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Abstract

We extend the LIBOR market model to accommodate the new market practice of
using different forward and discount curves in the pricing of interest-rate derivatives.
Our extension is based on modeling the joint evolution of forward rates belonging to
the OIS curve and corresponding spreads with FRA rates for different tenors. We
consider stochastic-volatility dynamics and address the related caplet and swaption
pricing problems. We conclude the article with an example of calibration to real
market data.

An extended version of this article can be downloaded at:
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1563685

1 Introduction

Until the 2007 credit crunch, market quotes of interest rates consistently followed classic no-
arbitrage rules. For instance, a floating rate bond where rates are set in advance and paid in
arrears, was worth par at inception, irrespectively of the underlying tenor. Also, a forward
rate agreement (FRA) could be replicated by long and short positions in two deposits, with
the implied forward rate differing only slightly from the corresponding quantity obtained
through OIS rates.

When August 2007 arrived, the market had to face an unprecedented scenario. Interest
rates that until then had been almost equivalent, suddenly became unrelated, with the
degree of incompatibility that worsened as time passed by. For instance, the forward rate
implied by two deposits, the corresponding FRA rate and the forward rate implied by
the corresponding OIS rates became substantially different, and started to be quoted with
large, non-negligible spreads.

∗Stimulating discussions with Peter Carr, Liuren Wu, Antonio Castagna, Raffaele Giura and Mas-
simo Morini are gratefully acknowledged. The author also thanks Nabyl Belgrade, Marco Bianchetti and
Riccardo Rebonato for helpful comments. Needless to say, all errors are the author’s responsibility.
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In fact, differences between rates referring to the same time interval have always been
present in the market. For instance, deposit rates and OIS rates for the same maturity
would closely track each other, but keeping a distance (spread) of few basis points. Like-
wise, swap rates with same maturity, but based on LIBOR rates with different tenors,
would be quoted at a non-zero (basis) spread. All these spreads were generally regarded
as negligible and, in fact, often assumed to be zero when constructing zero-coupon curves
or pricing interest-rate derivatives.

To comply with the new market features, as far as yield curves are concerned, prac-
titioners seem to agree on an empirical approach. For each given contract, they select a
specific discount curve, which they use to calculate the net present value (NPV) of the
contract’s future payments, consistently with the contract’s features and the counterparty
in question. They then build as many forward LIBOR curves as given market tenors (i.e.
1m, 3m, 6m, 1y), see e.g. Ametrano and Bianchetti (2009). With this approach, future
cash flows are generated by the curves associated with the underlying rate tenors and their
NPV is calculated through the selected discount curve.

The assumption of distinct discount and forward curves, for a same currency and in
absence of counterparty risk, immediately invalidates the classic pricing principles, which
were built on the cornerstone of a single, and fully consistent, zero-coupon curve, containing
all relevant information about the (risk-neutral) projection of future rates and the NPV
calculation of associated pay-outs. A new model paradigm is thus needed to accommodate
this market practice of using multiple interest-rate curves.

In this article, we will extend the LIBOR market model (LMM) to the multi-curve set-
ting by modeling the basis between OIS and FRA rates, which is consistent with the market
practice of building (forward) LIBOR curves at a spread over the OIS one. Remarkably,
introducing a stochastic basis can add flexibility to the model, without compromising its
tractability, as we will show by deriving closed-form formulas for cap and swaption prices
and by considering an example of calibration to market caplets.1 Moreover, no market
data on OIS or basis volatilities is needed for calibration purposes. In fact, OIS rates and
basis spreads can be viewed as factors driving the evolution of LIBOR rates, similarly to
those short-rate models where the instantaneous rate is defined as the sum of two (or more)
additive factors. Such factors do not need specific options to be calibrated to but their
parameters can be fitted to market quotes of standard (LIBOR-based) caps and swaptions.

We will assume that the discount curve coincides with that stripped from OIS swap
rates. Since OIS rates can be regarded as the best available proxy for risk-neutral rates,
this is equivalent to assume zero counterparty risk in the valuation of derivatives, the mar-
ket plain-vanilla instruments (swaps, caps, swaptions) in particular. This assumption is
reasonable due to the current practice of underwriting collateral agreements to mitigate,
possibly eliminate, the counterparty risk affecting a given transaction between banks. As-

1A similar approach has been recently proposed by Fujii et al. (2009b) who model stochastic basis
spreads in a HJM framework both in single- and multi-currency cases, but without providing examples
of dynamics or explicit formulas for the main calibration instruments. An alternative route is chosen by
Henrard (2009) who hints at the modeling of basis swap spreads, but without addressing typical issues of
a market model, such as the modeling of joint dynamics or the pricing of plain-vanilla derivatives.
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suming OIS discounting amounts to assume that the interest rate earned by the collateral
is the overnight rate.

Our risk-neutral valuation can also be viewed as the necessary initial step for a sensible
valuation of deals affected by counterparty risk, which may be in part, but not completely,
immunized by the collateral agreement in place. To this end, one may first obtain risk-
neutral parameters by calibrating his/her model to the relevant market data and then
apply suitable corrections to the risk-neutral prices of contracts that are characterized by
collateral rates different than overnight rates. We refer to Johannes and Sundaresan (2007),
Fujii et al. (2009a, 2009b) and Piterbarg (2010), for the derivation and description of the
pricing formulas holding in case of general collateral rates.

2 Assumptions and definitions

We assume we are given a single discount curve to be used in the calculation of all NPVs.
This curve is assumed to coincide with the OIS zero-coupon curve, which is in turn assumed
to be stripped from market OIS swap rates and defined for every possible maturity T :2

T 7→ PD(0, T ) = POIS(0, T ), where PD(t, T ) denotes the discount factor (zero-coupon
bond) at time t for maturity T . The subscript D stands for “discount curve”.

In the following, as in Kijima et al. (2009), the pricing measures we will consider are
those associated with the discount curve. This is also consistent with the results of Fujii
et al. (2009a, 2009b) and Piterbarg (2010), since we assume CSA agreements where the
collateral rate to be paid equals the (assumed risk-free) overnight rate.

We introduce the following definition.

Definition 1 Consider times t, T1 and T2, t ≤ T1 < T2. The time-t FRA rate FRA(t; T1, T2)
is defined as the fixed rate to be exchanged at time T2 for the LIBOR rate L(T1, T2) so that
the swap has zero value at time t.

Denoting by QT
D the T -forward measure with numeraire the zero-coupon bond PD(t, T ),

by (risk-adjusted) no-arbitrage pricing, we immediately have

FRA(t; T1, T2) = ET2
D

[
L(T1, T2)|Ft

]
, (1)

where ET
D denotes expectation under QT

D and Ft denotes the “information” available in
the market at time t.

In the classic single-curve valuation, i.e. when the LIBOR curve corresponding to tenor
T2−T1 coincides with the discount curve, it is well known that the FRA rate FRA(t; T1, T2)

2The OIS curve can be stripped from OIS swap rates using standard (single-curve) bootstrapping
methods. For the EUR market, EONIA swaps are quoted up to 30 years, so that the stripping procedure
presents no new issues. Different is the case of other currencies, even major ones like USD or JPY, where
OIS rates are quoted only up to a relatively short maturity. In such cases, one has to resort to alterna-
tive constructions, by modeling, for instance, the spread between OIS (forward) rates and corresponding
(forward) LIBOR rates or by adding quotes of cross-currency swaps.
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coincides with the forward rate

FD(t; T1, T2) :=
1

T2 − T1

[
PD(t, T1)

PD(t, T2)
− 1

]
. (2)

In our dual-curve setting, however, this does not hold any more, since the simply-compounded
rates defined by the discount curve are different, in general, from the corresponding LIBOR
fixings.

2.1 The pricing of an interest rate swap (IRS)

Let us consider a set of times Ta, . . . , Tb compatible with a given tenor,3 and an IRS where
the floating leg pays at each time Tk the LIBOR rate L(Tk−1, Tk) set at the previous time
Tk−1, k = a + 1, . . . , b, and the fixed leg pays the fixed rate K at times T S

c+1, . . . , T
S
d .

Under our assumptions on the discount curve, the swap valuation is straightforward.4

Applying Definition 1 and setting

Lk(t) := FRA(t; Tk−1, Tk) = ETk
D

[
L(Tk−1, Tk)|Ft

]
,

the IRS time-t value, to the fixed-rate payer, is given by

IRS(t,K; Ta, . . . , Tb, T
S
c+1, . . . , T

S
d ) =

b∑
k=a+1

τkPD(t, Tk)Lk(t)−K
d∑

j=c+1

τS
j PD(t, T S

j ).

where τk and τS
j denote, respectively, the floating-leg year fraction for the interval (Tk−1, Tk]

and the fixed-leg year fraction for the interval (T S
j−1, T

S
j ].

The corresponding forward swap rate, that is the fixed rate K that makes the IRS value
equal to zero at time t, is then defined by

Sa,b,c,d(t) =

∑b
k=a+1 τkPD(t, Tk)Lk(t)∑d

j=c+1 τS
j PD(t, T S

j )
. (3)

3 Extending the LMM

As is well known, the classic (single-curve) LMMs are based on modeling the joint evolution
of a set of consecutive forward LIBOR rates, as defined by a given time structure. Forward
LIBOR rates are “building blocks” of the modeled yield curve, and their dynamics can be
conveniently used to generate future LIBOR rates and discount factors defining swap rates.
When moving to a multi-curve setting, we immediately face two complications. The first
is the existence of several yield curves (one discount curve and as many forward curves as

3For instance, if the tenor is three months, the times Tk must be three-month spaced.
4Details of the derivation can be found, for instance, in Chibane and Sheldon (2009), Henrard (2009),

Kijima et al. (2009) and Mercurio (2009).
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market tenors), which multiplies the number of building blocks (the “old” forward rates)
that one needs to jointly model. The second is the impossibility to apply the old definitions,
which were based on the equivalence between forward LIBOR rates and the corresponding
ones defined by the discount curve.

The former issue can be trivially addressed by adding extra dimensions to the vec-
tor of modeled rates, and by suitably modeling their instantaneous covariance structure.
The second, instead, is less straightforward, requiring a new definition of forward rates,
which needs to be compatible with the existence of different curves for discounting and for
projecting future LIBORs.

A natural extension of the definition of forward rate to a multi-curve setting is given by
the FRA rate above. In fact, FRA rates reduce to “old” forward rates when the particular
case of a single-curve framework is assumed. Moreover, they have the property to coincide
with the corresponding LIBOR rates at their reset times, FRA(T1; T1, T2) = L(T1, T2), and
the advantage to be martingales, by definition, under the corresponding forward measures.
Finally, by (3), swap rates can be written as a (stochastic) linear combination of FRA
rates, with coefficients solely depending on discount-curve zero-coupon bonds. Notice also
that the time-0 value of FRA rates Lk(0) can easily be bootstrapped from market data of
swap rates by iterative application of formula (3) with t = 0, see e.g. Chibane and Sheldon
(2009), Henrard (2009), Fujii et al. (2009a) and Mercurio (2010b).

A consistent extension of a LMM to the multi-curve case can then be obtained by mod-
eling the joint dynamics of FRA rates with different tenors and of forward rates belonging
to the discount curve.5 This extension was first proposed by Mercurio (2009, 2010a),
who considered lognormal dynamics for given-tenor FRA rates, and then added stochastic
volatility to their evolution. We here follow a different approach, and explicitly model the
basis between OIS and FRA rates, defining the joint evolution of different tenors at the
same time. This is also inspired by the historical pattern of the (forward) basis, which
we show in Fig. 1 by plotting the difference between 6(month)x12(month) FRA rates and
respective forward EONIA rates. Such a difference was fairly constant and small before
August 2007, but since then it started to move stochastically, with positive and no-longer
negligible values.

4 Model dynamics and derivative pricing

Let us consider a time structure T = {0 < T0, . . . , TM} and different tenors x1 < x2 <
· · · < xn with associated time structures T xi = {0 < T xi

0 , . . . , T xi
Mxi

}. We assume that each
xi is a multiple of the preceding tenor xi−1, and that T xn ⊂ T xn−1 ⊂ · · · ⊂ T x1 = T . We

5The reason for modeling OIS rates in addition to FRA rates is twofold. First, by assumption, our
pricing measures are related to the discount (i.e. OIS) curve. Since the associated numeraires are portfolios
of zero-coupon bonds PD(t, T ), the FRA-rate drift corrections implied by a measure change will depend on
the (instantaneous) covariation between FRA rates and corresponding OIS forward rates. Second, swap
rates explicitly depend on zero-coupon bonds PD(t, T ), and, clearly, can only be simulated if the relevant
OIS forward rates are simulated too.



6

Figure 1: Basis between 6x12 forward EONIA rates and 6x12 FRA rates, from 2 Jan, 2006
to 2 Jan, 2010, EUR market. Source: Bloomberg.

then denote by QT
D the spot LIBOR measure associated to times T , whose numeraire is

the discretely-rebalanced bank account BT
D:

BT
D(t) =

PD(t, Tβ(t)−1)∏β(t)−1
j=0 PD(Tj−1, Tj)

,

where β(t) = m if Tm−2 < t ≤ Tm−1, m ≥ 1.
Forward OIS rates are defined, for each tenor x ∈ {x1, . . . , xn}, by

F x
k (t) := FD(t; T x

k−1, T
x
k ) =

1

τx
k

[
PD(t, T x

k−1)

PD(t, T x
k )

− 1

]
, k = 1, . . . ,Mx, (4)

where τx
k is the year fraction for the interval (T x

k−1, T
x
k ], and basis spreads are defined by

Sx
k (t) = FRA(t, T x

k−1, T
x
k )− F x

k (t) = Lx
k(t)− F x

k (t), k = 1, . . . ,Mx. (5)

By definition, both Lx
k and F x

k are martingales under the forward measure Q
T x

k
D , and hence

their difference Sx
k is a Q

T x
k

D -martingale, too.
The joint evolution of rates and spreads must be provided under a common probability

measure. To this end, we assume that, under QT
D, the OIS forward rates F x1

k , k = 1, . . . ,M1,
follow “shifted-lognormal” stochastic-volatility processes

dF x1
k (t) = σx1

k (t)V F (t)
[ 1

τx1
k

+ F x1
k (t)

][
V F (t)

k∑
h=β(t)

ρh,kσ
x1
h (t) dt + dZTk (t)

]
(6)
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where, for each k, σx1
k is a deterministic function, ZT = {ZT1 , . . . , ZTM1

} is an M1-dimensional
QT

D-Brownian motion with instantaneous correlation matrix (ρk,j)k,j=1,...,M1 .
The stochastic volatility V F is assumed to be a process common to all OIS forward

rates, and, for simplicity, instantaneously uncorrelated with every ZTk , with V F (0) = 1. In
practice, one can assume that V F follows SABR or Heston (1993) dynamics or consider
the limit case of a deterministic evolution. The discussion that follows, however, needs no
dynamics specification and can be based on a general volatility process.

The dynamics of forward rates F x
k , for tenors x ∈ {x2, . . . , xn}, can be obtained, through

Ito’s lemma, by noting that F x
k can be written in terms of “smaller” rates F x1

k as follows:

ik∏
h=ik−1+1

[1 + τx1
h F x1

h (t)] = 1 + τx
k F x

k (t), (7)

for some indices ik−1 and ik.
As far as spread dynamics are concerned, we assume, for each tenor x ∈ {x1, . . . , xn},

the following one-factor models

Sx
k (t) = Sx

k (0)Mx(t), k = 1, . . . ,Mx, (8)

where, for each x, Mx is a (continuous and) positive QT
D-martingale independent of rates

F x
k and of the stochastic volatility V F . Clearly, Mx(0) = 1.

The spreads Sx
k are thus positive to be consistent with typical market patterns, see

e.g. Fig. 1. Being martingales under the respective forward measures, spreads are also
martingales under QT

D, thanks to their independence from OIS rates, and their dynamics
do not change when moving to different forward or swap measures. The martingales
Mx1 , . . . ,Mxn can be (instantaneously) correlated with one another, to capture relative
movements between curves associated with different tenors.

A convenient choice in terms of model flexibility and tractability is to assume that
spreads Sx

k (equivalently, Mx) follow stochastic-volatility processes whose option prices
are known in closed form. This will be the case of our explicit example below.

4.1 Rate dynamics under the associated forward measure

When moving from measure QT
D to measure Q

T x
k

D , the drift of a (continuous) process X
changes according to

Drift(X; Q
T x

k
D ) = Drift(X; QT

D) +
d〈X, ln(PD(·, T x

k )/BT
D(·))〉t

dt

= Drift(X; QT
D) +

d〈X, ln(PD(·, T x
k )/PD(·, Tβ(t)−1))〉t
dt

(9)

where 〈X, Y 〉t denotes instantaneous covariation between processes X and Y at time t.
Applying Ito’s lemma to (7), and (9) to (6), we get, for each x ∈ {x1, . . . , xn},

dF x
k (t) = σx

k(t)V F (t)
[ 1

τx
k

+ F x
k (t)

]
dZk,x

k (t) (10)
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where σx
k , x ∈ {x2, . . . , xn}, is a deterministic function, whose value is determined by

volatilities σx1
h and correlations ρh,k, and Zk,x

k is a Q
T x

k
D -Brownian motion whose instan-

taneous correlation with Zh,x
h is inherited from the instantaneous covariance structure of

rates F x1
h . Since, V F is assumed to be instantaneously uncorrelated with every F x

k , its

Q
T x

k
D -dynamics will be the same as that defined under QT

D.
From (10), we notice that (6) are the simplest stochastic-volatility dynamics that are

consistent across different tenors. This means, for example, that if three-month rates follow
shifted-lognormal processes with common stochastic volatility, the same type of dynamics
is also followed by six-month rates under the respective forward measures. Our choice
of dynamics (6) is motivated by this feature, which allows us to price simultaneously in
closed-form caps and swaptions with different underlying tenors.

Should one be interested in modeling one specific tenor x only, more general dynamics
of OIS rates F x

k can be considered. We refer to Mercurio (2010b) for some examples and
further details.

4.2 Caplet pricing

For each tenor x ∈ {x1, . . . , xn}, let us denote by Lx(T x
k−1, T

x
k ) the x-tenor LIBOR rate set

at time T x
k−1 with maturity T x

k , and consider the associated strike-K caplet, which pays
out at time T x

k

τx
k [Lx(T x

k−1, T
x
k )−K]+ = τx

k [Lx
k(T

x
k−1)−K]+. (11)

Our assumptions on the discount curve imply that the caplet price at time t is given by

Cplt(t,K; T x
k−1, T

x
k ) = τx

k PD(t, T x
k )E

T x
k

D

{
[Lx

k(T
x
k−1)−K]+|Ft

}
(12)

Since Lx
k(T

x
k−1) = F x

k (T x
k−1) + Sx

k (T x
k−1), by the independence of F x

k (T x
k−1) and Sx

k (T x
k−1),

the density fLx
k(T x

k−1) is equal to the convolution of densities fF x
k (T x

k−1) and fSx
k (T x

k−1), where

we denote by fX the density function of the random variable X under Q
T x

k
D , conditional on

Ft. We can then write:

Cplt(t,K; T x
k−1, T

x
k ) = τx

k PD(t, T x
k )

∫ +∞

−∞
(l −K)+fLx

k(T x
k−1)(l) dl (13)

In general, however, deriving the convolution fLx
k(T x

k−1) and integrating numerically (13)
may not be the most efficient way to calculate the caplet price. In fact, an alternative
derivation is based on applying the tower property of conditional expectations:

Cplt(t,K; T x
k−1, T

x
k ) = τx

k PD(t, T x
k )E

T x
k

D

{
[F x

k (T x
k−1)− (K − Sx

k (T x
k−1))]

+|Ft

}
= τx

k PD(t, T x
k )E

T x
k

D

{
[Sx

k (T x
k−1)− (K − F x

k (T x
k−1))]

+|Ft

} (14)

Thanks to the independence of the random variables F x
k (T x

k−1) and Sx
k (T x

k−1), we equiv-
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alently have:

Cplt(t,K; T x
k−1, T

x
k ) = τx

k PD(t, T x
k )

∫ +∞

−∞
E

T x
k

D

{
[F x

k (T x
k−1)− (K − z)]+|Ft

}
fSx

k (T x
k−1)(z) dz

= τx
k PD(t, T x

k )

∫ +∞

−∞
E

T x
k

D

{
[Sx

k (T x
k−1)− (K − z)]+|Ft

}
fF x

k (T x
k−1)(z) dz

(15)

The caplet price (12) can then be calculated in closed form as soon as we explicitly know
the densities fSx

k (T x
k−1) and fF x

k (T x
k−1) and/or the associated caplet prices. Using either of

formulas (15) may be more or less convenient from a numerical point of view depending
on the chosen dynamics. An explicit example will be given in Section 5 below.

4.3 Swaption pricing

Let us consider a (payer) swaption, which gives the right to enter at time T x
a = T S

c an
IRS with payment times for the floating and fixed legs given, respectively, by T x

a+1, . . . , T
x
b

and T S
c+1, . . . , T

S
d , with T x

b = T S
d and where the fixed rate is K. We assume that each T S

j

belongs to {T x
a , . . . , T x

b }.6 Then, for each j, there exists an index ij such that T S
j = T x

ij
.

The swaption payoff at time T x
a = T S

c is given by

[Sa,b,c,d(T
x
a )−K]+

d∑
j=c+1

τS
j PD(T S

c , T S
j ), (16)

where Sa,b,c,d(t) is defined by (3). Setting

Cc,d
D (t) =

d∑
j=c+1

τS
j PD(t, T S

j ) =
d∑

j=c+1

τS
j PD(t, T x

ij
),

the swaption payoff (16) is conveniently priced under the swap measure Qc,d
D , whose asso-

ciated numeraire is the annuity Cc,d
D (t). In fact, denoting by Ec,d

D expectation under Qc,d
D ,

we have:

PS(t,K; T x
a , . . . , T x

b , T S
c+1, . . . , T

S
d ) =

d∑
j=c+1

τS
j PD(t, T S

j ) Ec,d
D

{
[Sa,b,c,d(T

x
a )−K]+ |Ft

}
(17)

so that, also in a multi-curve environment, pricing a swaption is equivalent to pricing an
option on the underlying swap rate.

To calculate the last expectation, we set

ωk(t) :=
τx
k PD(t, T x

k )∑d
j=c+1 τS

j PD(t, T S
j )

(18)

6This assumption is motivated by the measure change, from forward to swap measure, which is needed
in the approximation of the swaption price, see e.g. Mercurio (2009, 2010a).
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and write:7

Sa,b,c,d(t) =
b∑

k=a+1

ωk(t)L
x
k(t) =

b∑
k=a+1

ωk(t)F
x
k (t) +

b∑
k=a+1

ωk(t)S
x
k (t) =: F̄ (t) + S̄(t), (19)

with the last equality defining processes F̄ and S̄.
Process F̄ is a Qc,d

D -martingale, being equal to the classic single-curve forward swap rate
that is defined by OIS discount factors, and whose reset and payment times are given by
T S

c , . . . , T S
d . If dynamics (10), which define a standard (single-curve) LMM based on OIS

rates, are sufficiently tractable, we can approximate F̄ (t) by a driftless stochastic-volatility
process, F̃ (t), of the same type as (10). This property holds for the majority of LMMs in
the financial literature,8 so that we can safely assume it also applies to our dynamics (10).
In particular, this will be the case of our explicit example below.

The case of process S̄ is slightly more involved. In fact, contrary to F̄ , S̄ explicitly
depends both on OIS discount factors, defining the weights ωk, and on basis spreads.
However, this issue can easily be addressed by resorting to a standard approximation as
far as swaption pricing in a LMM is concerned, that is by freezing the ωk at their time-0
value, thus removing the dependence of S̄ on OIS discount factors:

S̄(t) =
b∑

k=a+1

ωk(t)S
x
k (t) =

b∑
k=a+1

ωk(t)S
x
k (0)Mx(t) ≈Mx(t)

b∑
k=a+1

ωk(0)S
x
k (0) = S̄(0)Mx(t)

The swaption price (17) can then be expressed as follows:

PS(t,K; T x
a , . . . , T x

b , T S
c+1, . . . , T

S
d ) =

d∑
j=c+1

τS
j PD(t, T S

j ) Ec,d
D

{[
F̃ (T x

a )+S̄(0)MS(T x
a )−K

]+|Ft

}
(20)

which can be calculated in the same way as the caplet price (14).

4.4 The pricing of basis swaps

A popular market contract based on different LIBOR tenors, in the same currency, is a
basis swap, which is composed of two floating legs where payments set on a given LIBOR
tenor are exchanged for payments set on another tenor. For instance, one can receive
quarterly the 3-month LIBOR rate and pay semiannually the 6-month LIBOR rate, both
set in advance and paid in arrears. The market actively quotes basis swaps, at least for
the main tenors (3m vs 6m). These quotes are typically positive, meaning that a positive
spread has to be added to the smaller-tenor leg to match the NPV of the larger-tenor leg.

Let us be given two tenors x and y with x < y and the associated time structures
T x = {T x

0 , . . . , T x
Mx
} and T y = {T y

0 , . . . , T y
My
}, T y ⊂ T x. We assume that T x

Mx
= T y

My
.

7See also Fujii et al. (2009b) for a similar decomposition.
8This is the case, for instance, of the LMMs of Piterbarg (2005), Wu and Zhang (2006), Henry-Labordère

(2007), Rebonato (2007) and Mercurio and Morini (2009).
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Let us then consider the two floating legs in the basis swap where x-rates are exchanged
for y-rates. The x-leg pays at each time T x

i , i = 0, . . . ,Mx, the x-LIBOR rate Lx(T x
i−1, T

x
i ).

Likewise, the y-leg pays at each time T y
j , j = 0, . . . ,My, the y-LIBOR rate Ly(T y

j−1, T
y
j ),

where we set T x
−1 = T y

−1 := 0. The NPVs of the two legs at time 0 are:

Mz∑
k=0

τ z
k PD(0, T z

k )Lz
k(0), z ∈ {x, y}.

As mentioned above, typical market quotes imply that:

My∑
j=0

τ y
j PD(0, T y

j )Sy
j (0) >

Mx∑
i=0

τx
i PD(0, T x

i )Sx
i (0)

This time-0 condition is satisfied by our multi-tenor model (8) by construction. However,
there is no guarantee that the corresponding condition at a future time t will also hold
true. If we want to preserve the positivity of basis spreads, we then have to constrain the
joint evolution of processes Mx and My, for instance by assuming a very high correlation
between them, or, in the limit case, by imposing their equality.

5 A specific example of rate and spread dynamics

Dynamics (6) and (8) can be both driven by stochastic volatility. However, for ease of
computation, we can choose to model with stochastic volatility either the forward rates F x

k

or the related spreads Sx
k , for each given tenor x, but not both. Electing Sx

k is in fact more
convenient since we can have non-zero correlation between spreads and their volatility, yet
keeping the volatility dynamics unchanged under different forward or swap measures. This
feature is what motivates the following example.

We fix a tenor x and an index k and assume that the corresponding OIS forward rate
follows the shifted-lognomal process:

dF x
k (t) = σx

k

[ 1

τx
k

+ F x
k (t)

]
dZk,x

k (t) (21)

where σx
k is a positive constant. This corresponds to assuming V F ≡ 1 in (6).

The related spread (equivalently, process Mx) is assumed to follow SABR dynamics:

dSx
k (t) =

(
Sx

k (t)
)βkV S

k (t) dZS
k (t)

dV S
k (t) = εkV

S
k (t) dW S

k (t), V S
k (0) = αk, dZS

k (t) dW S
k (t) = ρk dt

(22)

where αk > 0, βk ∈ (0, 1], εk > 0, ρk ∈ [−1, 1] are constants, and ZS
k and W S

k (t) are

standard Q
T x

k
D -Brownian motions independent of Zk,x

k .
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The price of the caplet τx
k [F x

k (T x
k−1)+Sx

k (T x
k−1)−K]+ can be calculated using the second

equality in (15). Straightforward algebra leads to:

Cplt(t,K; T x
k−1, T

x
k )

=

∫ K+ 1
τx
k

0

CpltSABR(t,K + 1
τx
k
− z; T x

k−1, T
x
k )

zσk

√
T x

k−1 − t
√

2π
exp

{
− 1

2

(
ln z

F x
k (t)+1/τx

k
+ 1

2
σ2

k(T
x
k−1 − t)

)2
σ2

k(T
x
k−1 − t)

}
dz

+ τx
k PD(t, T x

k )
(
Sx

k (t)−K − 1/τx
k

)
Φ

(
ln

F x
k (t)+1/τx

k

K+1/τx
k

− 1
2
σ2

k(T
x
k−1 − t)

σk

√
T x

k−1 − t

)

+ τx
k PD(t, T x

k )
(
F x

k (t) +
1

τx
k

)
Φ

(
ln

F x
k (t)+1/τx

k

K+1/τx
k

+ 1
2
σ2

k(T
x
k−1 − t)

σk

√
T x

k−1 − t

)
(23)

where Φ denotes the standard normal distribution function and

CpltSABR(t,K; T x
k−1, T

x
k ) = τx

k PD(t, T x
k )
[
F x

k (t)Φ(d1)−KΦ(d2)
]

(24)

with

d1,2 :=
ln(F x

k (t)/K)± 1
2
σSABR(K, F x

k (t))2(T x
k−1 − t)

σSABR(K, F x
k (t))

√
T x

k−1 − t

σSABR(K, F ) :=
αk

(FK)
1−βk

2

[
1 + (1−βk)2

24
ln2
(

F
K

)
+ (1−βk)4

1920
ln4
(

F
K

)
+ · · ·

] ζ

x(ζ)

·

{
1 +

[
(1− βk)

2α2
k

24(FK)1−βk
+

ρkβkεkαk

4(FK)
1−βk

2

+ ε2
k

2− 3ρ2
k

24

]
T x

k−1 + · · ·

}

ζ :=
εk

αk

(FK)
1−βk

2 ln

(
F

K

)
, x(ζ) := ln

{√
1− 2ρkζ + ζ2 + ζ − ρk

1− ρk

}

Swaption prices can also be calculated analytically, by following the procedure suggested
in the previous Section 4.3.

5.1 An example of calibration to real market data

We finally consider a simple example of calibration to market data of the extended LMM
defined by (21) and (22). As already noticed in the introduction, OIS rates and basis
spreads can be interpreted as additive factors driving the evolution of FRA rates. As such,
their model calibration requires no information on respective volatilities and can be directly
performed on LIBOR-based instruments. To this end, we use EUR data as of February
8th, 2010 and calibrate 6-month caplets with reset date at T x

k−1 = 3 (years), for which
Lx

k(T
x
k−1) = 3.07% and F x

k (T x
k−1) = 2.50%, so that Sx

k (T x
k−1) = 0.57%.
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Figure 2: Comparison between market caplet volatilities with the calibrated volatilities
implied by the LMM (21) and (22). EUR market data as of February 8th, 2010.

The calibration is performed by minimizing the sum of squared differences between
model prices (23) and respective market ones. As we can infer from Fig. 2, our model
specification fits the considered market data, in terms of implied volatilities, almost per-
fectly. In fact, as is typical of the SABR functional form, we have equivalently good fits
for different choices of the parameter βk. In the figure, we show our calibration result
corresponding to the choice of βk = 0.5.

The main advantage of our extended-LMM example is the freedom to use a non-zero
ρk to calibrate the negative slope of implied volatilities at the at-the-money, and, at the
same time, set to zero the correlation between stochastic volatility and forward OIS rates,
so as to keep the same volatility dynamics under different forward and swap measures.9

Accordingly, the βk parameter can either be fixed a priori, as in our calibration example,
or used to calibrate other market data, like for instance CMS swap spreads. In the single-
curve SABR LMM, for instance, we do not have the same flexibility. In fact, one can either
use the correlation parameters to fit market skews or keep the same volatility dynamics
under different measures.

9Clearly, some attention is still required since we need to ensure that the overall correlation matrix is
positive semi-definite.
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6 Conclusions

In this article, we have shown how to extend the LMM to price interest-rate derivatives
under distinct yield curves, used for generating future LIBOR rates and for discounting.
To this end, we have chosen to model the joint evolution of OIS forward rates and corre-
sponding basis spreads for different tenors simultaneously, under the assumption that the
discount curve coincides with the OIS-based one.

The dynamics we have considered imply the possibility to price in closed-form both caps
and swaptions, with procedures that are only slightly more involved than the corresponding
ones in the single-curve case. Moreover, modeling different tenors at the same time has the
major advantage of allowing for the valuation of derivatives based on multiple tenors, like
e.g. basis swaps. Another interesting application concerns the pricing of caps or swaptions
with a non-standard underlying tenor, given the market quotes of standard-tenor options,
which can be obtained by introducing convenient assumptions on the model parameters.

We have finally considered a simple example of calibration to a market caplet smile.
This is to be intended as a preliminary result, since the model robustness and flexibility
should be tested on a much broader data set, including swaption smiles and CMS swap
spreads.

Another issue that needs further investigation is the modeling of correlations with
parametric forms granting the positive definiteness of the overall correlation matrix. To
this end, one may try to extend to the multi-curve case the parametrization proposed by
Mercurio and Morini (2007a) in a single-curve setting.
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