whose floating legs pay quarterly (in arrears) the 3-month-LIBOR rate (set in advance).
This bucketing procedure is a direct consequence of the incompatibility arisen between

2A possible solution in this direction is provided by Morini (2008, 2009) and Mercurio (2009) who
consider simplified settings where only credit risk is modeled.
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Figure 2: Basis between 5y swap rates (3m vs 6m), from 2 Jan, 2006 to 2 Jan, 2010, EUR
market. Source: Bloomberg.

Figure 3: Basis between 6mx12m forward EONIA rates and 6mx12m FRA rates, from 2
Jan, 2006 to 2 Jan, 2010, EUR market. Source: Bloomberg.
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market rates whose underlying tenors are different. In fact, compounding, for instance,
two consecutive 3-month forward LIBOR rates does not yield any longer the corresponding
6-month forward LIBOR rate.

Segmenting market rates in terms of their underlying tenor naturally leads to the con-
struction of as many different forward curves as considered buckets (tenors). Forward
curves can be built in two alternative ways. The first mimics the traditional single-curve
construction, but applied only to market rates that are based on the same LIBOR tenor.
To this end, standard bootstrapping techniques can be employed and no modification of
existing formulas and routines is required. The second is theoretically more sound and
addresses the main flaw of the former procedure, that is the dependence of discount factors
on the tenor of the forward LIBOR to be bootstrapped. The rationale behind this latter
approach is that the NPV of (constant) future cash flows should be uniquely defined (in
a default-free setting). Accordingly, the fixed-leg payments in a default-free interest rate
swap (IRS) should be discounted with the same curve irrespectively of the frequency of
the floating leg.

In this article, we work in the context of this second approach. In fact, given that the
swap rates quoted by the market refer to deals with generic interbank counterparties, it
makes sense to discount market IRS future payments with the same discount curve.3 This
will result in a modified bootstrapping procedure for each given tenor, based on stripping
forward LIBOR rates by using the new IRS formula derived under the assumption of pre-
assigned discount factors (calculated consistently with the given discount curve). Such
a formula will be reviewed in Section 2.3 below, where hints on the new bootstrapping
procedure will also be provided. But before, we need to specify our assumptions on the
discount curve and introduce our definition of FRA rate.

2.1 Assumptions on the discount curve

We introduce the following assumption on the (assumed single) discount curve, for a given
currency:

A.1 The discount curve is the OIS zero-coupon curve, stripped from market OIS swap
rates and defined for every possible maturity T :

T 7→ PD(0, T ) = POIS(0, T ),

where PD(t, T ) denotes the discount factor (zero-coupon bond) at time t for maturity
T , which is assumed to coincide with the corresponding OIS-based zero-coupon bond
for maturity T . The subscript D stands for “discount curve”.

The rationale behind this assumption is that in the interbank derivatives market, a collat-
eral agreement (CSA) is often negotiated between two counterparties. The CSA is set to
mitigate the credit risk of both parties, allowing them to establish bilateral mark-to-market

3See also the following section for our assumptions on the discount curve.
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collateral arrangements. We here assume that the collateral, typically a bond or cash, is
revalued daily at a rate equal (or close) to the overnight rate, which can thus justify the
use of OIS rates for discounting.

One can also say that the presence of a CSA reduces the counterparty risk of the
transaction (almost) to zero. If this is the case, it makes sense, therefore, to discount
future payments by using the OIS curve. In fact, OIS rates can be regarded as the best
available proxy for risk-neutral rates, since the credit risk embedded in an overnight loan
can be deemed to be (almost) negligible.

The OIS curve can be stripped from OIS swap rates using standard (single-curve)
bootstrapping methods. For the EUR market, EONIA swaps are quoted up to 30 years, so
that the stripping procedure presents no new issues. Different is the case of other currencies,
even major ones like USD or JPY, where OIS rates are quoted only up to a relatively short
maturity. In such cases, one has to resort to alternative constructions, by modeling, for
instance, the spread between OIS (forward) rates and corresponding (forward) LIBOR
rates or by adding quotes of cross-currency swaps.

In the following, as in Kijima et al. (2009), the pricing measures we will consider are
those associated with the discount curve. This is also consistent with the results of Fujii
et al. (2009a) and Piterbarg (2010), since we assume CSA agreements where the collateral
rate to be paid equals the (assumed risk-free) overnight rate.

2.2 Definition of FRA rate and its properties

The following definition of FRA rate is a standard one.4

Definition 1 Consider times t, T1 and T2, t ≤ T1 < T2. The time-t FRA rate FRA(t;T1, T2)
is defined as the fixed rate to be exchanged at time T2 for the LIBOR rate L(T1, T2) so that
the swap has zero value at time t.

Denoting by QT
D the T -forward measure with numeraire the zero-coupon bond PD(t, T ),

by (risk-adjusted) no-arbitrage pricing, we immediately have

FRA(t;T1, T2) = ET2
D

[
L(T1, T2)|Ft

]
, (1)

where ET
D denotes expectation under QT

D and Ft denotes the “information” available in
the market at time t.

In the classic single-curve valuation, i.e. when the LIBOR curve corresponding to tenor
T2−T1 coincides with the discount curve, the FRA rate FRA(t;T1, T2) coincides with the
forward rate

FD(t;T1, T2) =
1

T2 − T1

[
PD(t, T1)

PD(t, T2)
− 1

]
. (2)

4This definition of FRA rate slightly differs from that implied by the actual market contract. This
slight abuse of terminology is justified because this “theoretical” FRA rate and the market one coincide
in a single-curve setting. In our multi-curve case, they are different, but their difference can be shown to
be negligible under typical market conditions, see Appendix A.
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In fact, the LIBOR rate L(T1, T2) can be defined by the classic relation

L(T1, T2) =
1

T2 − T1

[
1

PD(T1, T2)
− 1

]
= FD(T1;T1, T2), (3)

so that we can write

FRA(t;T1, T2) = ET2
D

[
FD(T1;T1, T2)|Ft

]
.

Since FD(t;T1, T2) is a martingale under QT2
D , we can then conclude that

FRA(t;T1, T2) = FD(t;T1, T2).

In our dual-curve setting, however, (3) does not hold any more, since the simply-compounded
rates defined by the discount curve are different, in general, from the corresponding LIBOR
fixings.

Our FRA rate is the natural generalization of a forward rate to the dual-curve case. In
particular, we notice that, at its reset time T1, the FRA rate FRA(T1;T1, T2) coincides with
the LIBOR rate L(T1, T2). Moreover, the FRA rate is a martingale under the corresponding
pricing measure. These properties will prove to be very convenient when pricing swaps and
options on LIBOR rates.

2.3 The pricing of interest rate swaps

Let us consider a set of times Ta, . . . , Tb compatible with a given tenor,5 and an IRS where
the floating leg pays at each time Tk the LIBOR rate L(Tk−1, Tk) set at the previous time
Tk−1, k = a+ 1, . . . , b, and the fixed leg pays the fixed rate K at times T S

c+1, . . . , T
S
d .

Under our assumptions on the discount curve, the swap valuation is straightforward.6

Applying Definition 1 and setting

Lk(t) := FRA(t;Tk−1, Tk) = ETk
D

[
L(Tk−1, Tk)|Ft

]
,

the IRS time-t value, to the fixed-rate payer, is given by

IRS(t,K;Ta, . . . , Tb, T
S
c+1, . . . , T

S
d ) =

b∑
k=a+1

τkPD(t, Tk)Lk(t)−K
d∑

j=c+1

τS
j PD(t, T S

j ).

where τk and τS
j denote, respectively, the floating-leg year fraction for the interval (Tk−1, Tk]

and the fixed-leg year fraction for the interval (T S
j−1, T

S
j ].

The corresponding forward swap rate, that is the fixed rate K that makes the IRS value
equal to zero at time t, is then defined by

Sa,b,c,d(t) =

∑b
k=a+1 τkPD(t, Tk)Lk(t)∑d

j=c+1 τ
S
j PD(t, T S

j )
. (4)

5For instance, if the tenor is three months, the times Tk must be three-month spaced.
6Details of the derivation can be found, for instance, in Chibane and Sheldon (2009), Henrard (2009),

Kijima et al. (2009) and Mercurio (2009).
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In the particular case of a spot-starting swap, with payment times for the floating and
fixed legs given, respectively, by T1, . . . , Tb and T S

1 , . . . , T
S
d , with Tb = T S

d , the swap rate
becomes:

S0,b,0,d(0) =

∑b
k=1 τkPD(0, Tk)Lk(0)∑d

j=1 τ
S
j PD(0, T S

j )
, (5)

where L1(0) is the constant first floating payment (known at time 0).
As already noticed by Kijima et at. (2009), neither leg of a spot-starting swap needs

be worth par (when a fictitious exchange of notionals is introduced at maturity). However,
this is not a problem, since the only requirement for quoted spot-starting swaps is that
their initial NPV must be equal to zero.

2.4 Stripping the LIBOR projections

As traditionally done in any bootstrapping algorithm, equation (5) can be used to infer
the expected (risk-free) rates Lk implied by the market quotes of spot-starting swaps,
which by definition have zero value. Given that, by assumption, the discount curve has
already been bootstrapped from market OIS rates, the discount factors PD(0, T ), T ∈
{T1, . . . , Tb, T

S
1 , . . . , T

S
d }, entering formula (5), are all known. The FRA rates Lk(0) can

thus be iteratively derived by matching the market quotes of rates based on the same
LIBOR tenor as the one under consideration. To this end, besides (5), one can use the
formulas derived in Appendix A and Appendix B, where market FRA and futures rates are
expressed as functions of rates Lk(0) and corresponding forward OIS rates. Details on a
similar curve construction methodology can be found, for instance, in Chibane and Sheldon
(2009), Henrard (2009) and Fujii et al. (2009a). The analysis in Fujii et al. (2009a) is more
thorough since they consider a general collateral rate, dealing also with a multi-currency
environment.

The bootstrapped Lk can then be used, in conjunction with any interpolation tool, to
price off-the-market swaps based on the same underlying tenor. As already noticed by
Boenkost and Schmidt (2005) and by Kijima et al. (2009), these other swaps will have
different values, in general, than those obtained by stripping discount factors through a
classic (single-curve) bootstrapping method applied to swap rates

S0,d(0) =
1− PD(0, T S

d )∑d
j=1 τ

S
j PD(0, T S

j )
.

Notice, in fact, that

IRS(0, K;T1, . . . , Tb, T
S
1 , . . . , T

S
c ) =

b∑
k=1

τkPD(0, Tk)Lk(0)−K
d∑

j=1

τS
j PD(0, T S

j )

=
[
S0,b,0,d(0)−K

] d∑
j=1

τS
j PD(0, T S

j )
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so that the choice of discount factors PD(0, T S
j ) heavily affects the IRS value for off-the-

market fixed rates K.

3 Extending the LMM

As is well known, the classic (single-curve) LMMs are based on modeling the joint evolution
of a set of consecutive forward LIBOR rates, as defined by a given time structure.7 Forward
LIBOR rates are “building blocks” of the modeled yield curve, and their dynamics can be
conveniently used to generate future LIBOR rates and discount factors defining swap rates.
When moving to a multi-curve setting, we immediately face two complications. The first
is the existence of several yield curves (one discount curve and as many forward curves as
market tenors), which multiplies the number of building blocks (the “old” forward rates)
that one needs to jointly model. The second is the impossibility to apply the old definitions,
which were based on the equivalence between forward LIBOR rates and the corresponding
ones defined by the discount-curve.

The former issue can be trivially addressed by adding extra dimensions to the vec-
tor of modeled rates, and by suitably modeling their instantaneous covariance structure.
The second, instead, is less straightforward, requiring a new definition of forward rates,
which needs to be compatible with the existence of different curves for discounting and for
projecting future LIBORs.

A natural extension of the definition of forward rate to a multi-curve setting is given
by the FRA rate defined in Section 2.2. In fact, FRA rates reduce to “old” forward rates
when the particular case of a single-curve framework is assumed. Moreover, they have
the property to coincide with the corresponding LIBOR rates at their reset times and the
advantage to be martingales, by definition, under the corresponding forward measures.
Finally, by (4), swap rates can be written as a (stochastic) linear combination of FRA
rates, with coefficients solely depending on discount-curve zero-coupon bonds.

A consistent extension of a LMM to the multi-curve case can then be obtained by
modeling the joint dynamics of FRA rates for different tenors and of forward rates belonging
to the discount curve. The reason for modeling OIS rates in addition to FRA rates is
twofold. First, by assumption, our pricing measures are related to the discount curve.
Since the associated numeraires are portfolios of zero-coupon bonds PD(t, T ), the FRA drift
corrections implied by a measure change will depend on the (instantaneous) covariation
between FRA rates and corresponding OIS forward rates, see Appendix D. Second, swap
rates explicitly depend on zero-coupon bonds PD(t, T ), and, clearly, can only be simulated
if the relevant OIS forward rates are simulated too.

7The LMM was introduced in the financial literature by Miltersen et al. (1997) and Brace et al. (1997)
by assuming lognormal-type dynamics. It was then extended by Jamshidian (1997), who considered a
general local-volatility formulation and by a number of authors who assumed stochastic volatility, see e.g.
Andersen and Andreasen (2002), Piterbarg (2005), Wu and Zhang (2006), Zhu (2007), Henry-Labordère
(2007), Rebonato (2007), Hagan and Lesniewski (2008), Mercurio and Morini (2007, 2009) and Rebonato
et al. (2009). Other extensions include jumps or Levy-driven processes.
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The extended LMM will be based on modeling the joint evolution of FRA rates and
corresponding OIS forward rates, either directly or through their spreads. Pros and cons
of the possible different formulations are analyzed in the following.

3.1 Alternative formulations

Let us fix, for the moment, a given tenor x and consider a time structure T x = {0 <
T x

0 , . . . , T
x
M} compatible with x, where typically x ∈ {1m, 3m, 6m, 1y}. Let us then define

the OIS forward rate

F x
k (t) := FD(t;T x

k−1, T
x
k ) =

1

τx
k

[
PD(t, T x

k−1)

PD(t, T x
k )

− 1

]
(6)

where τx
k is the corresponding year fraction for the interval (T x

k−1, T
x
k ], and denote by Sx

k (t)
the spread, at time t, between the FRA rate Lx

k(t) = FRA(t, T x
k−1, T

x
k ) and the OIS forward

rate F x
k (t), that is

Sx
k (t) := Lx

k(t)− F x
k (t) (7)

By definition, both Lx
k and F x

k are martingales under the forward measure Q
T x

k
D , and hence

their difference Sx
k is a Q

T x
k

D -martingale, too.
Extending the LMM to the multi-curve case can be done essentially in three different

ways, that is by:8

1. Modeling the joint evolution of rates Lx
k and F x

k , k = 1, . . . ,M .

2. Modeling the joint evolution of rates Lx
k and spreads Sx

k , k = 1, . . . ,M .

3. Modeling the joint evolution of rates F x
k and spreads Sx

k , k = 1, . . . ,M .

Let us assume that the modeled variables follow stochastic-volatility processes. These
three choices present different advantages and drawbacks, which we summarize in the
following.

The first choice, which has been proposed by Mercurio (2009, 2010), is the most con-
venient in terms of model tractability and calibration to market data. In fact, modeling
the relevant FRA rates directly, allows for a straightforward modification of the cap and
swaption pricing formulas in the corresponding single-curve LMM, where forward LIBORs
follow the same (stochastic-volatility) dynamics as FRA rates in the extended setting. The
problem with this choice is that there is no guarantee that the implied basis spreads will
have a realistic behavior in the future, preserving in particular the positive sign that is
typically observed in the market.

8Clearly, modeling the dynamics of two out of the three processes Lx
k, F x

k and Sx
k yields, by (7), the

dynamics of the third process, either as a difference or as a sum. These three possibilities are obviously
equivalent in that the dynamics of two processes uniquely identify the dynamics of their difference or sum.
What we mean here, by presenting these different cases, is the possibility to explicitly model, in each case,
the selected variables with processes known in the financial literature.
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The second choice has the same advantages of the first, as far as the derivation of
closed-form formulas for caps is concerned, but some additional complication may arise in
the derivation of swaption prices. Moreover, the implied forward rates F x

k may go negative,
even when FRA rates and spreads are modeled with processes whose support is the positive
half-line. Another drawback of this formulation is that the volatility dynamics under
different forward and swap measures is likely to be more involved than in the first case,
especially when stochastic volatilities are instantaneously correlated with the corresponding
rates.

The third approach has the advantage to be more realistic, being inspired by the market
practice of building LIBOR curves at a spread over the OIS one. Moreover, since historical
spreads have (almost) always been positive, and there are sound financial reasons why their
sign is likely to be preserved in the future, it is more reasonable to directly model spreads
Sx

k with positive-valued stochastic processes, rather than modeling (Lx
k, F

x
k ) hoping for their

difference to remain positive in the future, too. An apparent drawback of this approach is
that the derivation of closed-form formulas for caps and swaption is more involved than in
the previous cases. However, as we will show in the following sections, a smart choice of
model dynamics can actually add flexibility without compromising tractability.

In this article we will follow the third approach and model forward OIS rates jointly
with basis spreads. This is also inspired by the historical pattern of the (forward) basis,
as showed in Figure 3. We will assume general stochastic-volatility dynamics, but also
consider specific examples. We start by focusing on the single-tenor case and then propose
a model for the joint evolution of rates and spreads with different tenors.

4 The extended LMM with stochastic basis

Under the assumptions of the previous section, we start by assuming general stochastic-

volatility dynamics for each F x
k and Sx

k under the associated forward measure Q
T x

k
D , k =

1, . . . ,M :

dF x
k (t) = φF

k (t, F x
k (t))ψF

k (t, V F
k (t)) dZF

k (t)

dV F
k (t) = aF

k (t, V F
k (t)) dt+ bFk (t, V F

k (t)) dW F
k (t)

(8)

and

dSx
k (t) = φS

k (t, Sx
k (t))ψS

k (t, V S
k (t)) dZS

k (t)

dV S
k (t) = aS

k (t, V S
k (t)) dt+ bSk (t, V S

k (t)) dW S
k (t)

(9)

where φF
k , ψF

k , aF
k , bFk , φS

k , ψS
k , aS

k and bSk are deterministic functions of the respective

arguments, for each k, and ZF
k , W F

k , ZS
k and W S

k are Q
T x

k
D -Brownian motions.

For computational purposes, we then assume that both dynamics (8) and (9) have
known marginal density (equivalently, known caplet prices),9 and that the Brownian mo-
tions ZS

k and W S
k are independent of ZF

h and W F
h , for each h, k = 1, . . . ,M .

9In principle, by Breeden and Litzenberger (1978), knowing the marginal density is equivalent to know-
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The FRA rates F x
k are allowed to be (instantaneously) correlated with their own volatil-

ity and with one another. A similar assumption holds for spreads Sx
k , too. Clearly, the

constraint to be fulfilled, when modeling these correlations, is that the overall correlation
matrix, including all cross correlations, must be positive semidefinite. This is assumed to
hold true.

Remark 2 It is a standard practice to define a (single-curve) LMM by modeling the joint
evolution of forward rates under a given reference measure, mostly the so-called spot-LIBOR
measure, see Jamshidian (1997). Assume one-factor stochastic-volatility dynamics, corre-
lated with forward rates. Moving to a given forward measure leads to a volatility drift
correction that also depends on the relevant forward rates. In our multi-curve case, the
stochastic volatility V F

k has a similar behavior, with related drift corrections that will depend
on rates F x

k . Therefore, a more thorough specification of volatility dynamics is obtained by
assuming that aF

k is a general adapted process. In this case, the dynamics of V F
k in (8) can

be viewed as an approximation of the true ones.

4.1 Caplet pricing

Let us denote by Lx(T x
k−1, T

x
k ) the x-tenor LIBOR rate set at time T x

k−1 with maturity T x
k ,

and consider the associated strike-K caplet, which pays out at time T x
k

τx
k [Lx(T x

k−1, T
x
k )−K]+ = τx

k [Lx
k(T

x
k−1)−K]+. (10)

Our assumptions on the discount curve imply that the caplet price at time t is given by

Cplt(t,K;T x
k−1, T

x
k ) = τx

kPD(t, T x
k )E

T x
k

D

{
[Lx

k(T
x
k−1)−K]+|Ft

}
(11)

Since Lx
k(T

x
k−1) = F x

k (T x
k−1) + Sx

k (T x
k−1), by the independence of F x

k (T x
k−1) and Sx

k (T x
k−1),

the density fLx
k(T x

k−1) is equal to the convolution of densities fF x
k (T x

k−1) and fSx
k (T x

k−1), where

we denote by fX the density function of the random variable X under Q
T x

k
D , conditional on

Ft. We can then write:

Cplt(t,K;T x
k−1, T

x
k ) = τx

kPD(t, T x
k )

∫ +∞

−∞
(l −K)+fLx

k(T x
k−1)(l) dl (12)

In general, however, deriving the convolution fLx
k(T x

k−1) and integrating numerically (12)
may not be the most efficient way to calculate the caplet price. In fact, an alternative
derivation is based on applying the tower property of conditional expectations:

Cplt(t,K;T x
k−1, T

x
k )

= τx
kPD(t, T x

k )E
T x

k
D

{
[F x

k (T x
k−1) + Sx

k (T x
k−1)−K]+|Ft

}
= τx

kPD(t, T x
k )E

T x
k

D

{
[F x

k (T x
k−1)− (K − Sx

k (T x
k−1))]

+|Ft

}
= τx

kPD(t, T x
k )E

T x
k

D

{
E

T x
k

D

{
[F x

k (T x
k−1)− (K − Sx

k (T x
k−1))]

+|Ft ∨ Sx
k (T x

k−1)
}
|Ft

} (13)

ing the corresponding caplet prices for all possible strikes, and vice versa. However, from a numerical
point of view, the equivalence may easily break down, especially when densities are approximated or need
numerical integration, as is the case of both the Heston (1993) and the Hagan et al. (2002) models.
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where Ft ∨ Sx
k (T x

k−1) denotes the sigma-algebra generated by Ft and Sx
k (T x

k−1).
The inner expectation in the RHS of (13) can easily be calculated thanks to the inde-

pendence of the random variables F x
k (T x

k−1) and Sx
k (T x

k−1). We have:

Cplt(t,K;T x
k−1, T

x
k ) = τx

kPD(t, T x
k )

∫ +∞

−∞
E

T x
k

D

{
[F x

k (T x
k−1)− (K − z)]+|Ft

}
fSx

k (T x
k−1)(z) dz

(14)
In particular, if the support of fF x

k (T x
k−1) is the positive half-line, then

Cplt(t,K;T x
k−1, T

x
k ) = τx

kPD(t, T x
k )

[ ∫ K

−∞
E

T x
k

D

{
[F x

k (T x
k−1)− (K − z)]+|Ft

}
fSx

k (T x
k−1)(z) dz

+

∫ +∞

K

[F x
k (t)− (K − z)]fSx

k (T x
k−1)(z) dz

]
=

∫ K

−∞
CpltF (t,K − z;T x

k−1, T
x
k )fSx

k (T x
k−1)(z) dz

+ τx
kPD(t, T x

k )(F x
k (t)−K)QSx

k (T x
k−1)(t,K)

+ τx
kPD(t, T x

k )

∫ +∞

K

zfSx
k (T x

k−1)(z) dz

=

∫ K

−∞
CpltF (t,K − z;T x

k−1, T
x
k )fSx

k (T x
k−1)(z) dz

− F x
k (t)

∂

∂K
CpltS(t,K;T x

k−1, T
x
k ) + CpltS(t,K;T x

k−1, T
x
k )

(15)

where

CpltF (t, κ;T x
k−1, T

x
k ) = τx

kPD(t, T x
k )E

T x
k

D

{
[F x

k (T x
k−1)− κ]+|Ft

}
CpltS(t, κ;T x

k−1, T
x
k ) = τx

kPD(t, T x
k )E

T x
k

D

{
[Sx

k (T x
k−1)− κ]+|Ft

}
and

QSx
k (T x

k−1)(t,K) = E
T x

k
D

{
Sx

k (T x
k−1) ≥ K|Ft

}
=

∫ +∞

K

fSx
k (T x

k−1)(z) dz

= − 1

τx
kPD(t, T x

k )

∂

∂K
CpltS(t,K;T x

k−1, T
x
k )

If F x
k (T x

k−1) can assume negative values, as in the case of Gaussian or (negatively)
shifted-lognormal distributions, the calculation of the integral∫ +∞

K

E
T x

k
D

{
[F x

k (T x
k−1)− (K − z)]+|Ft

}
fSx

k (T x
k−1)(z) dz

is slightly more involved, depending on the support of fF x
k (T x

k−1). However, it can still

be written explicitly in terms of the caplet prices and densities related to F x
k (T x

k−1) and
Sx

k (T x
k−1).
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A different, but equivalent, characterization of the caplet price can be obtained by
exploiting the symmetry of roles between OIS forward rate and spread in the pricing
formula (13).10 In fact, one can switch F x

k (T x
k−1) and Sx

k (T x
k−1), thus writing

Cplt(t,K;T x
k−1, T

x
k )

= τx
kPD(t, T x

k )E
T x

k
D

{
E

T x
k

D

{
[Sx

k (T x
k−1)− (K − F x

k (T x
k−1))]

+|Ft ∨ F x
k (T x

k−1)
}
|Ft

}
= τx

kPD(t, T x
k )

∫ +∞

−∞
E

T x
k

D

{
[Sx

k (T x
k−1)− (K − z)]+|Ft

}
fF x

k (T x
k−1)(z) dz

(16)

If we now assume that the support of fSx
k (T x

k−1) is the positive half-line, and apply the same

steps leading to (15), we get:

Cplt(t,K;T x
k−1, T

x
k ) =

∫ K

−∞
CpltS(t,K − z;T x

k−1, T
x
k )fF x

k (T x
k−1)(z) dz

+ τx
kPD(t, T x

k )Sx
k (t)QF x

k (T x
k−1)(t,K) + CpltF (t,K;T x

k−1, T
x
k )

(17)

where

QF x
k (T x

k−1)(t,K) = E
T x

k
D

{
F x

k (T x
k−1) ≥ K|Ft

}
= − 1

τx
kPD(t, T x

k )

∂

∂K
CpltF (t,K;T x

k−1, T
x
k )

The caplet pricing formulas (15) and (17) coincide when both F x
k (T x

k−1) and Sx
k (T x

k−1)
are positive valued. In general, we will use either (15) or (17), depending on whether
F x

k (T x
k−1) or Sx

k (T x
k−1) is positive valued. In case both F x

k (T x
k−1) and Sx

k (T x
k−1) can take

negative values, one can then calculate (14) or (16) consistently with the assumed density
supports. These calculations are here omitted for brevity.

4.2 A specific example

As a specific example, assume that OIS forward rates satisfy the following SABR dynamics:

dF x
k (t) =

(
F x

k (t)
)βkV F

k (t) dZF
k (t)

dV F
k (t) = εkV

F
k (t) dW F

k (t), V F
k (0) = αk

(18)

with dZF
k (t) dW F

k (t) = ρk dt, and that spreads are given by (driftless) geometric Brownian
motions

dSx
k (t) = σkS

x
k (t) dZS

k (t) (19)

10This is equivalent to apply the commutative property of convolutions.
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where αk > 0, βk ∈ (0, 1], εk > 0, ρk ∈ [−1, 1] and σk > 0 are constants. Formula (15), in
this case, becomes:

Cplt(t,K;T x
k−1, T

x
k )

=

∫ K

0

CpltSABR(t,K − z;T x
k−1, T

x
k )

zσk

√
T x

k−1 − t
√

2π
exp

{
− 1

2

(
ln z

Sx
k (t)

+ 1
2
σ2

k(T
x
k−1 − t)

)2
σ2

k(T
x
k−1 − t)

}
dz

+ τx
kPD(t, T x

k )(F x
k (t)−K)Φ

(
ln

Sx
k (t)

K
− 1

2
σ2

k(T
x
k−1 − t)

σk

√
T x

k−1 − t

)
+ τx

kPD(t, T x
k )Sx

k (t)Φ

(
ln

Sx
k (t)

K
+ 1

2
σ2

k(T
x
k−1 − t)

σk

√
T x

k−1 − t

)
(20)

where Φ denotes the standard normal distribution function and

CpltSABR(t,K;T x
k−1, T

x
k ) = τx

kPD(t, T x
k )
[
F x

k (t)Φ(d1)−KΦ(d2)
]

(21)

with

d1,2 :=
ln(F x

k (t)/K)± 1
2
σSABR(K,F x

k (t))2(T x
k−1 − t)

σSABR(K,F x
k (t))

√
T x

k−1 − t

σSABR(K,F ) :=
αk

(FK)
1−βk

2

[
1 + (1−βk)2

24
ln2
(

F
K

)
+ (1−βk)4

1920
ln4
(

F
K

)
+ · · ·

] ζ

x(ζ)

·

{
1 +

[
(1− βk)

2α2
k

24(FK)1−βk
+

ρkβkεkαk

4(FK)
1−βk

2

+ ε2k
2− 3ρ2

k

24

]
T x

k−1 + · · ·

}

ζ :=
εk
αk

(FK)
1−βk

2 ln

(
F

K

)
x(ζ) := ln

{√
1− 2ρkζ + ζ2 + ζ − ρk

1− ρk

}

4.3 Swaption pricing

Let us consider a (payer) swaption, which gives the right to enter at time T x
a = T S

c an
IRS with payment times for the floating and fixed legs given, respectively, by T x

a+1, . . . , T
x
b

and T S
c+1, . . . , T

S
d , with T x

b = T S
d and where the fixed rate is K. We assume that each T S

j

belongs to {T x
a , . . . , T

x
b }.11 Then, for each j, there exists an index ij such that T S

j = T x
ij
.

The swaption payoff at time T x
a = T S

c is given by

[Sa,b,c,d(T
x
a )−K]+

d∑
j=c+1

τS
j PD(T S

c , T
S
j ), (22)

11This assumption is motivated by the measure change, from forward to swap measure, which is needed
in the approximation of the swaption price. See Mercurio (2009, 2010) or Appendix D.
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where, see (4),

Sa,b,c,d(t) =

∑b
k=a+1 τ

x
kPD(t, T x

k )Lx
k(t)∑d

j=c+1 τ
S
j PD(t, T S

j )
.

Setting

Cc,d
D (t) =

d∑
j=c+1

τS
j PD(t, T S

j ) =
d∑

j=c+1

τS
j PD(t, T x

ij
),

the swaption payoff (22) is conveniently priced under the swap measure Qc,d
D , whose asso-

ciated numeraire is the annuity Cc,d
D (t). In fact, denoting by Ec,d

D expectation under Qc,d
D ,

we have:

PS(t,K;T x
a , . . . , T

x
b , T

S
c+1, . . . , T

S
d )

=
d∑

j=c+1

τS
j PD(t, T S

j )Ec,d
D

{
[Sa,b,c,d(T

x
a )−K]+

∑d
j=c+1 τ

S
j PD(T S

c , T
S
j )

Cc,d
D (T S

c )
|Ft

}

=
d∑

j=c+1

τS
j PD(t, T S

j )Ec,d
D

{
[Sa,b,c,d(T

x
a )−K]+ |Ft

} (23)

so that, also in a multi-curve environment, pricing a swaption is equivalent to pricing an
option on the underlying swap rate.

To calculate the last expectation, we proceed as follows. We set

ωk(t) :=
τx
kPD(t, T x

k )∑d
j=c+1 τ

S
j PD(t, T S

j )
(24)

and write:12

Sa,b,c,d(t) =
b∑

k=a+1

ωk(t)L
x
k(t) =

b∑
k=a+1

ωk(t)F
x
k (t) +

b∑
k=a+1

ωk(t)S
x
k (t) (25)

The swap rate Sa,b,c,d is, by definition, a martingale under the swap measure Qc,d
D , and so

is the process F̄ (t) :=
∑b

k=a+1 ωk(t)F
x
k (t), which represents the corresponding swap rate

associated with the discount (OIS) curve. As a consequence, also the process S̄(t) :=∑b
k=a+1 ωk(t)S

x
k (t) is a martingale under Qc,d

D .
Process F̄ is equal to the classic single-curve forward swap rate that is defined by OIS

discount factors, and whose reset and payment times are given by T S
c , . . . , T

S
d . If dynam-

ics (8), which define a standard (single-curve) LMM based on OIS rates, are sufficiently
tractable, we can approximate F̄ (t) by a driftless stochastic-volatility process, F̃ (t), of the

12See also Fujii et al. (2009) for a similar decomposition.
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same type as (8). This property holds for the majority of LMMs in the financial literature,13

so that we can safely assume it also applies to our dynamics (8).
The case of process S̄ is slightly more involved. In fact, contrary to F̄ , S̄ explicitly

depends both on OIS discount factors, defining the weights ωk, and on basis spreads.
However, this issue can easily be addressed by resorting to a standard approximation as
far as swaption pricing in a LMM is concerned, that is by freezing the ωk at their time-
0 value, thus removing the dependence of S̄ on OIS discount factors. This produces an
approximating process

∑b
k=a+1 ωk(0)Sx

k (t), which is a martingale under Qc,d
D thanks to the

independence of the Brownian motions in (9) from OIS forward rates, see also Appendix
D. We can then assume we can further approximate S̄ with a dynamics S̃ similar to (9),
for instance by matching instantaneous variations.

After the approximations just described, the swaption price becomes

PS(t,K;T x
a , . . . , T

x
b , T

S
c+1, . . . , T

S
d )

=
d∑

j=c+1

τS
j PD(t, T S

j )Ec,d
D

{[
F̃ (T x

a ) + S̃(T x
a )−K

]+|Ft

} (26)

and can then be calculated exactly in the same way as the caplet price (14). Notice, in
fact, that the two random variables F̃ (T x

a ) and S̃(T x
a ) are independent, under Qc,d

D , as a
consequence of the weight-freezing approximation on S̄.

4.4 A one-factor model for the spread dynamics

The swaption pricing problem above can be simplified by conveniently assuming that the
evolution of spreads is modeled by the same stochastic-volatility factor, independent of
OIS rates:

Sx
k (t) = Sx

k (0)MS(t), k = 1, . . . ,M (27)

where MS is a (continuous) martingale under each forward measure Q
T x

k
D , independent of

rates F x
k . Clearly, MS(0) = 1.

From (27), we immediately have:

S̄(t) =
b∑

k=a+1

ωk(t)S
x
k (t) =

b∑
k=a+1

ωk(t)S
x
k (0)MS(t) ≈MS(t)

b∑
k=a+1

ωk(0)S
x
k (0) = S̄(0)MS(t)

Given the independence between MS and OIS rates, the dynamics of MS under the swap

13This is the case, for instance, of the LMMs of Andersen and Andreasen (2002), Piterbarg (2005) and
Wu and Zhang (2006). The LMMs of Henry-Labordère (2007), Mercurio and Morini (2009) and Rebonato
et al. (2009) are slightly more involved to deal with, because of the assumed non-zero correlation between
rates and associated stochastic volatility (Rebonato et al. (2009) also have a multi-factor volatility process).
However, also in these latter cases, one can resort to efficient approximations.
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measure Qc,d
D does not change. The swaption price (26) can then be expressed as follows:

PS(t,K;T x
a , . . . , T

x
b , T

S
c+1, . . . , T

S
d )

=
d∑

j=c+1

τS
j PD(t, T S

j )Ec,d
D

{[
F̃ (T x

a ) + S̄(0)MS(T x
a )−K

]+|Ft

}
=

d∑
j=c+1

τS
j PD(t, T S

j )Ec,d
D

{
Ec,d

D

{[
F̃ (T x

a ) + S̄(0)MS(T x
a )−K

]+|Ft ∨MS(T x
a )
}
|Ft

} (28)

which, again, can be calculated in the same way as the caplet price (13).
As an example, we can assume that MS follows the SABR process

dMS(t) =
(
MS(t)

)β
V (t) dZS

k (t)

dV (t) = εV (t) dW S
k (t), V (0) = α

(29)

under every forward measure Q
T x

k
D . Since

dSx
k (t) = Sx

k (0)dMS(t) = (Sx
k (0))1−β

(
Sx

k (t)
)β
V (t) dZS

k (t)

the resulting spread dynamics, in this case, are given by

dSx
k (t) =

(
Sx

k (t)
)β
V S(t) dZS

k (t)

dV S(t) = εV S(t) dW S
k (t), V S(0) = α(Sx

k (0))1−β

5 Modeling different tenors simultaneously

The single-tenor case considered in the previous sections has the advantage that one can
model forward OIS rates of a given length without worrying about the implications on
other tenors. When modeling multiple tenors simultaneously, instead, one has to properly
account for possible no-arbitrage relations that hold across different time intervals. In
particular, we can not trivially extend dynamics (8) and (9) to other tenors as if different-
tenor rates were totally unrelated to one another. As an example, assume that T0, T1, T2

are three-month spaced, i.e. T0 = 3m, T1 = 6m, T2 = 9m, and consider the three-
month forward OIS rates F 3m

1 (t) = FD(t, T0, T1), F
3m
2 (t) = FD(t, T1, T2), and the six-month

forward OIS rate F 6m(t) = FD(t, T0, T2). Clearly, these three rates are not free to vary
independently from one another since, by classic no-arbitrage relations applied to the OIS
curve, we must have:

[1 + τ1F
3m
1 (t)][1 + τ2F

3m
2 (t)] = 1 + (τ1 + τ2)F

6m(t) (30)

Therefore, if the dynamics of F 3m
1 and F 3m

2 are given, the dynamics of F 6m is fully specified
by (30). This implies that the stochastic process governing the evolution of the six-month
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rate will not belong, in general, to the same family as that of the processes of the three-
month rates. For instance, if both F 3m

1 and F 3m
2 have SABR dynamics under the respective

forward measures, F 6m will not have SABR dynamics even for particular values of the
model parameters.

While the evolution of forward OIS rates with different tenors is constrained by no-
arbitrage relations like (30), the associated spreads are relatively free to move independently
of each other (though not being necessarily stochastically independent). In fact, FRA rates
with different tenors belong to different curves, which can in principle be highly correlated
with one another, but on which no functional dependence must be imposed a priori to
fulfill no-arbitrage requirements.14

Our objective, when modeling multiple tenors, is to preserve the tractability of the
single-tenor case, that is the possibility to price in closed form both caps and swaptions.
In theory, the pricing formulas for a tenor may be different than those of another tenor, for
instance because the corresponding spreads are modeled by different stochastic-volatility
processes. However, in this article, we follow a simpler and more consistent approach, and
choose dynamics of forward OIS rates and related spreads that are similar for all considered
tenors, with the general form of condition (30) being satisfied by construction.

5.1 A tractable model for the multi-tenor case

Let us consider a time structure T = {0 < T0, . . . , TM} and different tenors x1 < x2 <
· · · < xn with associated time structures T xi = {0 < T xi

0 , . . . , T
xi
Mi
}. We assume that each

xi is a multiple of the preceding tenor xi−1, and that T xn ⊂ T xn−1 ⊂ · · · ⊂ T x1 = T . For
instance, for typical market tenors, we can have

T 1m = {1/12, 2/12, 3/12, . . . }
T 3m = {1/12, 4/12, 7/12, . . . }
T 6m = {1/12, 7/12, 13/12, . . . }
T 1y = {1/12, 13/12, 25/12, . . . }

For each tenor xi, forward OIS rates are defined by (6), i.e.

F xi
k (t) := FD(t;T xi

k−1, T
xi
k ) =

1

τxi
k

[
PD(t, T xi

k−1)

PD(t, T xi
k )

− 1

]
(31)

where τxi
k is the year fraction for the interval (T xi

k−1, T
xi
k ], and basis spreads are defined by

(7), i.e.
Sxi

k (t) = FRA(t, T xi
k−1, T

xi
k )− F xi

k (t) = Lxi
k (t)− F xi

k (t) (32)

14The extent at which two-tenor curves deviate from each other can be measured by the market quotes of
corresponding basis swaps, where payments based on the former tenor are exchanged for payments based
on the latter, see also Section 5.2 below.
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We then assume that, for each tenor xi, the corresponding OIS forward rates F xi
k ,

k = 1, . . . ,Mi, follow shifted-lognormal stochastic-volatility processes

dF xi
k (t) = σxi

k (t)V F (t)
[ 1

τxi
k

+ F xi
k (t)

]
dZF,xi

k (t) (33)

where, for each k and xi, σ
xi
k is a deterministic function, ZF,xi

k is a standard Brownian

motion under the forward measure Q
T

xi
k

D , and the stochastic volatility V F is a one-factor
process (common to all OIS forward rates, for all considered tenors), instantaneously un-
correlated with ZF,xi

k and with V F (0) = 1.
For simplicity, we assume that, for each tenor xi, forward rates F xi

k are (instantaneously)
perfectly correlated. This assumption is here introduced for notational convenience, and
can in fact be easily relaxed.

Functions σxi
k are tenor-dependent. In order to meet no-arbitrage constraints like (30),

they must satisfy the relation (60), proved in Appendix C. That is, if rate F xi
k (with tenor

xi) can be obtained by compounding consecutive rates F x1
j (with smallest tenor x1), then

the volatility coefficient σxi
k of F xi

k must be equal to the sum of the volatility coefficients
σx1

j of the rates F x1
j .

We notice that (33) are the simplest stochastic-volatility dynamics that are consistent
across different tenors. This means, for example, that if three-month rates follow shifted
lognormal processes with common stochastic volatility, the same type of dynamics is also
followed by six-month rates.

As far as spread dynamics are concerned, a convenient choice is to assume, for each
tenor xi, one-factor models like (27), that is

Sxi
k (t) = Sxi

k (0)Mxi(t), k = 1, . . . ,Mi (34)

where, for each xi, M
xi is a (continuous) martingale under each forward measure Q

T
xi
k

D , k =
1, . . . ,Mi, independent of rates F xi

k . Clearly, Mxi(0) = 1. The martingales Mx1 , . . . ,Mxn

can be (instantaneously) correlated, to capture relative movements between curves based
on different tenors.

Mimicking example (29), we can assume, for instance, that each Mxi follows a SABR
process

dMxi(t) =
(
Mxi(t)

)βxi

V xi(t) dZxi(t)

dV xi(t) = εxiV xi(t) dW xi(t), V xi(0) = αxi

where dZxi(t) dW xi(t) = ρxi dt, and the parameters are tenor dependent.
To price caps and swaptions under (33) and (34), we just have to apply the formulas

previously derived in the single-tenor case. In fact, given that rates and spreads with
different xi’s follow the same type of dynamics, caps and swaptions based on different tenors
will have similar pricing formulas. This is particularly convenient when simultaneously
pricing options with different tenors, either for calibration purposes or because one wants
to price options based on non-standard tenors given the market quotes of standard-tenor
ones.
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5.2 The pricing of basis swaps

A popular market contract based on different LIBOR tenors, in the same currency, is a
basis swap, which is composed of two floating legs where payments set on a given LIBOR
tenor are exchanged for payments set on another tenor. For instance, one can receive
quarterly the 3-month LIBOR rate and pay semiannually the 6-month LIBOR rate, both
set in advance and paid in arrears. The market actively quotes basis swaps, at least for
the main tenors (3m vs 6m). These quotes are typically positive, meaning that a positive
spread has to be added to the smaller-tenor leg to match the NPV of the larger-tenor leg.

Let us be given two tenors x1 and x2 with x1 < x2 and the associated time structures
T x1 = {0 < T x1

0 , . . . , T x1
M1
} and T x2 = {0 < T x2

0 , . . . , T x2
M2
}. We assume that T x2 ⊂ T x1 and

that T x1
M1

= T x2
M2

.
Let us then consider the two floating legs in the basis swap where x1-rates are ex-

changed for x2-rates. The x1-leg pays at each time T x1
i , i = 0, . . . ,M1, the x1-LIBOR rate

Lx1(T x1
i−1, T

x1
i ). Likewise, the x2-leg pays at each time T x2

j , j = 0, . . . ,M2, the x2-LIBOR
rate Lx2(T x2

j−1, T
x2
j ), where we set T x1

−1 = T x2
−1 := 0. The NPVs of the two legs at time 0 are:

Mk∑
i=0

τxk
i PD(0, T xk

i )Lxk
i (0), k = {1, 2}.

As mentioned above, typical market quotes imply that:

M2∑
j=0

τx2
j PD(0, T x2

j )Lx2
j (0) >

M1∑
i=0

τx1
i PD(0, T x1

i )Lx1
i (0)

or, equivalently, that

M2∑
j=0

τx2
j PD(0, T x2

j )Sx2
j (0) >

M1∑
i=0

τx1
i PD(0, T x1

i )Sx1
i (0)

These time-0 conditions are satisfied by our multi-tenor model (34) by construction. How-
ever, there is no guarantee that the corresponding conditions at a future time t will also
hold true. In fact, the spread dynamics (34) may in principle generate unrealistic future
scenarios.15 If we want to preserve the positivity of basis spreads, we then have to con-
strain the joint evolution of processes Mx1 and Mx2 , for instance by assuming a very high
correlation between them.

6 An example of calibration to real market data

We now consider a simple example of calibration to market caplet data of the LMM de-
scribed by dynamics (33) and (34). In particular, we fix a tenor x and an index k and

15We define “unrealistic” a feature that has never (or very rarely) observed in the market until the
present moment. As we have learned from the recent credit crisis, this does not necessarily mean that
unrealistic features will never occur in the future.
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assume that the corresponding OIS forward rate follow the shifted-lognomal process:16

dF x
k (t) = σx

k

[ 1

τx
k

+ F x
k (t)

]
dZF,x

k (t) (35)

where σx
k is a positive constant and ZF,x

k is a standard Q
T x

k
D -Brownian motion. This corre-

sponds to assuming that V F ≡ 1 in (33).
The related spread (equivalently, process Mx) is assumed to follow SABR dynamics:

dSx
k (t) =

(
Sx

k (t)
)βkV S

k (t) dZS
k (t)

dV S
k (t) = εkV

S
k (t) dW S

k (t), V S
k (0) = αk, dZS

k (t) dW S
k (t) = ρk dt

(36)

where αk > 0, βk ∈ (0, 1], εk > 0, ρk ∈ [−1, 1] are constants, and ZS
k and W S

k (t) are

standard Q
T x

k
D -Brownian motions.

The price of the caplet τx
k [F x

k (T x
k−1)+S

x
k (T x

k−1)−K]+ is then given by (17) where CpltS is
the SABR option price associated to (36), fF x

k (T x
k−1) is the shifted-lognormal density coming

from (35) and CpltF is the related caplet price, i.e.

Cplt(t,K;T x
k−1, T

x
k )

=

∫ K+ 1
τx
k

0

CpltSABR(t,K + 1
τx
k
− z;T x

k−1, T
x
k )

zσk

√
T x

k−1 − t
√

2π
exp

{
− 1

2

(
ln z

F x
k (t)+1/τx

k
+ 1

2
σ2

k(T
x
k−1 − t)

)2
σ2

k(T
x
k−1 − t)

}
dz

+ τx
kPD(t, T x

k )
(
Sx

k (t)−K − 1/τx
k

)
Φ

(
ln

F x
k (t)+1/τx

k

K+1/τx
k

− 1
2
σ2

k(T
x
k−1 − t)

σk

√
T x

k−1 − t

)

+ τx
kPD(t, T x

k )
(
F x

k (t) +
1

τx
k

)
Φ

(
ln

F x
k (t)+1/τx

k

K+1/τx
k

+ 1
2
σ2

k(T
x
k−1 − t)

σk

√
T x

k−1 − t

)
(37)

We want to test the flexibility of the caplet pricing function (37) by calibrating EUR
caplet data as of February 8th, 2010. In particular, we calibrate the market caplets with
reset date at T x

k−1 = 3 (years), for which Lx
k(T

x
k−1) = 3.07% and F x

k (T x
k−1) = 2.50%, so that

Sx
k (T x

k−1) = 0.57%. The quoted strikes and corresponding Black volatilities are shown in
Table 1.

The calibration is performed by minimizing the sum of squared differences between
model and market prices. To convert the market Black volatilities vk into prices we use the
market caplet formula that holds in a multi-curve setting, and under OIS discounting:17

Cpltmkt(0, K;T x
k−1, T

x
k ) = τx

kPD(0, T x
k ) Bl

(
K,Lx

k(0), vk

√
T x

k−1

)
16By the consistency result of Appendix C, the other forward OIS rates will follow similar deterministic-

volatility dynamics.
17The derivation of this formula can be found in Mercurio (2009). Bianchetti (2009) derives an equivalent

formula, which is based on a different underlying rate to which a quanto-like correction must be applied
to obtain our FRA rate.
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K Black vol
1 47.48
2 37.03
3 30.58
4 27.71
5 26.54
6 26.15
7 26.13
8 26.2
9 26.38

Table 1: EUR market caplets as of February 8th, 2010. Strikes and volatilities are in
percentage points.

where

Bl(K,L, v) = LΦ

(
ln(L/K) + v2/2

v

)
−KΦ

(
ln(L/K)− v2/2

v

)
Our model specification fits the considered market data almost perfectly. In fact, as is

typical of the SABR functional form, we have equivalently good fits for different choices
of the parameter βk. In Fig. 4, we show our calibration result corresponding to the choice
of βk = 0.5. For comparison purposes, we also plot the calibrated volatilities implied
by directly assuming SABR dynamics for the FRA rate Lx

k, where the corresponding β
parameter is set to 0.5 and the correlation between rate and volatility to zero:

dLx
k(t) =

(
Lk(t)

)βL
k V L

k (t) dZL
k (t)

dV L
k (t) = εLkV

L
k (t) dWL

k (t), V L
k (0) = αL

k , dZL
k (t) dWL

k (t) = 0
(38)

where βL
k = 1/2, αL

k > 0 and εLk > 0 are constants, and ZL
k and WL

k (t) are independent

standard Q
T x

k
D -Brownian motions. The implied volatilities associated to (38) are given by:

σSABR(K,Lx
k(0)) :=

αL
k

(Lx
k(0)K)

1
4

[
1 + 1

96
ln2
(

Lx
k(0)

K

)
+ 1

30720
ln4
(

Lx
k(0)

K

)
+ · · ·

] ζ

x(ζ)

·

{
1 +

[
(αL

k )2

96(Lx
k(0)K)

1
2

+ (εLk )2 1

12

]
T x

k−1 + · · ·

}

ζ :=
εLk
αL

k

(Lx
k(0)K)

1
4 ln

(
Lx

k(0)

K

)
x(ζ) := ln

{√
1 + ζ2 + ζ

}
Setting to zero the correlation between ZL

k and WL
k is a common choice in many

stochastic-volatility LMMs, for the purpose of keeping the volatility dynamics unchanged
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Figure 4: Comparison between market caplet volatilities with the calibrated volatilities
implied by (35) and (36) (Model) and by (38) (SABR). EUR market data as of February
8th, 2010.

after a measure change. Here, however, we have the freedom to use a non-zero ρk and,
at the same time, set to zero the correlation between stochastic volatility and forward
OIS rates so as to keep the same volatility dynamics under different forward and swap
measures.18 Our model, therefore, has one extra degree of freedom with respect to (38).
In general, the zero-correlation SABR model applied to Lx

k must use the parameter βL
k

to calibrate the negative slope of implied volatilities at the at-the-money level. This task
in our LMM can be performed by ρk, whereas βk can either be fixed a priori, as in our
calibration example, or used to calibrate other market data, like for instance CMS swap
spreads.

In Fig. 5, we compare the values of our calibrated volatilities coming from the SABR
approximation with those obtained with Monte Carlo (MC) generation of the model dy-
namics. The MC window we plot has been obtained by applying a simple Euler scheme
with a time step of 3/100, 000 and by simulating 1,000,000 paths.

7 Conclusions

In this article, we have shown how to extend the LMM to price interest rate derivatives
under distinct yield curves, used for generating future LIBOR rates and for discounting.

18Clearly, some attention is still required since we need to ensure that the overall correlation matrix is
positive semi-definite.
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Figure 5: Comparison between prices obtained through formula (17) and 99% Monte-Carlo
(MC) window. UB stands for upper bound and LB for lower bound.

To this end, we have chosen to model the joint evolution of OIS forward rates and corre-
sponding basis spreads, under the assumption that the discount curve coincides with the
OIS-based one.

We have first modeled the joint evolution of rates and spreads with a given tenor, and
then proposed a model for the multi-tenor case. The dynamics we have considered imply
the possibility to price in closed-form both caps and swaptions, with procedures that are
only slightly more involved than the corresponding ones in the single-curve case. The
framework we have introduced is rather general and allows for further extensions based on
alternative dynamics.

We have finally considered a simple example of calibration to a market caplet smile.
This is to be intended as a preliminary result, since the model robustness and flexibility
should be tested on a much broader data set, including swaption smiles and CMS swap
spreads.

Another issue that needs further investigation is the modeling of correlations with
parametric forms granting the positive definiteness of the overall correlation matrix. To
this end, one may try to extend to the multi-curve case the parametrization proposed by
Mercurio and Morini (2007) in a single-curve setting.
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A Appendix: The pricing of market FRAs

Given times T1 and T2, the T1 × T2-FRA traded in the market is a contract paying out at
time T1 (to the fixed-rate payer)

τ1,2(L(T1, T2)−K)

1 + τ1,2L(T1, T2)
(39)

where K is the fixed (FRA) rate and τ1,2 is the year fraction for the interval (T1, T2].

The corresponding time-t FRA rate FRAmkt(t;T1, T2) is defined as the fixed rate K
such that the value of payoff (39) is zero at time t.

Market FRAs are typically collateralized contracts. Assuming that the collateral rate
equals the overnight rate, as we do in this article, we can thus resort to risk-neutral pricing
theory, and get:

0 = ET1
D

[
τ1,2

(
L(T1, T2)− FRAmkt(t;T1, T2)

)
1 + τ1,2L(T1, T2)

|Ft

]
= ET1

D

[(
1− 1 + τ1,2FRAmkt(t;T1, T2)

1 + τ1,2L(T1, T2)

)
|Ft

] (40)

so that

1 =
(
1 + τ1,2FRAmkt(t;T1, T2)

)
ET1

D

[
1

1 + τ1,2L(T1, T2)
|Ft

]
Therefore, the market FRA rate FRAmkt(t;T1, T2) is given by

FRAmkt(t;T1, T2) =
1

τ1,2E
T1
D

[
1

1+τ1,2L(T1,T2)
|Ft

] − 1

τ1,2

. (41)

The QT1
D -expectation in (41) can be converted into a QT2

D -expectation by a classic chance
of measure (equivalently, change of numeraire) technique:

ET1
D

[
1

1 + τ1,2L(T1, T2)
|Ft

]
=
PD(t, T2)

PD(t, T1)
ET2

D

[
1

PD(T1, T2)

1

1 + τ1,2L(T1, T2)
|Ft

]
=
PD(t, T2)

PD(t, T1)
ET2

D

[
1 + τD

1,2LD(T1, T2)

1 + τ1,2L(T1, T2)
|Ft

]
,

where we set

LD(T1, T2) =
1

τD
1,2

[ 1

PD(T1, T2)
− 1
]
,

with τD
1,2 denoting the year fraction for the interval (T1, T2] for the discount curve.

Thus, we can write:

FRAmkt(t;T1, T2) =
1

τ1,2
PD(t,T2)
PD(t,T1)

ET2
D

[
1+τD

1,2LD(T1,T2)

1+τ1,2L(T1,T2)
|Ft

] − 1

τ1,2

(42)



28

Remembering (2), i.e.

FD(t;T1, T2) =
1

τD
1,2

[PD(t, T1)

PD(t, T2)
− 1
]
,

we finally obtain

FRAmkt(t;T1, T2) =
1 + τD

1,2FD(t;T1, T2)

τ1,2E
T2
D

[
1+τD

1,2LD(T1,T2)

1+τ1,2L(T1,T2)
|Ft

] − 1

τ1,2
(43)

Remark 3 Under a single-curve setting, the LIBOR rate L(T1, T2) coincides with LD(T1, T2),
and obviously τD

1,2 = τ1,2, so that

FRAmkt(t;T1, T2) =
1 + τD

1,2FD(t;T1, T2)

τ1,2

− 1

τ1,2

= FD(t;T1, T2)

In this case, we recover the classic well-known result that FRAmkt(t;T1, T2) coincides with
the corresponding (uniquely-defined) forward rate.

Remark 4 Formula (43) can also be derived by replacing (40) with its equivalent formu-
lation under the forward measure QT2

D :

0 = ET2
D

[
L(T1, T2)− FRAmkt(t;T1, T2)

1 + τ1,2L(T1, T2)

1

PD(T1, T2)
|Ft

]
= ET2

D

[(
L(T1, T2)− FRAmkt(t;T1, T2)

)1 + τD
1,2LD(T1, T2)

1 + τ1,2L(T1, T2)
|Ft

]
.

This leads to

FRAmkt(t;T1, T2) =

ET2
D

[
L(T1, T2)

1+τD
1,2LD(T1,T2)

1+τ1,2L(T1,T2)
|Ft

]
ET2

D

[
1+τD

1,2LD(T1,T2)

1+τ1,2L(T1,T2)
|Ft

] ,

which can easily be shown to coincide with (43) since

ET2
D [LD(T1, T2)|Ft] = FD(t;T1, T2).

As is evident from equation (43), the valuation of the market FRA rate FRAmkt(t;T1, T2)
is model dependent and based on the joint distribution of rates LD(T1, T2) and L(T1, T2)
under the forward measure QT2

D . Given the nature of the term inside expectation, a very
convenient choice is to model the dynamics of the corresponding rates FD(t;T1, T2) and
FRA(t;T1, T2) as shifted-lognormal processes:

dFD(t;T1, T2) = σD
1,2

[ 1

τD
1,2

+ FD(t;T1, T2)
]
dZD

2 (t)

dFRA(t;T1, T2) = σ1,2

[ 1

τ1,2

+ FRA(t;T1, T2)
]
dZ2(t)

(44)
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where σD
1,2 and σ1,2 are constants, and dZD

2 and dZ2 are QT2
D -Brownian motions with in-

stantaneous correlation ρD
1,2. In fact, integrating dynamics (44) and taking expectation, we

obtain

ET2
D

[
1 + τD

1,2LD(T1, T2)

1 + τ1,2L(T1, T2)
|Ft

]
= ET2

D

[
1 + τD

1,2FD(T1;T1, T2)

1 + τ1,2FRA(T1;T1, T2)
|Ft

]
= ET2

D

[ (
1 + τD

1,2FD(t;T1, T2)
)
exp

{
− 1

2
(σD

1,2)
2(T1 − t) + σD

1,2(Z
D
2 (T1)− ZD

2 (t))
}(

1 + τ1,2FRA(t;T1, T2)
)
exp

{
− 1

2
(σ1,2)2(T1 − t) + σ1,2(Z2(T1)− Z2(t))

} |Ft

]

=
1 + τD

1,2FD(t;T1, T2)

1 + τ1,2FRA(t;T1, T2)

· ET2
D

[
e−

1
2
[(σD

1,2)2−(σ1,2)2](T1−t)+σD
1,2(ZD

2 (T1)−ZD
2 (t))−σ1,2(Z2(T1)−Z2(t))|Ft

]
=

1 + τD
1,2FD(t;T1, T2)

1 + τ1,2FRA(t;T1, T2)
e[(σ1,2)2−ρD

1,2σD
1,2σ1,2](T1−t)

(45)

This immediately leads to

FRAmkt(t;T1, T2) =
1 + τD

1,2FD(t;T1, T2)

τ1,2
1+τD

1,2FD(t;T1,T2)

1+τ1,2FRA(t;T1,T2)
e[(σ1,2)2−ρD

1,2σD
1,2σ1,2](T1−t)

− 1

τ1,2

=
1

τ1,2

(
1 + τ1,2FRA(t;T1, T2)

)
e[−(σ1,2)2+ρD

1,2σD
1,2σ1,2](T1−t) − 1

τ1,2

(46)

or, equivalently,

FRAmkt(t;T1, T2)− FRA(t;T1, T2)

=
1

τ1,2

(
1 + τ1,2FRA(t;T1, T2)

)[
e[−(σ1,2)2+ρD

1,2σD
1,2σ1,2](T1−t) − 1

]
.

(47)

The convexity correction FRAmkt(t;T1, T2) − FRA(t;T1, T2) has a sign that depends
on the volatility and correlation coefficients. Precisely, given that by no-arbitrage 1 +
τ1,2FRA(t;T1, T2) > 0, it is strictly positive if σ1,2 < ρD

1,2σ
D
1,2 and negative otherwise.

An example of the convexity corrections that can be obtained from formula (47) is
shown in Figure 6, where we assume σ1,2 = σD

1,2 and ρD
1,2 = 0.8, and calibrate the remaining

parameters to EUR market data as of November 11th, 2009. Such data is reported in
Table 2. The value of σ1,2 for each T1 is found by exact calibration of the shifted-lognormal
caplet price implied by (44) to the corresponding at-the-money (ATM) volatility. As we
can see, the convexity correction lies well below 1bp especially for short expiries. However,
assuming volatilities σD

1,2 different than σ1,2 or other levels of correlations ρD
1,2, can produce

much higher corrections, even in the short end of the yield curves.
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T1 FRA(0;T1, T2) ATM vols
0.5 1.02233 59.46
1 1.86174 53.11

1.5 2.50463 49.55
2 2.62471 33.07

2.5 3.14865 30.88
3 3.27457 29.29

3.5 3.34763 29.1
4 3.51263 24.33

4.5 3.66589 23.91
5 3.77789 20.13

5.5 3.86381 19.8
6 3.92827 18.55

6.5 3.99064 18.36
7 4.0522 17.89

7.5 4.1111 17.78
8 4.16227 16.55

8.5 4.21015 16.5
9 4.25924 15.74

9.5 4.33377 15.62

Table 2: EUR market data as of November 11th, 2009 with T2 = T1 + 0.5. Times are in
years. Rates and volatilities are in percentage points.

We may also want to assess the size of convexity corrections in a typical pre-credit-
crunch situation, where the basis tended to be constant (and small) over time. This
amounts to assume that, for each t ≤ T1,

FRA(t;T1, T2)− FD(t;T1, T2) = S1,2,

where S1,2 is a (positive) constant.19 Formula (43) then becomes

FRAmkt(t;T1, T2) =
1 + τD

1,2

[
FRA(t;T1, T2)− S1,2

]
τ1,2E

T2
D

[
1+τD

1,2(L(T1,T2)−S1,2)

1+τ1,2L(T1,T2)
|Ft

] − 1

τ1,2

=
1 + τD

1,2

[
FRA(t;T1, T2)− S1,2

]
τD
1,2 − (τD

1,2 − τ1,2 + τ1,2τD
1,2S1,2)E

T2
D

[
1

1+τ1,2L(T1,T2)
|Ft

] − 1

τ1,2

19Alternatively, one may assume that

τ1,2FRA(t;T1, T2)− τD
1,2FD(t;T1, T2) = τ1,2S1,2.

This leads to a slightly different formula than (49) below.
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Figure 6: Difference in bp between FRAmkt(0;T1, T2) and FRA(0;T1, T2) as from formula
(47) with τ1,2 = 0.5 and T2 = T1 + 0.5. EUR market data as of November 11th, 2009.

Under the shifted-lognormal dynamics (44) for FRA(t;T1, T2), we finally get:

FRAmkt(t;T1, T2) =
1 + τD

1,2

[
FRA(t;T1, T2)− S1,2

]
τD
1,2 − (τD

1,2 − τ1,2 + τ1,2τD
1,2S1,2)

1
1+τ1,2FRA(t;T1,T2)

eσ2
1,2T1

− 1

τ1,2
(48)

Assuming, for simplicity, that τD
1,2 = τ1,2, this formula for the market FRA rate simplifies

to

FRAmkt(t;T1, T2) =
1 + τ1,2

[
FRA(t;T1, T2)− S1,2

]
τ1,2 − τ 2

1,2S1,2
1

1+τ1,2FRA(t;T1,T2)
eσ2

1,2T1
− 1

τ1,2

=
1 + τ1,2

[
FRA(t;T1, T2)− S1,2

]
− 1 + τ1,2S1,2

1
1+τ1,2FRA(t;T1,T2)

eσ2
1,2T1

τ1,2 − τ 2
1,2S1,2

1
1+τ1,2FRA(t;T1,T2)

eσ2
1,2T1

=

[
FRA(t;T1, T2)− S1,2

][
1 + τ1,2FRA(t;T1, T2)

]
+ S1,2e

σ2
1,2T1

1 + τ1,2FRA(t;T1, T2)− τ1,2S1,2e
σ2
1,2T1

(49)
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Therefore, the corresponding convexity correction is

FRAmkt(t;T1, T2)− FRA(t;T1, T2)

=

[
FRA(t;T1, T2)− S1,2

][
1 + τ1,2FRA(t;T1, T2)

]
+ S1,2e

σ2
1,2T1

1 + τ1,2FRA(t;T1, T2)− τ1,2S1,2e
σ2
1,2T1

−
FRA(t;T1, T2)

[
1 + τ1,2FRA(t;T1, T2)− τ1,2S1,2e

σ2
1,2T1 ]

1 + τ1,2FRA(t;T1, T2)− τ1,2S1,2e
σ2
1,2T1

=
S1,2

[
1 + τ1,2FRA(t;T1, T2)

](
eσ2

1,2T1 − 1
)

1 + τ1,2FRA(t;T1, T2)− τ1,2S1,2e
σ2
1,2T1

= S1,2

(
eσ2

1,2T1 − 1
)

+
τ1,2S

2
1,2e

σ2
1,2T1

(
eσ2

1,2T1 − 1
)

1 + τ1,2FRA(t;T1, T2)− τ1,2S1,2e
σ2
1,2T1

≈ S1,2

(
eσ2

1,2T1 − 1
)

(50)

where, in the approximation, we only keep the first-order term in S1,2, neglecting higher
order ones.

The convexity correction is, with a very good degree of approximation, an exponential
function of the expiry time T1. This may lead us to suspect that the correction, being an
increasing and convex function of maturity, is non-negligible especially in the long end of
the yield curve. However, the volatility coefficient σ1,2 refers to a shifted-lognormal model,
and as such is usually much smaller than the corresponding volatility in lognormal terms,
which we denote by σLN

1,2 . In fact, one approximately has

σ1,2 ≈
τ1,2σ

LN
1,2 FRA(t;T1, T2)

1 + τ1,2FRA(t;T1, T2)
,

so that σ1,2 is typically (at least) one degree of magnitude smaller than the corresponding
σLN

1,2 .
For typical pre-credit crunch values in the major currencies, formula (50) indeed gives

negligible corrections even for very long maturities. For instance, setting S1,2 = 0.001 and
σ1,2 = 0.01, both of which are rather conservative values, we get a convexity correction for
T1 = 50 that roughly amounts to a twentieth of a basis point. Therefore, if the difference
between forward LIBOR rates and corresponding OIS rates remains (roughly) constant
over time, we can conclude that market and theoretical FRA rates have basically the same
value in non-pathological market conditions. In general, however, the magnitude of the
correction can become meaningful in regimes of high volatility or when the constant spread
S1,2 is much larger than a handful of basis points.

B Appendix: The pricing of futures

A Eurodollar-futures contract gives its owner the payoff

1− L(Tk−1, Tk) (51)
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at the future time Tk−1, where we assume a unit notional amount.
The fair price of this contract at time t is

Vt = Et[1− L(Tk−1, Tk)] = 1− Et[L(Tk−1, Tk)] (52)

where continuous rebalancing is assumed and Et denotes the time t-conditional expectation
under the risk-neutral measure.

The purpose of this section is to derive an analytical approximation for the price (52)
under the extended market model of Mercurio (2009, 2010). To this end, we assume that
the instantaneous volatility of rates is deterministic and constant, and we approximate the
risk-neutral expectation in (52) with that under the spot LIBOR measure QT

D, associated
with times T = {0 < T0, . . . , TM}, whose numeraire is the discretely-rebalanced bank
account BT

D:

BT
D(t) =

PD(t, Tβ(t)−1)∏β(t)−1
j=0 PD(Tj−1, Tj)

,

where β(t) = m if Tm−2 < t ≤ Tm−1, m ≥ 1, so that t ∈ (Tβ(t)−2, Tβ(t)−1], and β(0) := 0.
Application of the change-of numeraire technique, immediately leads to the following

dynamics of FRA rates under the spot LIBOR measure QT
D, see Mercurio (2010):

dLk(t) = σkLk(t)
k∑

h=β(t)

ρL,F
k,h τ

D
h σ

D
h F

D
h (t)

1 + τD
h F

D
h (t)

dt+ σkLk(t) dZd
k(t) (53)

where
• Zd = {Zd

1 , . . . , Z
d
M} is an M -dimensional QT

D-Brownian motion;
• FD

h (t) is the forward rate for the discount curve as defined by

FD
k (t) = FD(t;Tk−1, Tk) =

1

τD
k

[
PD(t, Tk−1)

PD(t, Tk)
− 1

]
with τD

k the associated year fraction for the interval (Tk−1, Tk];
• σk and σD

h are, respectively, the (deterministic) volatilities of Lk and FD
h ;

• ρL,F
k,h is the instantaneous correlation between Lk and FD

h .
For computational purposes, we freeze the drift in (53) to its time-0 value and set

µk := σk

k∑
h=0

ρL,F
k,h τ

D
h σ

D
h F

D
h (0)

1 + τD
h F

D
h (0)

, (54)

where FD
0 (0) is the (curve D) spot rate at time 0 for maturity T0.

The dynamics of FRA rates under the spot LIBOR measure QT
D can then be approxi-

mated as
dLk(t) = µkLk(t) dt+ σkLk(t) dZd

k(t). (55)
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The valuation of (51) is now straightforward, since it reduces to the calculation of the
mean of a lognormal random variable. Denoting by ET

D expectation under QT
D, we get:

Vt ≈ 1− ET
D [L(Tk−1, Tk)|Ft]

≈ 1− ET
D [Lk(Tk−1)|Ft]

≈ 1− Lk(t)e
µk(Tk−1−t)

(56)

In particular, at time t = 0,
V0 = 1− Lk(0)e

µkTk−1 .

We can thus infer the unknown value of Lk(0) from the corresponding market quote V0,
given volatilities and correlations, by solving this last equation:20

Lk(0) = (1− V0)e
−µkTk−1 .

A better approximation can be obtained by freezing only the forward rates at their
time-0 value and not the function β(t). Setting

µk(t) := σk

k∑
h=β(t)

ρL,F
k,h τ

D
h σ

D
h F

D
h (0)

1 + τD
h F

D
h (0)

(57)

leads to the following approximated lognormal dynamics

dLk(t) = µk(t)Lk(t) dt+ σkLk(t) dZd
k(t). (58)

We now have:

ET
D [Lk(Tk−1)|Ft] = Lk(t)e

∫ Tk−1
t µk(u)du.

In particular, at time t = 0:

ET
D [Lk(Tk−1)] = Lk(0)e

∫ Tk−1
0 µk(u)du

= Lk(0) exp

[
σk

k−1∑
h=0

∫ Th

Th−1

k∑
j=h+1

τD
j ρ

L,F
j,k σ

D
j F

D
j (0)

1 + τD
j F

D
j (0)

du

]

= Lk(0) exp

[
σk

k−1∑
h=0

k∑
j=h+1

τD
j ρ

L,F
j,k σ

D
j F

D
j (0)

1 + τD
j F

D
j (0)

(Th − Th−1)

]

= Lk(0) exp

[
σk

k∑
j=1

τD
j ρ

L,F
j,k σ

D
j F

D
j (0)

1 + τD
j F

D
j (0)

Tj−1

]
.

(59)

20Notice that in the single-curve case the situation is slightly more complicated since µk depends on
Fk(0) = Lk(0). However, solving the resulting non-linear equation presents no problem because it always
admits a unique solution.
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As before, the value of Lk(0) can be obtained from the corresponding market quote V0 by
solving the equation

V0 = 1− ET
D [Lk(Tk−1)].

We get:

Lk(0) = (1− V0) exp

[
− σk

k∑
j=1

τD
j ρ

L,F
j,k σ

D
j F

D
j (0)

1 + τD
j F

D
j (0)

Tj−1

]
.

C Appendix: No-arbitrage conditions for dynamics

(33)

Let us fix a tenor xi. Since T xi ⊂ T = T x1 , then, for each j = 0, . . . ,Mi, there exists an
index ij such that T xi

j = Tij . The generalization of the no-arbitrage constraint (30) to the
case of tenors x1 and xi reads as

ik∏
h=ik−1+1

[1 + τx1
h F x1

h (t)] = 1 + τxi
k F

xi
k (t)

This equality is, by definition, satisfied at time 0. To derive conditions under which the
equality holds true for every t, we notice that both of its sides are martingales under the

forward measure Q
T

xi
k

D = Q
Tik
D . Then, we just have to match diffusion coefficients:

ik∑
l=ik−1+1

ik∏
h=ik−1+1

h 6=l

[1+τx1
h F x1

h (t)]τx1
l σx1

l (t)V F (t)
[ 1

τx1
l

+F x1
l (t)

]
= τxi

k σ
xi
k (t)V F (t)

[ 1

τxi
k

+F xi
k (t)

]

which, after straightforward algebra, becomes

[
1 + τxi

k F
xi
k (t)

]
V F (t)

ik∑
l=ik−1+1

σx1
l (t) = σxi

k (t)V F (t)
[
1 + τxi

k F
xi
k (t)

]
that is

ik∑
l=ik−1+1

σx1
l (t) = σxi

k (t) (60)

D Appendix: Dynamics under different measures

Let us denote by T S
c+1, . . . , T

S
d , the fixed-leg payment times of a given forward swap rate,

with corresponding year fractions τS
c+1, . . . , τ

S
d , and assume that each T S

j belongs to T =
{T x

0 , . . . , T
x
M}. Then, for each j, there exists an index ij such that T S

j = T x
ij
.
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Consider the annuity term

Cc,d
D (t) =

d∑
j=c+1

τS
j PD(t, T S

j ) =
d∑

j=c+1

τS
j PD(t, T x

ij
),

which is the numeraire associated to the swap measure Qc,d
D .

Let us consider dynamics (8) and (9) for OIS forward rates and related spreads under

the forward measure Q
T x

k
D . When moving from measure Q

T x
k

D to measure Qc,d
D , the drift of

a process X changes according to

Drift(X;Qc,d
D ) = Drift(X;Q

T x
k

D )− d〈X, ln(PD(·, T x
k )/Cc,d

D (·))〉t
dt

= Drift(X;Q
T x

k
D ) +

d〈X, ln
(∑d

j=c+1 τ
S
j

PD(·,T x
ij

)

PD(·,T x
k )

)
〉t

dt

where 〈X, Y 〉t denotes instantaneous covariation between processes X and Y at time t.
If X is independent of the forward OIS rates F x

k , the covariation term is zero, and
the dynamics of X does not change. This is the case of both Sx

k and V S
k . In general,

the dynamics of X under Qc,d
D can be derived by using a standard change-of-numeraire

technique. We get, see Mercurio (2009, 2010):

Drift(X;Qc,d
D )

=
d∑

j=c+1

τS
j PD(t, T S

j )∑d
j=c+1 τ

S
j PD(t, T S

j )
(1{k>ij} − 1{ij>k})

max(ij ,k)∑
h=min(ij ,k)+1

τD
h

1 + τD
h F

D
h (t)

d〈X,FD
h 〉t

This formula gives also the drift correction when moving to a forward measure Q
T x

h
D ,

with h 6= k. To this end, we just have to set c = d − 1, T S
d = T x

h and T S
c = T S

d−1 = T x
h−1.

In fact, in this case, the annuity term reduces to (a multiple of) the zero-coupon bond
PD(t, T x

h ), since
Cd−1,d

D (t) = τS
d PD(t, T S

d ) = τS
d PD(t, T x

h ).
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