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THE IRONY IN THE DERIVATIVES DISCOUNTING PART II: THE CRISIS

MARC HENRARD

Abstract. Libor derivative pricing has changed with the crisis; Libor is not anymore one unam-

biguous curve as a large basis has appeared between different Libor tenors. A previous approach

to derivative discounting is reviewed at the light of those changes. The valuation of so called
linear derivatives, the yield curve construction and the valuation of vanilla options is analyzed.

Copyright c© 2009 by Marc Henrard.

1. Introduction

In the article Henrard (2007) we asked how
the cash-flows in Libor1 derivatives should be
discounted. The question was then viewed as
a trivial and unquestionable matter. Moreover
asking such a question was non-politically cor-
rect as the derivatives values enter in the market-
to-market accounting of banks and the matter
had legal implication. Ironically the article, en-
titled The irony in derivative discounting, was
published in July 2007 just one month before
the Libor/OIS spread (and other spreads) went
wild.

In mathematics, the art of pos-
ing a question is more impor-
tant than the art of solving one.

Georg Cantor, 1867

In the introduction of the above mentioned
article we quoted Cantor, a quote repeated here,
and expressed our belief that the question asked
then was important and our hope it was well
posed. After the crisis trigger, the importance
of correct curve selection appears even more
clearly. Unfortunately it appears also that,
against our hope, our question was not perfectly
posed. We did no imagine that Libor would
become an ambiguous notion with large basis
spreads between tenors. The present article,

written as the part II of derivatives discounting,
proposes a solution to these new challenges.

The importance of the discounting ques-
tion is attested by the numerous recent related
literature (e.g. Kijima et al. (2009), Ame-
trano and Bianchetti (2009), Chibane and Shel-
don (2009), Bianchetti (2009), Mercurio (2009),
Morini (2009)) and the efforts in most banks to
adjust their systems to the new reality. Some re-
search explain the reason the derivatives based
on Libor with different tenors should be priced
differently through credit risk analysis like in
Morini (2009). Here we will not try to explain
the reason behind the differences and take them
as a starting point. We try to propose a coherent
valuation framework for the derivatives based on
different Libor tenors. Those frameworks have
received several names: two curves, one price,
derivative tenor curves, discounting-estimation,
discounting-forecast or discounting-forward. To
our knowledge no theoretical fundamental sim-
ple analysis of the framework has been proposed
yet; this is what we try to achieve here.

In that new context all the standard ap-
proaches to derivatives pricing and in particular
the valuation of so called linear products like in-
terest rate swaps (IRS), forward rate agreements
(FRA), OIS and futures need to be rethought
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carefully. Some extra assumptions on the re-
lation between the different curves need to be
added. Even the notions of yield curves and dis-
count factors need to be handled carefully.

Our framework is based on a unique curve
used to discount all the cash-flows related to the
derivatives, whatever the tenor they are related
to. Here we are interested mainly in derivatives,
but obviously all cash-flows (from derivatives,
bonds, deposits, etc.) should be treated in the
same way. In the first article we called that curve
the funding curve, in reference to the need for de-
rivative desks to fund themselves to obtain cash.
The most used name today, and probably a bet-
ter choice, is the discounting curve. We will also
use the latter name in the sequel.

The choice of that discounting curve is by
itself an open question. Different people will
choose different curves. One possibility is to
relate it to the rate that can be achieved for
the remaining cash of the desk. For that rea-
son the OIS curve is often selected, as the fund-
ing/investment is often done on an overnight ba-
sis. In time of liquidity shortage, this may be a
low rate, not taking into account the real fund-
ing cost. A curve based on Libor may be more
reasonable; in that case one should select one
(and only one) of the Libor tenors. The impact
of the discounting curve on IRS is not major
(often less than 10% of the delta). What is cer-
tainly important is to have a coherent curve with
no jump from one choice to another.

In this article we suppose that the discount-
ing curve is given. Our job will start with the

construction of the curves used to estimate the
the Libor’s (in a sense to be explained latter).
Those curves are often called estimation, fore-
cast or forward curves. Here the plural should
be used as there is a different curve for each Li-
bor tenor. In practice the most frequently used
tenors are one, three, six and twelve months;
in theory one could have a curve for each tenor
(two, four, etc months). For those curves we will
also use the terms yield, discount factor and for-
ward rate, even if those terms may have a differ-
ent meaning in this context. In particular they
will never be used for discounting2.

In the next section we set the main hypothesis
used for the framework. Then we price the sim-
ple derivatives (IRS, FRA, futures). The term
simple has to be understood with a pinch of salt.
In this framework a FRA is really a contingent
claim and a curve hypothesis is needed to price
it. Of course the futures require a so called con-
vexity adjustment and thus a model.

The framework could be extended to value
cross currency products in a coherent multi-
currency framework. In that case the discount-
ing curves in the different currencies should be
linked through cross-currency basis. This is not
elaborated here.

Hopefully this time our questions are well
posed. To justify our attempt on asking simi-
lar question again, we quote A. Einstein

The important thing is not to
stop questioning.

Albert Einstein

2. Estimation hypothesis and linear products

As hinted by the title, we will consider the
discounting of cash-flows. Our first hypothesis
relates to it; its name D refers to it.

D: The instrument paying one unit in u
is an asset for each u. It’s value in t is
denoted PD(t, u).

With this curve we are able to price fixed
cash-flows.

Our goal is to price Libor related derivatives
and in particular IRS. Thus we need hypothe-
sis saying at least that those instruments exist
in our framework. We call a (j-Libor) floating

coupon an instrument that pays in t2 the Li-
bor fixing for the tenor j on the period [t1, t2]
as fixed in t0 (0 ≤ t0 ≤ t1) multiplied by the
conventional year fraction. The lag between t0
and t1 is called the spot lag and is usually two
business days3. The difference between t2 and
t1 is j months (in the appropriate convention).

As the month addition t + j months will be
often used we will use the notation abuse t + j
for that date.

L: The value of a (Libor) floating coupon
is an asset for each tenor and each fixing
date.

2Except for FRA where the discounting using the Libor fixing rate is part of the contract description.
3This is the case in EUR and USD. In GBP the lag is 0 day.
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This hypothesis is implicit in most of the
above quoted papers. We prefer to state it ex-
plicitly as this is not the consequence of the ex-
istence of the discounting curve.

In this article all asset prices are continuous
in time.

Once we have assumed that the instrument is
an asset, we can give a name to its price. We do
it indirectly through a curve P j .

Definition 1. The forward curve P j is the con-
tinuous function such that, P j(t, t) = 1, P j(t, T )
is an arbitrary function for t < T < Spot(t) + j
and, for T ≥ Spot(t),

(1) PD(t, T + j)
(

P j(t, T )
P j(t, T + j)

− 1
)

is the price in t of the floating coupon with start
date T and maturity date T + j.

The reason behind the definition is to obtain
the usual formulas involving forward rate com-
putation and discounting. The same terms dis-
counting curve and forward rate will still be used
even if they represent different realities.

La mathématique est l’art de
donner le même nom à des
choses différentes.

Henri Poincaré.
Note that the definition itself is arbitrary.

One could fix any j month period (not only
the first one) and deduce the rest of the curve
from there. Or one could even take an arbi-
trary decomposition of the j months interval in
sub-intervals and distribute those sub-intervals
arbitrarily on the real axis in such a way that,
modulo j months, they recompose the initial j
months period. One could also change the value
of P j(t, t).

We will come back to the curve construction
in the next section. Note that our definition of
estimation curve is similar to the one of Chibane
and Sheldon (2009) but different from the one of
Kijima et al. (2009), Ametrano and Bianchetti
(2009), Mercurio (2009) and Bianchetti (2009).

In Mercurio (2009) the curve definition is dif-
ferent from our but he barely uses those curves.
He defines market models on quantities equiv-
alent to our F j defined below. In some sense
the quantities Lj defined in his Remark 1 are
discretized versions of our curves P j .

We insist that the formula above on P j is a
definition. We will relate those numbers to some
financial intuition later, but for the moment P j

is simply a function. If the floating coupon has
a price, such a function exists for each tenor j.
This curve is not unique but once the first j
months period is fixed, P j(t, T ) is well defined
and unique. At this stage the only link between
the curve and a market rate is that the Libor
rate fixing in t0 for the period j is

(2) Ljt0 =
1
δ

(
P j(t0,Spot(t0))

P j(t0,Spot(t0) + j)
− 1
)

where δ is the year fraction. To obtain this
equality the price continuity was used.

2.1. Interest Rate Swap. With that hypothe-
sis, the computation of vanilla interest rate swap
(IRS) prices is straightforward. The hypothesis
was selected for that reason. An IRS is described
by a set of fixed coupons or cash-flows ci at dates
t̃i (1 ≤ i ≤ ñ). For those flows, the discount-
ing is used. It also contains a set of floating
coupons or cash-flows over the periods [ti−1, ti]
with ti = ti−1 + j (1 ≤ i ≤ n)4. The value of a
(fixed rate) receiver IRS is
(3)
ñ∑
i=1

ciP
D(t, t̃i)−

n∑
i=1

PD(t, ti)
(
P j(t, ti−1)
P j(t, ti)

− 1
)
.

In the one curve pricing approach, the IRS
are usually priced through either the Libor for-
ward approach or the cash-flow equivalent ap-
proach. The Libor forward approach consists
in estimating the forward Libor rate from the
discount factors and discounting the result from
payment date to today. To keep that intuition,
we define the Libor forward rate in our frame-
work as the figure we have to use to keep the
same formula.

Definition 2. The Libor forward rate over the
period [ti−1, ti] is given at time t by

(4) F jt (ti−1, ti) =
1
δi

(
P j(t, ti−1)
P j(t, ti)

− 1
)
.

With that definition the IRS price is

ñ∑
i=1

ciP
D(t, t̃i)−

n∑
i=1

PD(t, ti)δiF
j
t (ti−1, ti).

4In practice, due to week-ends and holidays, the periods used for the fixings can be slightly different from the

payment dates. We will not make that distinction here.
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Note the fundamental difference between Ljt and
F jt . The object L is, by hypothesis L, a fun-
damental element of our economy; the second
one is defined by the above equality. Note also
that our definitions of L and F are opposite
to Mercurio (2009); our F jt (ti−1, ti) is equiva-
lent to his Lji (t) and our Ljt0 corresponds to his
F j . The definitions of F and L coincide for
ti−1 = Spot(t0):

Ljt0 = F jt0(Spot(t0),Spot(t0) + j).

The cash-flow equivalent approach consists in
replacing the (receiving) floating leg by receiv-
ing the notional at the period start and paying
the notional at the period end. We would like
to have a similar result in our new framework.
To this end we define

(5) βjt (u, u+ j) =
P j(t, u)

P j(t, u+ j)
PD(t, u+ j)
PD(t, u)

.

With that definition, a floating coupon price is

PD(t, ti)
(
P j(t, ti−1)
P j(t, ti)

− 1
)

= PD(t, ti)
(
βjt (ti−1, ti)

PD(t, ti−1)
PD(t, ti)

− 1
)

= βjt (ti−1, ti)PD(t, ti−1)− PD(t, ti).

This last value is equal to the value of receiving
βjt notional at the period start and paying the
notional at the period end.

If the forward discounting rate FDt (ti−1, ti) is
defined in the standard way, the floating coupon
price can also be written as

PD(t, ti)δi

(
βjtF

D
t (ti−1, ti) +

1
δi

(βjt − 1)
)

which is the formula proposed in Henrard
(2007).

A consequence of the hypothesis L and the
definition of βjt is that β is a martingale in
the PD(., ti−1) numeraire. The Libor coupon
value is βjt (ti−1, ti)PD(t, ti−1) − PD(t, ti). The
coupon is an asset due to L and so its value
divided by the numeraire PD(t, ti−1) is a mar-
tingale. The second term is also an asset, hence
its rebased value is also a martingale. The last
term is thus also a martingale and its value is
βjtP

D(t, ti−1)/PD(t, ti−1) = βjt . This proves
that βjt is a martingale under the PD(., ti−1)-
measure.

Like in the one curve framework, we can de-
fine a forward swap rate. This is the rate for

which the vanilla IRS price is 0:

Sjt =
∑n
i=1 δiF

j
t (ti−1, ti)PD(t, ti)∑ñ
i=1 δ̃iP

D(t, t̃i)
.

2.2. Forward Rate Agreement. A Forward
Rate Agreement (FRA) is an instrument linked
to a j-month period, a fixing date t0 and a fixed
rate K. At the fixing date t0, the Libor rate
Ljt0 is recorded. The contractual payment in
t1 = Spot(t0) (the start date) is

δ(Ljt0 −K)

1 + δLjt0
.

The origin of the formula is the difference be-
tween the Libor fixing and the fixed rate dis-
counted at the Libor rate. The rate is not paid
at the end of its period but at the start and is
discounted by itself; it is not directly a float-
ing coupon as we defined it above. In that
sense, our definition of a FRA is in line with
real FRA term sheet and different from the one
of Ametrano and Bianchetti (2009), Bianchetti
(2009), Chibane and Sheldon (2009) and Mercu-
rio (2009). We will need a new hypothesis that
indicates that this instrument is an asset in our
economy. In a general contingent claim formula,
its price would be

N0 E

[
N−1
t1

δ(Ljt0 −K)

1 + δLjt0

]
.

Here we can not use the usual trick of postpon-
ing the payment to t2 by multiplying by 1+δLjt0
and selecting P j(., t2) as the numeraire to sim-
plify the formula. The reason is that an invest-
ment is not done at the libor rate but at the
discounting rate. Note that F jt is the ratio of
an asset (floating coupon) and PD(., ti). In the
PD(., ti) numeraire measure, F jt is a martingale.

Note that P j can not be an asset. If it was
the case we would have, for any numeraire N ,

PD(0, t) = N0 E
[
N−1
t PD(t, t)

]
= N0 E

[
N−1
t 1

]
= N0 E

[
N−1
t P j(t, t)

]
= P j(0, t).

The two curves PD and P j would be identical,
which is a contradiction to our stated goal of
decoupling them.

We need extra assumptions. The goal of this
article is to obtain a relatively simple coherent
and practical approach to Libor derivatives pric-
ing.
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Our next hypothesis is that the spread be-
tween the curves, as defined through the quan-
tity βjt , is independent of the curves.

SI: The multiplicative coefficient between
discount factor ratios, βjt (u, u + j), de-
fined in Equation (5) is independent of
the ratio PD(t, u)/PD(t, u+ j).

For the pricing of options, we will impose a
stricter hypopthesis.

S0: The multiplicative coefficient between
discount factor ratios, βjt (u, u + j), de-
fined in Equation (5) constant through
time: βjt (u, v) = βj0(u, v) for all t and u.

With the independence hypothesis, the ad-
justment βtj is a martingale for any PD(., u)-
measure or for the cash account measure. The
change of numeraire on the independent variable
does not affect the martingale property of βjt .

The hypothesis S0 can be viewed as the
equivalent of the constant continuously com-
pounded spread used in Henrard (2007). Here
the spread is not constant across maturities but
deterministic and given by its initial values. The
spread is ln(βj(u, v))/(u− v). In that sense this
framework is a direct extension of the one devel-
oped in the previous work adapted to the current
market situation where the spreads are not equal
for all maturities.

The hypothesis S0 is equivalent5 to the hy-
pothesis that βjt is deterministic. The equiva-
lence can be obtained easily through a martin-
gale argument.

We have

1+δLjt0(t1, t2) =
P j(t0, t1)
P j(t0, t2)

= βj(t1, t2)
PD(t0, t1)
PD(t0, t2)

.

Theorem 1. Under hypothesis D, L and SI the
price in t of the j months FRA with fixing date
t0, and rate K is

PD(t, t1)
δ(F jt −K)

1 + δF jt
= PD(t, t2)

δ(F jt −K)
βj(t1, t2)

.

where t1 = Spot(t0) and t2 = Spot(t0) + j.

The result can be obtained trough simple ma-
nipulation of the above coefficients and the in-
dependent hypothesis on β.

The above result relies on hypothesis SI.
Even if the floating coupon value is given in L

this is not enough to price the FRA; an extra
hypotheses is necessary. The FRA discounting
with the Libor rate between start date and end
date creates an adjustment represented by the
coefficient βj .

Note that, as already mentioned in Henrard
(2007), the IRS is not anymore a portfolio of
FRA with same notional.

The above formula is used by some systems
decoupling discounting and forward curves. The
hypothesis SI justifying such a formula is seldom
provided.

A FRA is at-the-money when the rate K is
such that the instrument value is 0. Using the
above result, it is the case when

K = F j0 =
1
δ

(
βj(t1, t2)

PD(0, t1)
PD(0, t2)

− 1
)
.

This is essentially the FRA fair rate obtained
in Mercurio (2009) with

βj =
1

R+ (1−R) E[Q(t1, t2)]
.

The adjustment factors βj can be linked to
credit related parameters as recovery rate and
default probability. It is also linked to the quan-
tity KL(t, t1, t2) defined in (Kijima et al., 2009,
Equation (4.7)). In their article the spread is
linked to some model parameters, in our case it
is fitted to the market curves.

2.3. Libor futures. A general pricing formula
for eurodollar futures in the Gaussian HJM
model was proposed in Henrard (2005a). The
formula extended a previous result proposed in
Kirikos and Novak (1997). The formula was
briefly extended to the discounting framework in
Henrard (2007). We now study the instrument
under our new hypothesis.

The futures are liquid only for the three
month Libor up to two or three year. To a lesser
extend some one month futures are available on
the shorter part of the curve.

The future fixing date is denoted t0. The fix-
ing is on the Libor rate between t1 = Spot(t0)
and t2 = t1 + j. The accrual factor for the pe-
riod [t1, t2] is δ, the fixing is linked to the yield
curve by

1 + δLjt0 =
P j(t0, t1)
P j(t0, t2)

.

5Another possible hypothesis proposed by Tanaka (2009) would be that the ratio P j(t, u)/P D(t, u) is determin-

istic. This hypothesis implies the one we propose. That ratio can not be constant (it tends to one as t tends to u)

We prefer to deal with constant quantities.
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The futures price is Φjt . On the fixing date, the
relation between the price and the rate is

Φjt0 = 1− Ljt0 .
The futures margining is done on the futures
price (multiplied by the notional and divided by
4).

The exact notation for the HJM one-factor
model used here is the one of Henrard (2005a).

Theorem 2. Let 0 ≤ t ≤ t0 ≤ t1 ≤ t2. In the
HJM one-factor model on the discount curve un-
der the hypotheses D, L and SI, the price of the
futures fixing on t0 for the period [t1, t2] with ac-
crual factor δ is given by

Φjt = 1− 1
δ

(
P j(t, t1)
P j(t, t2)

γ(t)− 1
)

(6)

= 1− γ(t)F jt +
1
δ

(1− γ(t))

where

γ(t) = exp
(∫ t0

t

ν(s, t2)(ν(s, t2)− ν(s, t1))ds
)
.

Proof. Using the generic pricing future price
process theorem (Hunt and Kennedy, 2004, The-
orem 12.6),

Φjt = EN

[
1− Ljt0

∣∣∣Ft] .

In Ljt0 , the only non-constant part is the ratio of
j-discount factors which is, up to βjt0 the ratio
of D-discount factors. Using (Henrard, 2005a,
Lemma 1) twice, we obtain

PD(t0, t1)
PD(t0, t2)

=
PD(t, t1)
PD(t, t2)

exp
(
−1

2

∫ t0

t

ν2(s, t1)−ν2(s, t2)ds

+
∫ t0

t

ν(s, t1)− ν(s, t2)dWs

)
.

Only the second integral contains a stochastic
part. This integral is normally distributed with
variance

∫ t0
t

(ν(s, t1) − ν(s, t2))2ds. So the ex-
pected discount factors ratio value is reduced to

PD(t, t1)
PD(t, t2)

exp
(
−1

2

∫ t0

t

ν2(s, t1)− ν2(s, t2)ds

+
∫ t0

t

(ν(s, t1)− ν(s, t2))2ds.

)

The coefficient βjt0 is independent and a martin-
gale, hence we have the announced result. �

3. Curve construction

Our goal in this section is to construct the
curves P j(0, .). The three instruments detailed
above are the most used to construct the yield
curves P j(0, .). As in the previous section, we
suppose that the discounting curve PD(0, .) is
given.

Note that in Mercurio (2009) the curve
construction is not discussed and in Kijima
et al. (2009) the model used imposes a spe-
cific parametrized shape to the spread between
curves.

As described in the definition of P j , we take
P j(0, 0) = 1 and for P j(0, t) an arbitrary con-
tinuous function for t < Spot(0) + j such that

Lj0 =
1
δ

(
P j(0,Spot(0))

P j(0,Spot(0) + j)
− 1
)

i.e. the curve matches the current fixing. In
theory the curve is completely arbitrary on that
interval and that curve interval has no impact.
In practice, as the theoretically possible dates
are not all used in the construction and some

interpolation is used, this part may have an im-
pact. This is discussed later.

3.1. FRA. The FRA are less liquid than fu-
tures, short swaps and deposits. For that reason
they were seldom used in yield curves construc-
tion before the crisis. The reason they come
back to fashion now is that they are the only
way to obtain information on the short part of
the yield curve for tenors different than three
months, the latter being obtained by futures.

A set of FRA of the given tenor j is selected.
For j = 1 one often prefers to use directly short
swaps and no FRA is used. For j = 3, only one
or two FRA’s are used, up to the first future.
For j = 6 one would take the FRA’s 1x7, 2x8,
. . . 12x18. For j = 12 one would use the FRA’s
1x13, 2x14, . . . 12x24.

The FRA are sorted in an increasing maturity
order. Their start and end dates are si and ei.
For each of those FRA’s, the market quoted fair
rates Ki for which the FRA has a zero market
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value is known. Using the result on the valua-
tion of such an instrument, the value is 0 when
Ki = F j0 (si, ei). The equality gives the value of
P j(0, ei) based on the known value P j(0, si).

Note that for the curve construction purpose,
the FRA can be consider as a floating coupon.
This is only true because the FRA value is 0 and
the discounting has no impact.

3.2. Futures. The futures are used only for
j = 3. They could be used also for j = 1 where
some short futures are quoted. There is usually
less liquidity on those instruments and the exis-
tence of short swaps make them less useful.

The mechanism is similar to the one for
FRA’s. A set of futures with increasing maturity
is selected. The HJM model parameters are sup-
posed to be obtained (calibrated) already. The
market price of the future Φj0 gives the value of
F j0 through Equation (6), this allows to obtain
the curve P j up to the future maturity like in
the FRA case.

3.3. IRS. For longer maturities IRS are used.
The IRS are usually quoted directly with only
one tenor. To obtain the IRS with other tenors
one has to use basis swaps, swap that exchange
floating coupons in one tenor against floating
coupon with another tenor. In EUR the basis
swap are often quoted for a pair of IRS fixed vs
floating with different fixed rates. The spread
being the difference between the fixed rates. The
IRS’s are sorted in increasing maturities and the
curve is obtained up to their maturity in such
a way that the value of the swap with market
coupon as given by Equation (3) is 0. Interpo-
lation is used when necessary.

3.4. The arbitrary curve. As mentioned
above, the curve up to the first tenor is arbitrary.
The intuition behind it is that the forward curve
is used only to compute forwards and thus only
the ratio between two values of P j is important,

never a single value. This is true only to a cer-
tain extend; not all the points of the curve are
constructed directly, some are interpolated.

Consider as an example the curve with j = 3.
Suppose you construct the curve with an arbi-
trary curve up to 3 months and then the curve
up to two years with futures (this is an approach
often used). Here are two cases that you could
encounter if you are too arbitrary on the selec-
tion. Take the case were there is one month to
the start of the next future. Take an arbitrary
low spot rate and a one month forward rate very
high. In that case, the curve is constructed with
the 3 month futures from that high rate and all
the rates are also high. This is not a problem for
your futures, they are all well priced as the ratios
of discount factors on those points are correct.
How is a one year versus 3 month IRS priced in
that context? The one year rate is interpolated
between the 10 months and 13 month rates com-
ing from the future, both of them too high. So
the 12 month rate used for the forward is too
high, the spot rate is too low and your one year
rate is too high. Even if all futures are correctly
priced, the swap which is interpolated is not.
Even if one adds the one year swap in the curve
construction one could create a similar problem.
Take now the same initial arbitrary curve with
a very low two months rate. Use the futures
and the swap to construct the curve and now
try to price a forward swap starting in 2 months
and with one year maturity; this swap could be
used as underlying of a swaption. It is not too
difficult to see that the forward rate would also
be overestimated. For that reason we suggest
to use financially meaningful numbers for the
arbitrary values, for example the rate obtained
from shorter fixing. In our case, the three month
curve would be constructed with one and two
month Libor deposits to establish the arbitrary
part.

The arbitrariness of P j(0, t) over the first pe-
riod is not broached in Chibane and Sheldon
(2009) and Mercurio (2009).

4. Delta

Once a curve is constructed and financial in-
struments are priced with it, the next step is to
compute the risks associated, the first of which is
the delta’s. By this we mean the change of value
of a financial instrument when the rate used to

construct the curve is moved by a small amount
(usually one basis point).

In the discounting context, to parody the ti-
tles of Henrard (2005b) and Bianchetti (2009),
the title of this section could be: One price, two
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curves and three delta’s. Due to the two curves,
there are two sets of financial instruments play-
ing a role in the curve construction and as such
two deltas. But when one looks more in details
there are three ways the rates act. The first one
is the direct influence of the discounting rate on
the price, the second one is the market instru-
ments rates used in the forward curve and the
third one is the indirect impact of the change of
the discounting curve on the forward rate con-
struction. The forward curve is constructed us-
ing as input different instruments and the dis-
counting curve. The three impacts can be eval-
uated separately.

For the simple instruments mentioned above,
the impact of the discounting curve is relatively
small. The total impact is null for at-the-money
swaps.

In the standard one curve approach the curve
is usually only constructed with deposits and
swaps. When it is constructed also with fu-
tures, the information is often translated into
standard tenor deposits and swaps rates (by in-
terpolation) to obtain a standardized curve con-
struction from which a standardized delta can
be obtained. Here the situation is different; by
definition, there is no deposit forward rate. One
is using FRA, but 3M FRA and 6M FRA rate
sensitivities have not the same meaning and can
not be added. A standardized delta can not be
obtained through FRA’s and futures. A way
around the problem is to create artificial deposits
for the forward curve. Those terms are clearly
antinomic. What we mean by that is to create
artificial market-like rates that applied to for-
mulas similar to deposit formulas create a curve
with the same discount factors as the forward
curve. From the output curve P j one creates ar-
tificial standardized input instruments. In this
way the deltas computed are somehow compat-
ible.

Even inside one of those curves, the compat-
ibility is not certain. Take for example the 3
months curve. The 6 months point could be rep-
resented by an (artificial) 6 months deposit or by
an (artificial) 6 months swap versus 3 month Li-
bor. If the market rates of the two instruments
are well selected, the curve constructed will be
the same. Nevertheless the delta computed with
those two approaches will not be the same.

Even if the curve construction and deltas def-
initions are somehow arbitrary, one can obtain

some meaningful deltas. The next (non trivial)
question is how to use them. In the traditional
one curve approach one would use swaps and
deposits used to construct the curve in decreas-
ing maturity order to hedge the deltas. An at-
the-money instrument of correct notional is en-
tered into in such a way that the exposure of the
longest maturity is cancelled. Once this is done
one works inductively down to the overnight
point to cancel all exposures.

In the two curves approach (or multi-curves if
one trades more than one tenor) one has not one
but two deltas for each maturity. One can use
swaps to cancel the forward curve exposure at
the expense of leaving a (small) discounting ex-
posure. The discounting exposure could be can-
celled by lending or borrowing some cash to a
counterpart. Often derivative desks don’t have
the authority (nor the willingness) to lend or
borrow long term, so the exposures would re-
main unhedged or compensated by exposure on
other curves.

In some cases an hybrid approach is used for
pricing and delta computation. The (precise)
two curves approach described above is used for
simple instruments and a less precise one curve
approach is used for more complex instruments.
The unique curve (that can be one of the forward
curves) is used in the traditional way. The level
at which the split operates can vary from vanilla
swaption to exotic instruments. That hybrid ap-
proach is dangerous. The one curve exposure so
computed is added to some two curve exposure
in such a way that one does not know what the
figures actually represent. Such an hybrid ap-
proach could lead to cases where the apparent
exposure is 0 for all tenors while the actual ex-
posure is globally 0 but there is a large basis
position.

Table 1 gives some examples of deltas for
swaps and swaptions. The swaptions are dis-
cussed in the next section. The delta is split
in two for each instrument: the discount curve
(both direct and indirect effects) and the for-
ward curve. The swaps studied are annual
versus three month Libor 6Mx5Y swaps with
coupon between 1 and 5%. As can be seen the
split is largely dependent on the deal money-
ness. The discounting curve delta is usually be-
tween -7% and +7% of the total delta. Larger or
smaller coupons would give more extreme splits.
Note that the at-the-money swaps (2.91% in our
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example) have a 0 delta with respect to the dis-
counting curve.

The swaptions used are receiver swaptions;
they are priced with an extended Vasicek (Hull-
White) model. Their deltas represents a frac-
tion of the swap deltas. As we selected extreme
strikes, the fraction is almost 0% on one side
and almost 100% on the other. The ratio is not
equal between the discounting and the forward
parts. A swaption can not be perfectly (delta)

hedged with swaps only; some fixed cash-flows
(deposits) may be needed. This is the usual du-
ality between in-the-model and out-of-the-model
hedging. As we have a model with one stochas-
tic curve and a deterministic spread, it should
be possible to hedge all instruments based on
that curve. In the delta computation the curves
are moved separately, out of the model. This is
how different instruments (swap and swaptions)
have non-similar deltas.

Cpn 1% Cpn 2% Cpn 3% Cpn 4% Cpn 5%
Dsc Fwd Dsc Fwd Dsc Fwd Dsc Fwd Dsc Fwd

Swap (EUR) 0.28 -4.57 0.13 -4.57 -0.02 -4.57 -0.18 -4.57 -0.33 -4.57
Swap rel. -6.63 106.63 -2.93 102.93 0.52 99.48 3.75 96.25 6.78 93.22
Swaption (EUR) -0.00 -0.01 -0.00 -0.43 -0.05 -2.51 -0.18 -4.29 -0.33 -4.56
Tot swpt/swap 0.29 9.67 55.66 94.19 99.86
Swpt/swap -0.01 0.27 -2.84 9.31 212.05 54.84 100.41 93.95 99.99 99.85
Figures in %, except when indicated otherwise. Figures in EUR are for a 10,000 EUR notional and a
one basis point shift.

Table 1. Delta for swaps and swaptions.

5. Libor contingent claims - Cash-flow equivalent

In this section a general approach to price Li-
bor related contingent claims is proposed under
the hypothesis S0 of a deterministic spread. The
approach was already used for FRA and futures
in the previous sections.

To price contingent claims in the discounting–
forward framework, we propose to use any stan-
dard model on the discount curve. The instru-
ments are based on fixed cash-flows and Libor
based cash-flows. For the Libor based cash-
flows, the cash-flow equivalent technique de-
scribed at the end of Section 2.1 will be used.

Let’s apply this approach to a swaption. The
underlying swap value is given by Equation (3).
Using the cash-flow equivalent description, the

equation can be replaced by an equation involv-
ing only PD:

IRS =
ñ∑
i=1

ciP
D(t, t̃i)−

n∑
i=1

(
βj(ti−1, ti)PD(t, ti−1)− PD(t, ti)

)
.

Regrouping the terms with same discount factor
together and defining n̄, t̄i and di appropriately,
one has

IRS =
n̄∑
i=0

diP
D(t, t̄i).

In that sense, the swaptions are equivalent to
bond options with adjusted coupon and strike
price in the discounting only framework. This
result is adapted to any model which models the
whole term structure and PD(., ti) in particular.

6. Other spread hypothesis

Our hypothesis S0 is one way to link the
curves. Other possibilities are presented below.

6.1. Market spread. Under this hypothesis,
the spread between the market standard tenor
swap rate and other forward is known for every
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fixing. Let M be the standard market frequency,
the one for which we have market data.

MR: The spreads or basis

(7) Bj(t0, t1) = Sjt0(t0, t1)− SMt0 (t0, t1)

are know for every fixing date t0 an ev-
ery tenor j.

Using the martingale property of the swap rate it
is easy to verify that a deterministic hypothesis
is equivalent to the proposed constant (forward)
spread.

If one has a model for SM , the swap rates
with other tenors are obtained by a deterministic
shift. This is particularly adapted to a Bache-
lier type model where the volatility would be the
same for rates with different tenors. This can
be used in a Black-like model under the under-
standing that if the market rate is log-normal,
the others are shifted log-normal.

This model is in practice very close to the one
we proposed in the previous sections which can
be viewed as an approach with known continu-
ously compounded spreads.

6.2. Black spread. The simplest model used
to model interest rates derivatives is the Black
model on forward rates. The base equation is

(8) dSMt = σSMt dWt.

The volatility σ is the one given by the mar-
ket for the standard tenor and specific expiry,
tenor and strike. The similar rate for the for-
ward (non-market convention) curve is supposed
to follow a similar equation

dSjt = σSjt dWt.

B1: The forward (swap) rate follows a
Black equation (between 0 and expiry)
with the same Brownian motion than
the rate in the market convention.

Under that approach the spread between the
rates SM − Sj is not constant nor determinis-
tic. It is a constant proportion of the rate. The
spread grows (and reduces) with the rate:

Sjt =
Sj0
SM0

SMt .

With such an hypothesis or a similar on Li-
bor forward rate the pricing of FRA required to
construct the curves P J would be difficult.

Mercurio (2009) proposes such a model for
each rate Sj but does not propose a relation be-
tween them. This type of model is difficult to
calibrate as few options on non market standard
tenor are available. If basis spread were to stay
large and volatile, such a market may appear.

6.3. SABR/CEV spread. The base equa-
tions are

dSMt = αt(SMt )βdW 1
t .(9)

dαt = ναtdW
2
t(10)

S1: The forward swap rate follows a SABR
equation (between 0 and expiry) with
the same paremeters and Brownian mo-
tion than the rate in the market conven-
tion.

The result will depend on the β parameter,
like the computation of the delta in the SABR
framework. A β close to 1 will give a result close
to Black spread and a β close to 0 will give a re-
sult close to market spread.

In the Black and SABR approaches, the
spreads would increase when the rates increase.
In the recent crisis, the spreads have increased
while the rates were decreasing. This approach
would be counterintuitive.

The three approaches mentioned above are
convenient only if the objective is only to model
one (swap) rate and not the whole term struc-
ture. These approaches would not be the most
convenient for exotics (Bermuda, callable, etc.).

7. Conclusion

A previous article dealt with the concept of
discounting for Libor derivatives in presence of
constant spread. It is here extended to price
Libor derivatives to the current market situa-
tion where different Libor tenors imply different
swap rates (basis spread) and those spreads are
maturity dependent and changing.

Simple hypotheses are introduced to propose
a coherent framework. In that framework the
value of simple Libor derivatives used to con-
struct yield curves is detailed. The instruments
are IRS, FRA and futures.

In a simplified framework a technique to price
any Libor contingent claim is sketched. With
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that technique, the pricing in the multi-curves framework is not technically more difficult than
in the one curve approach.

Up to our knowledge this is the first proposal
for a coherent and simple method to price Libor
derivatives with different reference tenors.

Acknowledgment: The author wishes to thanks his colleagues for their detailed feedback.
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