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Abstract

The basis between swaps referencing funded fixings and swaps ref-
erencing overnight-collateralized fixings (e.g. 6 month Euribor vs 6
month Eonia) has increased in importance with the 2007-9 liquid-
ity and credit crises. This basis means that new pricing models for
fixed income staples like caps, floors and swaptions are required. Re-
cently new formulae have been proposed using market models. Here
we present the equivalent pricing in a short-rate framework which is
important for applications involving credit, like CVA, where this is
often more natural.

Keywords: credit crisis, liquidity crisis, forward curve, discount curve,
basis swaps, bootstrapping, swaps, swaptions, counterparty risk, CVA,
multi-curve term structure modeling, closed form formulas.

1 Introduction

The 2007-9 liquidity and credit crises included large basis spreads opening
up between overnight-collateralized instruments (e.g. 6M Eonia) and non-
collateralized fixings' (e.g. 6M Euribor). Deposits of the same maturity as
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In Fixed Income ”fixing” is a noun, it means the value at which a rate is fixed once
a day for contract settlement, e.g. ”Euribor®) is the rate at which Euro interbank term
deposits are offered by one prime bank to another prime bank within the EMU zone, and
is published at 11:00 a.m. (CET) for spot value (T+2).”.
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fixings follow the same pattern. Yield curves built from instruments refer-
encing these different instrument types demonstrate a significant basis (e.g.
building from Eonia swaps vs building from Euribor swaps). This means
that new formulae are required for pricing previously-standard instruments,
e.g. swaps, caps, and swaptions. Recent work offers different approaches
[CS09, KTWO09, Hen09, Mer09, Mor09, AB10] using short-rate, HJM and
BGM settings with or without some fx analogy. However, within the short-
rate setup, analytic swaption pricing formulae are lacking. Thus calibration
to volatility data is akward. Whilst [KTWO09] use a short rate setting for
multiple bond qualities they did not provide direct analytic swaption pricing
(they price via a Gram-Charlier expansion on the bond price distribution).
Short-rate settings can be more appropriate when credit risk needs to be
included.

We provide direct pseudo-analytic swaption pricing formulae within a
short-rate setup including the basis between overnight-collateralized instru-
ments (e.g. 6M Eonia) and non-collateralized fixings (e.g. 6M Euribor). We
use a discounting curve to represent riskless investment and a separate curve
for market expectations of non-collateralized fixings. We call this second
curve the fixing curve. Our approach differs from [KTWO09] in that they use
discounting and basis curves whereas we use discounting and fixing curves.
We follow [AB10] in using an explicit fx argument to deal with potential
arbitrage considerations. Our approach can also be generalized as more data
becomes available, especially with respect to Eonia-type swaptions (currently
missing from the market). Thus we propose a short-rate solution for the ob-
served basis enabling modeling of standard instruments and calibration to
swaptions.

A short-rate setup, for the observed basis between discounting and fixing,
is potentially useful for a variety of problems, e.g. CVA (credit valuation ad-
justment) where forward-rate setups are less natural, as in [BPP09]. Thus
this paper complements existing forward-rate multi-curve setups [Hen09,

Mer09, AB10] and extends [KTWO09].

2 Model

We put ourselves in the European context by using Euribor and FEonia. The
equations are general and this naming is only for convenience.

Discount Curve We use a riskless curve as our discount curve. For a con-
crete example we take Eonia as the riskless discount curve. We aim
to price standard fixed income instruments (e.g. swaps, swaptions)
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subject to collateral agreements, thus the yield curve for similarly col-
lateralized instruments is appropriate for discounting whatever fixings
they reference.

Fixing Curve We calibrate a second curve, or ”fixing curve” to reproduce
fixings and market expected fixings (when used together with the dis-
count curve). For a concrete example consider the 6 month Euribor
fixing and market-quoted standard EUR, swaps. This follows the con-
cept in [AB10, KTW09] of having a discount curve and a separate curve
that, together with the discount curve, reproduces market expectations
of fixings and instruments based on them e.g. forwards and swaps.

N.B. a FRA (Forward Rate Agreement) payment is not the same as a swap
payment for the same fixing because a FRA is paid in advance (discounted
with the fixing by definition), whereas a standard swap fixing is paid in
arrears.

We use a short-rate model for the discounting curve D, and for the fixing
curve f, with short rates rp(t) and ry(t) respectively?. Although the short
rates are both denominated in the same currency, say EUR, they represent
theoretically different investment qualities (risks), as in [KTWO09], thus there
is an exchange rate between them. This setup also mirrors that of [AB10] to
preserve no-arbitrage between alternative investment opportunities.

In contrast to [KTWO09], the second (fixing) curve f does not actually
represent a practical investment opportunity because there are no ”market-
fixing-curve-bonds” available: every bond comes from some source. There
is no market-consensus-risk-bank to issue such bonds, although the actual
fixings do exist and are published. However, we keep this setup for intellec-
tual no-arbitrage consistency. It will turn out that the quality-exchange-rate
drops out and has no affect in actual pricing.

2.1 Standard Instruments

The setup for standard instruments (swaps and swaptions) is very similar to
[KTWO09, AB10, Mer09], our innovations are in the next section where we
show how to price them within a specific short rate setup.

2.1.1 Swaps

Swaps in this dual curve set up are similar to differential floating for fixed
swaps (aka floating for fixed quanto swaps) in [BMO06] (page 623). To price

2We need d later for an index, hence the use of D for the discounting curve.



Eonia and Euribor—Fixing Curves 20100208

Figure 1: Discounting (lower) and fixing (upper) curves. Note that a con-
ventional Euribor curve (not shown) would be very close to the fixing curve.

swaps we need to define the simply compounded (fixing curve) interest rate
that the swaps fix on, Lg(t), at Tp_; for the interest rate from Tj_; to Ty,
i.e. tenor 7. We define this rate in terms of the fixing curve:

1Pyt Tiy)
w2 (i ),

Using the terminology of [Mer09] and the equations above, we have for the
the floating leg of a swap:

b

b
FL(t:T,,....T}) = » FL(t:Tj_1,Tk) = Y 7Pp(t, Tp)Li(t)
k=a+1 k=a+1

N.B. Since separate curves are used for discounting and fixing there is no
reason for a floating leg together with repayment of par at the end to price
at par. A riskless floating rate bond should price to par, but that bond
would not get Euribor coupons but Eonia coupons. This has previously been
pointed out by [Mer09, KTWO09).

From these definitions we can bootstrap both discounting and fixing
curves from, in euroland, an Eonia discount curve (built conventionally) and
Euribor deposits and swaps. Note that we will need the dynamics of r.(t)
under the T'—forward measure for swaption pricing.

Figure 1 shows the discount curve (Eonia) and the fixing curve boot-
strapped from Euribor swaps and 6M deposit. Note that a conventional
Euribor curve (not shown) would be very close to the fixing curve.
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2.1.2 Swaptions

For a European swaption strike K and maturity 7', directly following on from
the formulae for a swap above, we have :

ES[w, T, K,a,b,c,d]

w ( Z TiﬁXPD(T,Ti)Li(T) — Z TiKPD(T,Ti)>

i=a+1 i=c+1

+
= Pp(0,T)E”

where w = 1 for a payer swaption (and -1 for a receiver swaption), and the
a,b,c,d, 7%, 7; take care of the different tenors and payment frequencies of
the two sides.

Note that because the floating leg does not price to par we must include
the specification of the floating coupons. These floating coupons are the
market expectation of the relevant fixings L;(T).

2.2 Short-Rate Pricing

We present semi-analytic pricing (i.e. simulation and formulae) for swaptions
under general affine short-rate models and pseudo-analytic (i.e. integration
and formulae) pricing in the gaussian case.

For full analytic tractability we use a 1-factor Hull-White type model for
the discount curve (e.g. Eonia), expressed as a G1++ type model (analogous
to the terminology in [BMO06]) for the discounting short rate rp(¢) under the
bank-account numeraire for D:

rp(t) = x(t) +ep(t), rp(0)=rpo
dz(t) = —apx(t)dt + opdWi(t) (1)
We also use a one factor model for the fixing curve, i.e. to fit the market-

expected fixings, and we label this short rate r;(¢) under the bank-account
numeraire for f.

re(t) = y(t) +p(t), 14(0) =70
dy(t) = —apy(t)dt + opdWs(t) (2)

where (Wi(t), Wa(t)) is a two-dimensional Brownian motion with instanta-
neous correlation p. We also have a quality-exchange-rate X with process
under Q for the quantity of f-quality investment required to obtain one unit
of D-quality investment:

dX (1) = (rp(t) — r ()X ()dt + vX (H)dWx (1)

b}



where W has zero correlation with Wi (t) and with Wa(¢). This implies that
Equation 2 is unchanged under the measure change from Qy to Qp.

This is a very parsimonious representation relative to two G2++ models.
It is, however, sufficient since we only wish to calibrate to Eonia discount
rates and Euribor swaptions. N.B. neither Eonia caps/floors nor swaptions
are liquid at present (early 2010). It is tempting to use 3m swaptions and
6m swaptions to get implied euribor swaption volatility, however, there is a
significant difference in their liquidity so this is problematic.

2.2.1 Swaption Pricing

For a European swaption strike K and maturity 7" we have for any affine
short rate model (i.e. bond prices available as A()eZ0):

ES[w, T, K,a,b,c,d]
Jr

i=a+1 1=c+1

= Pp(0,T)E"{ |w ( > X Pp(T,T)L(T) — ) TiKPD(T,Ti)>

d

= Pp(0,T)E" (Z Pp(T, T;) (Pf(T Tio) 1> — Y nKPp(T.T))

Py(T.T;)

i=a+1 i=c+1

A(T,T; | |
= Pp(0,T) / { [ < Z Ap(T,T))e —Bp(T\Ti)x (ﬁe(—fﬁ(ﬂﬂ1)+B.f(T,Tz))y
1=a+1

d +
- Z TiKAD(T7E)€_BD(T’Ti)I>] f(z,y)dzdy

1=c+1

Note that up to this point the equations apply to any affine short rate model.
However, to go further analytically we require the joint distribution of x and
y under the T'—forward measure, i.e. f(z,y) above. This is available for
Gaussian models but not for CIR-type specification. This formulae could be
applied in a CIR-type specification by combining simulation up to T with
the affine bond formulae used above.

We require Equations 2 and 1 in the Tp—forward measure (i.e. zero
coupon bond from the discounting curve D as the numeraire). Using standard
change-of-numeraire machinery we obtain:

2
de(t) = [—an(t) - J—D(l e~ap(T-1) )} dt + opdW}l

ap
0f0D

i) = o) = p 22— ) dr oy

ap
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This is because the Radon-Nikodym derivative dQT /dQ uses the zero coupon
discounting bond, hence only z is involved in the measure change (not y as

well).
These have explicit solutions:

y(t) = yls)e ™ — My (s,1)

¢
z(t) = z(s)e” 9 — MT(st) + O'D/ e~ =gl (y)
t
—l—af/ e~ DWW (u)

where

ap

MT(s 1) — ' 0f9D 1 —ap(T-0)\| p=as(t-u) g
y(87> - P ( —¢€ ) € u

ap

t 2
ME(S, t) = / |:O-—D(1 — e_aD(T—t)):| e—ap(t=u) 1.,

Now we can express a FEuropean Swoption price as:

Theorem 1. The arbitrage-free price at time t = 0 for the above European
unit-notional swaption is given by numerically computing the following one-
dimensional integral:

ES(w,T,K,a,b,c,d) = —wPp(0,T o(xr) ———
(. T Koabed) = —wPp )/m@)o—mm

[@ (—why(z Z i€ @D (—why(z)) | do

i=a+1

where w =1 for a payer swaption (and -1 for a receiver swaption),

b d
O(x) = Y Ap(T,T)e PP 4 N " K Ap(T, T;)e Pr 10
i=a-+1 i=c+1
hi(z) = y(z) — py . Py (T — fha)

oy\/1—p3,  0z\/1—p3,
ho(z) = hi(z) + s oy /1= P2,

a; = —(=By(T,Tia) + By(T, T3))
, _ L e~ Bp(TT) w
1 T — Uy
ki(x) = —aq [,uy - 5(1 — p2,) o0 + pzyaya—f
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Where y = y(x) is the unique solution of:

b
Z Ap(T, Ti)e_BD(TvTi)” (we(_Bf(TvTi—l)“‘Bf(T,Ti))?j _

i=a+1 Af(TaTvz)
d
- Z TZ‘KAD<T7CZ}>@_BD(T,T2')$
i=c+1
and
He = _ME(O,T)
py = —M](0,T)
1 — e—2apT
1 - e—?afT
O'y = O'f T
— PODOf —(ap+af)T
r = 1—e DTaf
: (ap + ay)o,oy [ }
and
AL = ((_0 T)) expl5(V(T. T 0.,0.) = V(0. T, 0., 02) + V(0,7 0.,0.)
B(T.T) = ———
Gy
(72 2 1 3
T T * * = _* T _ T . —a*(Ti—T)_ —2a*(Ti_T) .
i az (( ' )+a*e a*e 2a,

where x s either f or D.

Proof. We manipulate Equation 3 of ES above into the same form as for
Theorem 4.2.3 [BM06] and provide an appropriate new definition of § to

finish the proof.
The [|T part of Equation 3 of ES is of the form:

Z Uief‘/iI(Fﬂie—Gy _ 1) _ Z Mjeij
' J

Expanding:
Z Uie™ " Fre™ %Y — Z Uie V" — Z M;e"i®
i ; 7
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Figure 2: Swaption calibration for G1++/G1++ model, errors in bps.

Now if we divide by the two negative terms we obtain (remembering to keep
track of any reversed limits):

1
1 — Ue Vi*F, —Giy
zi Uie_vim — Z]- Mjeij ( ZZ: € ¢ )

Now define § = y(x) as the unique solution of:

Z Uie Vi (Fie™ %% — 1) = Z MM
' J

So if we freeze x we have the same form as Theorem 4.2.3 of [BMO06], and
the rest of the proof is immediate. ]

As an example we calibrated to Eonia, Euribor swaps and Euribor swap-
tions using data asof 8/Feb/10. We find calibration parameters:
ap | Op arf of P
1.0 { 0.4 | 0.1]0.0105 | -0.95
Swaption calibration with the G14+/G1l4++ model is similar to that
displayed in [BPP09] using a G2++ model, which also uses post-crisis data,
see Figure 2.

3 Conclusion

We provide pseudo-analytic pricing for swaptions in a discounting/fixing
multi-curve gaussian short-rate setup. Semi-analytic swaption pricing for
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general affine short-rate models is possible by combining simulation up to
maturity with analytic bond formulae at swaption maturity. Pricing of other
standard instruments, e.g. caps, are simplifications of the swaption formu-
lae provided. Structurally the pseudo-analytic calculations are very similar
to G244 pseudo-analytic swaption pricing in [BMO06]. This means that the
current calculations could be directly extended to a Gl1++/G2++ setup or
G2++/G2++ setup once Eonia swaptions, that are currently not available,
become liquid. This work extends [KTWO09] who also worked in the short-
rate setting but did not provide pseudo-analytic swaption pricing.

There is a significant lack of data in the market at present, in early 2010.
Eonia/OIS swaptions are missing for example. We calibrate our model jointly
to give Eonia and Euribor volatility, however it is not possible to explicitly
test our identification with current market data. Also 6M volatility data
does not give full information about 3M volatility. Although futures options
are liquid and can help, the long end of the volatility curve is simply missing
for non-standard tenors. Without this data pricing options on non-standard
tenor fixings (e.g. 3M Euribor, 12M USD Libor) is problematic.

A short-rate setup for multiple yield curves, i.e. discounting and fixing,
is potentially useful for a variety of problems, e.g. CVA (credit valuation
adjustment) where forward-rate setups are less natural, as in [BPP09]. Thus
this paper complements existing market model approaches [Hen09, Mer09,
AB10].

Appendix

Here we provide the data used in the model (asof 8th February 2010). Note
that the 6M money market instrument is typically a few basis points away
from the 6M Euribor fixing, and the money market instrument changes
throughout the day. Thus the swap rates given are one particular snap-

shot. (We ignore fixing lags in this paper, conventionally 2 business days for
EUR).
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Euribor & Swap Rates
Tenor Rate (%)
6M 0.97
2Y 1.586
3Y 1.952
4Y 2.264
5Y 2.532
6Y 2.761
Y 2.959
8Y 3.122
9Y 3.254
10Y 3.366
12Y 3.546
15Y 3.708
20Y 3.798
Eonia Yields
Tenor (Years in Act360) | Rate (%)
0.505556 0.45573
1.01389 0.66794
1.52222 0.85542
2.03333 1.05402
3.05278 1.44287
4.06389 1.78273
5.07778 2.08370
6.09167 2.34107
7.10833 2.56461
8.12778 2.75217
9.13889 2.90716
10.15000 3.04098
11.16670 3.15866
12.18060 3.25962
15.2250 3.46469
20.3000 3.57937
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Swaption Implied Volatilities (maturity x tenor)

1Y 2Y 3Y 4Y 5H5Y 6Y 7Y 8Y 9Y 10Y

1Y | 51.1 39.2 33.7 30.2 276 262 25.1 244 238 233
2Y | 373 304 275 2577 242 233 2277 222 21.8 214
3Y | 288 248 23.1 22. 21.1 20.7 204 20.2 20. 1938
4Y (241 214 203 196 19.1 19. 189 18.8 188 18.8
oY | 21. 191 184 18 17v.7 177 176 176 17.7 17.7
7Y | 19. 178 173 17.1 169 169 16.8 17. 17.1 17.2
10Y | 17.1 165 163 16.1 16. 16.1 16.1 16.3 164 16.6
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