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Abstract

The basis between swaps referencing funded fixings and swaps ref-
erencing overnight-collateralized fixings (e.g. 6 month Euribor vs 6
month Eonia) has increased in importance with the 2007-9 liquid-
ity and credit crises. This basis means that new pricing models for
fixed income staples like caps, floors and swaptions are required. Re-
cently new formulae have been proposed using market models. Here
we present equivalent pricing in a short-rate framework which is im-
portant for applications involving credit, like CVA, where this is often
useful because default can occur at any time. Furthermore, in this new
multiple-curve world, short-rate models are fundamentally altered and
we describe these changes.

Keywords: credit crisis, liquidity crisis, forward curve, discount curve,
basis swaps, bootstrapping, swaps, swaptions, counterparty risk, CVA,
multi-curve term structure modeling, closed form formulas.

1 Introduction

The 2007-9 liquidity and credit crises included large basis spreads opening
up between overnight-collateralized instruments (e.g. 6M Eonia) and non-
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collateralized fixings1 (e.g. 6M Euribor). Deposits of the same maturity as
fixings follow the same pattern. Yield curves built from instruments refer-
encing these different instrument types demonstrate a significant basis (e.g.
building from Eonia swaps vs building from Euribor swaps). This means
that new formulae are required for pricing previously-standard instruments,
e.g. swaps, caps, and swaptions. Recent work offers different approaches
[Bia10, CS09, FST09, KTW09, Hen09, Mer09, Mer10, Mor09, PT10, AB10]
using short-rate, HJM and BGM settings with or without some fx analogy.
However, within the short-rate setup, analytic swaption pricing formulae are
lacking. Thus calibration to volatility data is awkward. Whilst [KTW09] use
a short rate setting for multiple bond qualities they did not provide direct
analytic swaption pricing (they price via a Gram-Charlier expansion on the
bond price distribution). Short-rate settings can be, but are not necessarily,
more appropriate when credit risk needs to be included for example in CVA
[BM06a, BPP09, BM06b], because default can occur at any time.

We provide direct pseudo-analytic swaption pricing formulae within a
short-rate setup including the basis between overnight-collateralized instru-
ments (e.g. 6M Eonia) and non-collateralized fixings (e.g. 6M Euribor). We
use a discounting curve to represent riskless investment and a separate curve
for market expectations of non-collateralized fixings. We call this second
curve the fixing curve. Our approach differs from [KTW09] in that they use
discounting and basis curves whereas we use discounting and fixing curves.
We follow [Bia10] in using an explicit fx argument to deal with potential
arbitrage considerations. Our approach can also be generalized as more data
becomes available, especially with respect to Eonia-type swaptions (currently
missing from the market). Thus we propose a short-rate solution for the ob-
served basis enabling modeling of standard instruments and calibration to
swaptions.

The fx analogy for Eonia/Euribor modeling, as in [KTW09, Bia10], is
motivated by the fact that fixed-for-floating swaps have characteristics of
quantos: they observe Euribor fixings, i.e. based on deposits of a specific
tenor, so observe risky+funded, and pay exactly that number in a collateral-
ized+unfunded2 setting (i.e. riskless). Furthermore risky and riskless assets
are not interchangeable in the market. The same (uncollateralized) asset
will have a different price from entities with different risk levels, thus there

1In Fixed Income ”fixing” is a noun, it means the value at which a rate is fixed once
a day for contract settlement, e.g. ”Euribor R© is the rate at which Euro interbank term
deposits are offered by one prime bank to another prime bank within the EMU zone, and
is published at 11:00 a.m. (CET) for spot value (T+2).”.

2Of course when swaps go off-market they require funding in as much as they are out
of the money, and that they are not part of an asset-swap package, etc.
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is some analogy to an exchange rate between risk levels (or qualities in the
language of [KTW09]). The general approach of quoting a spread to price
bonds from different issuers serves the same purpose. [KTW09] use a pric-
ing kernel approach to change units (from risky to riskless) whereas [Bia10]
use an fx rate to change units. We regard risky+funded as analogous to
one currency and collateralized+unfunded as analogous to another currency.
Note that whilst individual risky entities do default, Euribor fixings are not
strongly dependent on the default of any single entity. Market practice sup-
ports this view that different investment qualities exist in the separation of
funded/collateralized (or risky/riskless) worlds. We do not attempt to model
the drivers of this separation, we start from the observable Eonia and Euribor
instruments and derivatives.

Each different Euribor tenor fixing, e.g. 1 month, 3 months, 6 months,
represents a different level of risk (including liquidity risk). Thus we have
a separate fixing curve for each tenor ∆ which we label f∆ to make the
source-tenor explicit. (In forward-rate models each different tenor forward is
a different product). We have a single discounting curve (Eonia). Unlike pre-
crisis short-rate modeling different levels of risk are now priced significantly
differently and are not interchangeable. Thus each fixing curve is specific
to the tenor that it was constructed from. Whilst we could calculate a 1
month rate from a 6 month tenor fixing curve will not be the same as the 1
month fixing, because it represents a different level of risk. Thus a short-rate
approach in the post-crisis world provides tenor-fixings at different future
times, but not the fixings from different tenors (at least not with the level
of risk of the different tenor). This is inherent in the post-crisis market:
fixing curves multiply whether in short-rate or forward-rate models. Thus
the new post-crisis world causes fundamental changes to short-rate modeling
— previously short-rate models could provide future floating rates for any
tenor, now a different fixing curve is required for each tenor.

A short-rate setup, for the observed basis between discounting and fix-
ing, is potentially useful for a variety of problems, e.g. CVA (credit valuation
adjustment), it offers a complementary approach to forward-rate modeling
[BPP09, BM06a]. In addition, the credit world in general has a strong connec-
tion to short-rate modeling because default can happen at any time, not just
at tenor-multiple-maturities. [BM06b] expands on this point and concludes
that the forward rate approach will be less dominant in the credit space (see
Chapter 23). As they state, a short rate approach combines naturally with
intensity-based hazard rate modeling. Thus this paper complements exist-
ing forward-rate multi-curve setups (HJM and BGM) [Bia10, Hen09, Mer09,
Mer10, AB10, PT10] and extends [KTW09].
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2 Model

We put ourselves in the European context by using Euribor and Eonia. The
equations are general and this naming is only for convenience.

Discount Curve We use a riskless curve as our discount curve. For a con-
crete example we take Eonia as the riskless discount curve. We aim
to price standard fixed income instruments (e.g. swaps, swaptions)
subject to collateral agreements, thus the yield curve for similarly col-
lateralized instruments is appropriate for discounting whatever fixings
they reference.

Fixing Curve We calibrate a second curve, or ”fixing curve” to reproduce
fixings and market expected fixings (when used together with the dis-
count curve). Note that each different fixing tenor ∆ leads to a different
fixing curve f∆. For a concrete example consider the 6 month Euribor
fixing and market-quoted standard EUR swaps. This follows the con-
cept in [AB10, KTW09] of having a discount curve and a separate curve
that, together with the discount curve, reproduces market expectations
of fixings and instruments based on them e.g. forwards and swaps.

N.B. a FRA (Forward Rate Agreement) payment is not the same as a swap
payment for the same fixing because a FRA is paid in advance (discounted
with the fixing by definition), whereas a standard swap fixing is paid in
arrears.

We use a short-rate model for the discounting curve D, and for the fix-
ing curve f∆, with short rates rD(t) and rf∆

(t) respectively3. Note that the
level of risk that the fixing curve represents is explicitly referenced in ∆.
Although the short rates are both denominated in the same currency, say
EUR, they represent theoretically different investment qualities (risks), as in
[KTW09], thus there is an exchange rate between them. This setup also mir-
rors that of [Bia10] to preserve no-arbitrage between alternative investment
opportunities.

Similarly to [KTW09], the second (fixing) curve f∆ represents an invest-
ment opportunity in as much as market-∆-fixing-tenor-risk-curve-bonds are
available. Whilst it may be difficult in practice to find a provider with the
appropriate level of risk for a given tenor this does not affect the consis-
tency of the derivation. All modeling abstracts from reality — for example
no riskless (or overnight-risk-level) bonds exist because even previously-safe
sovereign government bonds (e.g. US, UK, Germany) have recently exhibited
significant yield volatility.

3We need d later for an index, hence the use of D for the discounting curve.
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2.1 Standard Instruments

The setup for standard instruments (swaps and swaptions) is very similar
to [KTW09, Bia10, AB10, Mer09], our innovations are in the next section
where we show how to price them within a specific short rate setup.

2.1.1 Definitions

We define each of our base items here: short rates rD, rf∆
; bank accounts

Bl(t) (l = D, f∆); and discount factors Pl(t, T ). F t is the usual filtration at
t.

• rD the instantaneous rate of return of a riskless investment.

• rf∆
the instantaneous rate of return of a risky investment with risk level

corresponding to LIBOR with tenor ∆.

• Bl(t) = exp(
∫ t

0
rl(s)ds), bank account with level of risk l = D, f∆.

• Pl(t, T ) = El[Bl(t)/Bl(T )| F t] zero coupon bond with level of risk l =
D, f∆.

2.1.2 Swaps

Swaps in this dual curve set up are similar to differential floating for fixed
swaps (aka floating for fixed quanto swaps) in [BM06b] (page 623). To price
swaps we need to define the simply compounded (fixing curve) interest rate
that the swaps fix on, Lk(t), at Tk−1 for the interest rate from Tk−1 to Tk,
i.e. tenor τfix. Note that f∆ refers to tenor ∆ or τfix (either can be clearer in
context). We define this rate in terms of the fixing curve with tenor ∆:

Lk(t) :=
1

τfix

(
Pf∆

(t, Tk−1)

Pf∆
(t, Tk)

− 1

)
.

Using the terminology of [Mer09] and the equations above, we have for the
the floating leg of a swap:

FL(t : Ta, . . . , Tb) =
b∑

k=a+1

FL(t : Tk−1, Tk) =
b∑

k=a+1

τkPD(t, Tk)Lk(t)

N.B. Since separate curves are used for discounting and fixing there is no
reason for a floating leg together with repayment of par at the end to price
at par. A riskless floating rate bond should price to par, but that bond
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Figure 1: Discounting (lower) and fixing (upper) curves. Note that a con-
ventional Euribor curve (not shown) would be very close to the fixing curve.

would not get Euribor coupons but Eonia coupons. This has previously been
pointed out by [Mer09, KTW09].

From these definitions we can bootstrap both discounting and fixing
curves from, in euroland, an Eonia discount curve (built conventionally) and
Euribor deposits and swaps. Note that we will need the dynamics of r∗(t),
where * is either D or f∆, under the T−forward measure, i.e. using the zero
coupon D-quality (riskless) bond with maturity T , for swaption pricing.

Figure 1 shows the discount curve (Eonia) and the fixing curve boot-
strapped from Euribor swaps and 6M deposit. Note that a conventional
Euribor curve (not shown) would be very close to the fixing curve. By con-
ventional we mean one bootstrapped from swaps alone, i.e. done without
reference to a riskless discount curve.

2.1.3 Swaptions

For a European swaption strike K and maturity T , directly following on from
the formulae for a swap above, we have :

ES[ω, T,K, a, b, c, d]

= PD(0, T ) ET
D


[
ω

(
b∑

i=a+1

τfix
i PD(T, Ti)Li(T )−

d∑
i=c+1

τiKPD(T, Ti)

)]+


where ω = 1 for a payer swaption (and -1 for a receiver swaption), and the
a, b, c, d, τfix

i , τi take care of the different tenors and payment frequencies of
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the two sides.
Note that because the floating leg does not price to par we must include

the specification of the floating coupons. These floating coupons are the
market expectation of the relevant fixings Li(T ).

2.2 Short-Rate Pricing

We present semi-analytic pricing (i.e. simulation and formulae) for swaptions
under general affine short-rate models and pseudo-analytic (i.e. integration
and formulae) pricing in the gaussian case.

For full analytic tractability we use a 1-factor Hull-White type model for
the discount curve (e.g. Eonia), expressed as a G1++ type model (analogous
to the terminology in [BM06b]) for the discounting short rate rD(t) under
the riskless bank-account numeraire for D:

rD(t) = x(t) + ϕD(t), rD(0) = rD,0

dx(t) = −aDx(t)dt+ σDdW1(t) (1)

We also use a one factor model for the fixing curve, i.e. to fit the market-
expected fixings, and we label this short rate rf∆

(t) under the ∆-tenor-level-
risk bank-account numeraire for f∆.

rf∆
(t) = y(t) + ϕf∆

(t), rf∆
(0) = rf∆,0

dy(t) = −af∆
y(t)dt+ σf∆

dW2(t) (2)

where (W1(t),W2(t)) is a two-dimensional Brownian motion with instanta-
neous correlation ρ. We also have a quality-exchange-rate (aka risk exchange
rate) X with process under Qf∆

for the quantity of f∆-quality (or risk level)
investment required to obtain one unit of D-quality investment:

dX(t) = (rf∆
(t)− rD(t))X(t)dt+ νX(t)dWX(t)

where we assume WX has zero correlation with W1(t) and with W2(t). This
assumption implies that Equation 2 is unchanged under the measure change
from Qf∆

to QD.
This is a very parsimonious representation relative to two G2++ models.

It is, however, sufficient since we only wish to calibrate to Eonia discount
rates and Euribor swaptions. N.B. neither Eonia caps/floors nor swaptions
are liquid at present (early 2010). It is tempting to use 3m swaptions and
6m swaptions to get implied euribor swaption volatility, however, there is a
significant difference in their liquidity so this is problematic.
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2.2.1 Swaption Pricing

For a European swaption strike K and maturity T we have for any one-factor
affine short rate model (i.e. bond prices available as A()eB()):

ES[ω, T,K, a, b, c, d]

= PD(0, T ) ET


[
ω

(
b∑

i=a+1

τfix
i PD(T, Ti)Li(T )−

d∑
i=c+1

τiKPD(T, Ti)

)]+


= PD(0, T ) ET


[
ω

(
b∑

i=a+1

PD(T, Ti)

(
Pf∆

(T, Ti−1)

Pf∆
(T, Ti)

− 1

)
−

d∑
i=c+1

τiKPD(T, Ti)

)]+


= PD(0, T )

∫
R2

{[
ω

(
b∑

i=a+1

AD(T, Ti)e
−BD(T,Ti)x

×
(
Af∆

(T, Ti−1)

Af∆
(T, Ti)

e(−Bf∆ (T,Ti−1)+Bf∆ (T,Ti))y − 1

)

−
d∑

i=c+1

τiKAD(T, Ti)e
−BD(T,Ti)x

)]+
 f(x, y)dxdy (3)

Where A∗, B∗, ∗ = D, f∆ are the affine factors for the riskless and f∆ quality
bond prices in their respective units of account. Note that up to this point
the equations apply to any affine short rate model. However, to go further
analytically we require the joint distribution of x and y under the T−forward
measure, i.e. f(x, y) above. This is available for Gaussian models but not
for CIR-type specification. This formulae could be applied in a CIR-type
specification by combining simulation up to T with the affine bond formulae
used above.

We require Equations 2 and 1 in the TD−forward measure (i.e. zero
coupon bond from the discounting curveD as the numeraire). Using standard
change-of-numeraire machinery we obtain:

dx(t) =

[
−aDx(t)− σ2

D

aD
(1− e−aD(T−t))

]
dt+ σDdW

T
1

dy(t) =

[
−af∆

y(t)− ρσf∆
σD

aD
(1− e−aD(T−t))

]
dt+ σfdW

T
2

This is because the Radon-Nikodym derivative dQT
D/dQD uses the zero coupon

discounting bond, hence only x is involved in the measure change (not y as
well).
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These have explicit solutions:

x(t) = x(s)e−aD(t−s) −MT
x (s, t) + σD

∫ t

s

e−aD(t−u)dW T
1 (u)

y(t) = y(s)e−af∆ (t−s) −MT
y (s, t) + σf∆

∫ t

s

e−af∆ (t−u)dW T
2 (u)

where

MT
x (s, t) =

∫ t

s

[
σ2
D

aD
(1− e−aD(T−t))

]
e−aD(t−u)du

MT
y (s, t) =

∫ t

s

[
ρ
σf∆

σD
aD

(1− e−aD(T−t))

]
e−af∆ (t−u)du

Now we can express a European Swaption price as:

Theorem 1. The arbitrage-free price at time t = 0 for the above European
unit-notional swaption is given by numerically computing the following one-
dimensional integral:

ES(ω, T,K, a, b, c, d) = − ωPD(0, T )

∫ ∞
−∞

δ(x)
e−

1
2

(x−µx
σx

)2

σx
√

2π[
Φ(−ωh1(x))−

b∑
i=a+1

λie
κi(x)Φ(−ωh2(x))

]
dx

where ω = 1 for a payer swaption (and -1 for a receiver swaption),

δ(x) :=
b∑

i=a+1

AD(T, Ti)e
−BD(T,Ti)x +

d∑
i=c+1

τiKAD(T, Ti)e
−BD(T,Ti)x

h1(x) :=
ȳ(x)− µy
σy
√

1− ρ2
xy

− ρxy(x− µx)
σx
√

1− ρ2
xy

h2(x) := h1(x) + αi σy

√
1− ρ2

xy

αi := −(−Bf∆
(T, Ti−1) +Bf∆

(T, Ti))

λi(x) :=
1

δ(x)
AD(T, Ti)e

−BD(T,Ti)x
Af∆

(T, Ti−1)

Af∆
(T, Ti)

κi(x) := −αi
[
µy −

1

2
(1− ρ2

xy)σ
2
yαi + ρxyσy

x− µx
σx

]
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Where ȳ = ȳ(x) is the unique solution of:

b∑
i=a+1

AD(T, Ti)e
−BD(T,Ti)x

(
Af∆

(T, Ti−1)

Af∆
(T, Ti)

e(−Bf∆ (T,Ti−1)+Bf∆ (T,Ti))ȳ − 1

)

=
d∑

i=c+1

τiKAD(T, Ti)e
−BD(T,Ti)x

and

µx := −MT
x (0, T )

µy := −MT
y (0, T )

σx := σD

√
1− e−2aDT

2aD

σy := σf∆

√
1− e−2afT

2af∆

ρxy :=
ρσDσf∆

(aD + af )σxσy

[
1− e−(aD+af∆ )T

]
and

A∗(T, Ti) =
P∗(0, Ti)

P∗(0, T )
exp[

1

2
(V (T, Ti, a∗, σ∗)− V (0, Ti, a∗, σ∗) + V (0, T, a∗, σ∗))]

B∗(T, Ti) =
1− ea∗(Ti−T )

a∗

V (T, Ti, a∗, σ∗) =
σ2
∗
a2
∗

(
(Ti − T ) +

2

a∗
e−a∗(Ti−T ) 1

a∗
e−2a∗(Ti−T ) − 3

2a∗

)
where ∗ is either f∆ or D.

Proof. We manipulate Equation 3 of ES above into the same form as for
Theorem 4.2.3 [BM06b] and provide an appropriate new definition of ȳ to
finish the proof.

The []+ part of Equation 3 of ES is of the form:

n∑
i=1

Uie
−Vix(Fie

−Giy − 1)−
m∑
j=1

Mje
Njx

Expanding:

n∑
i=1

Uie
−VixFie

−Giy −
n∑
i=1

Uie
−Vix −

m∑
i=j

Mje
Njx
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Figure 2: Swaption calibration for G1++/G1++ model, errors in bps.

Now if we multiply and divide by the two negative terms we obtain:

−

(
n∑
k=1

Uke
−Vkx +

m∑
j=1

Mje
Njx

)(
1−

n∑
i=1

Uie
−Vix∑n

k=1 Uke
−Vkx +

∑m
j=1 MjeNjx

Fie
−Giy

)

Now define ȳ = ȳ(x) as the unique solution of:∑
i

Uie
−Vix(Fie

−Giȳ − 1) =
∑
j

Mje
Njx

So if we freeze x we have the same form as Theorem 4.2.3 of [BM06b], and
the rest of the proof is immediate.

As an example we calibrated to Eonia, Euribor swaps and Euribor swap-
tions using data asof 8/Feb/10. We find calibration parameters:

aD σD af∆
σf∆

ρ
1.0 0.4 0.1 0.0105 -0.95

Swaption calibration with the G1++/G1++ model is similar to that
displayed in [BPP09] using a G2++ model, which also uses post-crisis data,
see Figure 2.

3 Conclusion

We provide pseudo-analytic pricing for swaptions in a discounting/fixing
multi-curve gaussian short-rate setup. Each different tenor fixing ∆ gives
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rise to a different fixing curve f∆. Semi-analytic swaption pricing for general
affine short-rate models is possible by combining simulation up to maturity
with analytic bond formulae at swaption maturity. Pricing of other stan-
dard instruments, e.g. caps, are simplifications of the swaption formulae
provided. Structurally the pseudo-analytic calculations are very similar to
G2++ pseudo-analytic swaption pricing in [BM06b]. This means that the
current calculations could be directly extended to a G1++/G2++ setup or
G2++/G2++ setup once Eonia swaptions, that are currently not available,
become liquid. This work extends [KTW09] who also worked in the short-
rate setting but did not provide pseudo-analytic swaption pricing.

The post-crisis world with significant basis spreads between tenors pro-
duces a fundamental change in short rate models apart from having separate
discounting and fixing f∆ curves. Each fixing curve can only provide fixings
(floating coupons) for the tenor ∆ from which it was constructed. Creating
a coupon for a different tenor ∆other will not reproduce market-expected fix-
ings for the other tenor. This is because the other tenor represents a different
level of risk. This is inherent in the post-crisis market: fixing curves multi-
ply whether in short-rate or forward-rate models. Thus the new post-crisis
world causes fundamental changes to short-rate modeling: fixings curves can
produce floating coupons for any date but only for the tenor ∆ associated
with the fixing curve f∆.

There is a significant lack of data in the market at present, in early 2010.
Eonia/OIS swaptions are missing for example. We calibrate our model jointly
to give Eonia and Euribor volatility, however it is not possible to explicitly
test our identification with current market data. Also 6M volatility data
does not give full information about 3M volatility. Although futures options
are liquid and can help, the long end of the volatility curve is simply missing
for non-standard tenors. Without this data pricing options on non-standard
tenor fixings (e.g. 3M Euribor, 12M USD Libor) is problematic.

The Gaussian framework is convenient analytically but, as is well known,
permits negative rates. In this context it also permits negative basis spreads
depend on the strength of the correlation between the driving processes, their
relative volatilities and the strength of their respective mean reversions. It is
possible to obtain analytic results with factor-correlated CIR processes where
the correlation is done at the process level (not at the level of the driving
Brownian motions which remain independent). However, this does not give
rise to constant instantaneous correlations and is outside the scope of the
present paper.

A short-rate setup for multiple yield curves, i.e. discounting and fixing,
is potentially useful for a variety of problems, e.g. CVA (credit valuation
adjustment) where forward-rate setups are less natural, as in [BPP09]. Thus
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this paper complements existing market model approaches [Hen09, Mer09,
AB10].

Appendix

Here we provide the data used in the model (asof 8th February 2010). Note
that the 6M money market instrument is typically a few basis points away
from the 6M Euribor fixing, and the money market instrument changes
throughout the day. Thus the swap rates given are one particular snap-
shot. (We ignore fixing lags in this paper, conventionally 2 business days for
EUR).

Euribor & Swap Rates
Tenor Rate (%)

6M 0.97
2Y 1.586
3Y 1.952
4Y 2.264
5Y 2.532
6Y 2.761
7Y 2.959
8Y 3.122
9Y 3.254
10Y 3.366
12Y 3.546
15Y 3.708
20Y 3.798

13



Eonia Yields
Tenor (Years in Act360) Rate (%)

0.505556 0.45573
1.01389 0.66794
1.52222 0.85542
2.03333 1.05402
3.05278 1.44287
4.06389 1.78273
5.07778 2.08370
6.09167 2.34107
7.10833 2.56461
8.12778 2.75217
9.13889 2.90716
10.15000 3.04098
11.16670 3.15866
12.18060 3.25962
15.2250 3.46469
20.3000 3.57937

Swaption Implied Volatilities (maturity x tenor)
1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

1Y 51.1 39.2 33.7 30.2 27.6 26.2 25.1 24.4 23.8 23.3
2Y 37.3 30.4 27.5 25.7 24.2 23.3 22.7 22.2 21.8 21.4
3Y 28.8 24.8 23.1 22. 21.1 20.7 20.4 20.2 20. 19.8
4Y 24.1 21.4 20.3 19.6 19.1 19. 18.9 18.8 18.8 18.8
5Y 21. 19.1 18.4 18. 17.7 17.7 17.6 17.6 17.7 17.7
7Y 19. 17.8 17.3 17.1 16.9 16.9 16.8 17. 17.1 17.2
10Y 17.1 16.5 16.3 16.1 16. 16.1 16.1 16.3 16.4 16.6
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