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Introduction

.

New market realties after the Financial Crisis

.

.

.

. ..

.

.

Wide use of collateralization in OTC
Dramatic increase in recent years (ISDA Margin Survey 2011)

30%(2003)→ 70%(2010) in terms of trade volume for all OTC.
Coverage goes up to 79% (for all OTC) and 88% (for fixed income)
among major financial institutions.
More than 80% of collateral is Cash.
(About half of the cash collateral is USD. )

Persistently wide basis spreads :
Much more volatile Cross Currency Swap( CCS) basis

spread.
Non-negligible basis spreads even in the single currency

market. (e.g. Tenor swap spread, Libor-OIS spread )
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Impact of Collateralization

Impact of collateralization :

Reduction of Counter-party Exposure

Change of Funding Cost

Require new term structure model to distinguish discounting and
reference rates.
Cost of collateral is different from currency to currency.
Choice of collateral currency (”cheapest-to-deliver” option).
Significant impact on derivative pricing.
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Topics of this talk

Valuation framework under collateralization

Derivatives pricing under the perfect collateralization:

Symmetric collateralization and choice of collateral currency
Asymmetric collateralization and potential effects from the
difference in collateral management
Imperfect collateralization and CVA

(a new computational scheme for FBSDEs 1, which seems useful for
pricing securities under asymmetric/imperfect collateralization)

(perturbation scheme)
(perturbation with interacting particle method)

For details, please see the series of our papers ([ 11]- [19]).

1forward backward stochastic differential equations
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Setup

Pricing Framework ([ 15])

Probability space (Ω,F , F,Q), where F contains all the market information
including defaults.

Consider two firms, i ∈ {1, 2}, whose default time is τi ∈ [0,∞], and τ = τ1 ∧ τ2.

τi (and hence τ) is assumed to be totally-inaccessible F-stopping time.

Indicator functions: H i
t
= 1{τi≤t}, H t = 1{τ≤t}

Assume the existence of absolutely continuous compensator for H i :

Ai
t
=

∫ t

0
hi

s1{τi>s}ds, t ≥ 0

Assume no simultaneous defaults, and hence the hazard rate of H is

ht = h1
t + h2

t .

Money market account: βt = exp
(∫ t

0 rudu
)
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Collateralization

When party i ∈ {1, 2} has negative mark-to-market, it has to post cash collateral
to party j(, i), and it is assumed to be done continuously.

collateral coverage ratio is δi
t
∈ R+, and the amount of collateral at time t is

given by δi
t
(−V i

t
) when party i posts collateral. ( V i

t
denotes the mark-to-market

value of the contract from the view point of party i.)

δi
t

effectively takes into account under- as well as over -collateralization.
Thus δi

t
< 1, and also δi

t
> 1 are possible.

party j has to pay the collateral rate ci
t

on the posted cash continuously.

ci
t

is determined by the currency posted by party i.

market convention is to use overnight (O/N) rate at time t of
corresponding currency.
⇒ Traded through OIS (overnight index swap), which is also collateralized.
In general, ci

t
, r i

t
. (r i

t
is the risk-free interest rate of the same currency.)

This is necessary to explain CCS basis spread consistently .
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Counterparty Exposure and Recovery Scheme

Counterparty exposure to party j at time t
from the view point of party i is given as:

max(1− δ j
t
, 0) max(V i

t
, 0)+ max(δi

t
− 1, 0) max(−V i

t
, 0).

Assume party- j’s recovery rate at time t as R j
t
∈ [0, 1].

Then, the recovery value at the time of j’s default is given as:

R j
t

(
[1 − δ j

t
]+[V i

t
]+ + [δi

t
− 1]+[−V i

t
]+

)
,

x+ ≡ max(x, 0).
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Pricing Formula

• Pricing from the view point of party 1.

St = βt EQ
[∫

] t,T]
β−1

u 1{τ>u}
{
dDu +

(
y1

uδ
1
u1{Su<0} + y2

uδ
2
u1{Su≥0}

)
Sudu

}
+

∫
] t,T]
β−1

u 1{τ≥u}
(
Z1(u,Su−)dH1

u + Z2(u,Su−)dH2
u

)∣∣∣∣∣∣Ft

]
• D: cumulative dividend to party 1.
• Default payoff: Z i when party i defaults.

Z1(t, v) =
(
1− l1t (1− δ

1
t )
+
)
v1{v<0} +

(
1+ l1t (δ

2
t − 1)+

)
v1{v≥0}

Z2(t, v) =
(
1− l2t (1− δ

2
t )
+
)
v1{v≥0} +

(
1+ l2t (δ

1
t − 1)+

)
v1{v<0},

l i
t
≡ (1− Ri

t
), i = 1, 2

• yi
t
= r i

t
− ci

t
, (i ∈ {1, 2}) denotes the instantaneous return for j or funding cost for i

at time t from the cash collateral posted by party i.
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Pricing Formula

• (Remark) The return from risky investments, or the borrowing cost
from the external market can be quite different from the risk-free
rate, of course.
However, if one wants to treat this fact directly, an explicit modeling
of the associated risks is required.
Here, we use the risk-free rate as net return/cost after hedging these
risks .
As we shall see, under full collateralization the final formula does
not require any knowledge of the risk-free rate , and hence there is
no need of its estimation, which is crucial for the practical
implementation.

9 / 90



Introduction Framework Symmetric Asymmetric Imperfect FBSDE Approximation Scheme Perturbation Technique for Non-linear FBSDEs with Interacting Particle Method References

Pricing Formula

Following the method in Duffie&Huang (1996), pre-default value of the
contract Vt such that Vt1{τ>t} = St is given by

Vt = EQ
[∫

] t,T]
exp

(
−

∫ s

t

(
ru − µ(u,Vu)

)
du

)
dDs

∣∣∣∣∣∣Ft

]
, t ≤ T,

where

µ(t, v) = ỹ1
t 1{v<0} + ỹ2

t 1{v≥0}

ỹi
t
= δi

t
yi

t
− (1− δi

t
)+(l i

t
hi

t
) + (δi

t
− 1)+(l j

t
h j

t
),

if some technical condition(so called no jump condition for V at default) 2 is

satisfied, which is assumed hereafter.

2This technical condition (∆Vτ = 0) becomes important when we consider credit
derivatives: the condition is violated in general when the contagious effects induce jumps to
variables contained in pre-default value process. (e.g. Schönbucher(2000),
Collin-Dufresne-Goldstein-Hugonnier(2004), Brigo-Capponi(2009), [17])
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Symmetric Case

Effective discount factor is non-linear :

r t − µ(t, v) = r t − (ỹ1
t 1{v<0} + ỹ2

t 1{v≥0}),

which makes the portfolio value non-additive .
If ỹ1

t
= ỹ2

t
= ỹt , then we have

µ(t, v) = ỹt .

Further, if ỹ is not explicitly dependent on V, we can recover the linearity.

Vt = EQ

[∫
] t,T]

exp
(
−

∫ s

t
(ru − ỹu)du

)
dDs

∣∣∣∣∣∣Ft

]
Portfolio valuation can be decomposed into that of each payment.

⇓
A good characteristic for market benchmark price.
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Symmetric Perfect Collateralization

.

Special Cases

.

.

.

. ..

.

.

Case 1 : Benchmark for single currency product

bilateral perfect collateralization (δ1 = δ2 = 1)

both parties use the same currency (i) as collateral, which is also the
payment (evaluation) currency.

V(i)
t
= EQ(i)

[∫
] t,T]

exp
(
−

∫ s

t
c(i)

u du
)

dDs

∣∣∣∣∣∣Ft

]

The valuation method for single currency swap adopted by LCH
Swapclear (2010) is the same with this equation. 3

3See also Piterbarg (2010) for other derivation of this equation.
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Symmetric Perfect Collateralization

.

Special Cases

.

.

.

. ..

.

.

Case 2 : Collateral in a Foreign Currency

bilateral perfect collateralization (δ1 = δ2 = 1)

both parties use the same currency (k) as collateral , which is different
from the payment (evaluation) currency (i)

V(i)
t
= EQ(i)

[∫
] t,T]

exp
(
−

∫ s

t

(
c(i)

u + y(i,k)
u

)
du

)
dDs

∣∣∣∣∣∣Ft

]

.

Funding Spread between the two currencies

.

.

.

. ..

.

.

y(i,k) = y(i) − y(k) =
(
r(i) − c(i)

)
−

(
r(k) − c(k)

)

This is necessary to explain CCS basis spreads consistently.
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Collateral Rate

Overnight Index Swap (OIS)

exchange fixed rate( F) with compounded overnight rate
periodically.

collateralized by domestic currency

Par rate at t for T0 (> t)-start TN-maturing OIS with currency (i):

OISN(t) = F par(t) =
D(i)(t, T0) − D(i)(t, TN)∑N

n=1
∆nD(i)(t, Tn)

,

(∆n : daycount fraction).

D(i)(t, T) = EQ(i)
[
e−

∫ T

t
c(i)

u du
∣∣∣∣∣Ft

]
is a value of domestically

collateralized zero-coupon bond.
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Funding Spread

(i, j) Mark-to-Market Cross Currency OIS :
The funding spread(the difference of collateral costs) is directly
linked to the corresponding CCOIS, though it seems not liquid in
the current market.

compounded O/N rate of currency (i) is exchanged by that of
currency ( j) with additional spread periodically.

notional of currency ( j) is kept constant while that of currency
(i) is refreshed at every reset time with the spot FX rate.
(currency (i) is usually USD.)

collateralized by currency (i) .
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Funding Spread

Define

D( j,i)(t, T) = EQ( j)
[
e−

∫ T
t (c( j)

u +y( j,i)
u )du

∣∣∣∣∣Ft

]
= D( j)(t, T)e−

∫ T
t y( j,i)(t,s)ds.

y( j,i)(t, T) = − ∂
∂T

ln ET( j)
[
e−

∫ T
t y( j,i)

u du
∣∣∣∣∣Ft

]
.

D( j,i)(t, T): the zero coupon bond of currency j collateralized by currency i.

ET( j)
[·|Ft ]: conditional expectation under the fwd measure associated with

D( j)(t, T).

Then, under a simplifying assumption such as independence between c( j) and
y( j,i)4,

.

.

. ..

.

.

MtMCCOIS basis spread is obtained by:

BN =

∑N
n=1

D( j,i)(t, Tn−1)
(
1− e

−
∫ Tn
Tn−1

y( j,i)(t,u)du
)

∑N
n=1
δn D( j,i)(t, Tn)

∼ 1
TN − T0

∫ TN

T0

y( j,i)(t, u)du.

4The assumption seems reasonable for the recent data studied in [13]. 16 / 90
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Modeling framework of Interest rates

Symmetric perfectly collateralized price is becoming the market
benchmark, at least for standardized products.
”Term structure construction procedures”: 5

.

.

. ..

. .

(1), OIS⇒ c(i)(0, T)(T-maturity instantaneous fwd rate at time 0)

(2), results of (1) + IRS + TS ⇒ B(i)(0, T; τ) (i-currency forward Libor-OIS
spread with tenor τ)

(3), results of (1),(2) +CCS ⇒ y(i, j)(0, T)(funding spread)

Given the initial term structures, no-arbitrage dynamics of
c(i)(t, T),B(i)(t, T; τ) and y(i, j)(t, T) in HJM-framework can be constructed.

(For the detail, please see our paper [ 11], [20]. For other approaches, see

Bianchetti(2010), Mercurio(2009), Morini(2009), for instance.)

5Assume collateralization in domestic currency for OIS, IRS and TS. Assume
collateralization in USD for CCS (USD crosses).
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Curve Construction

Collateralized OIS

OISN(0)
N∑

n=1

∆n D(0, Tn) = D(0, T0) − D(0, TN)

Collateralized IRS

IRSM (0)
M∑

m=1

∆mD(0, Tm) =
M∑

m=1

δmD(0, Tm)ETm[L(Tm−1, Tm; τ)]

Collateralized TS 6

N∑
n=1

δn D(0, Tn)
(
ETn [L(Tn−1, Tn; τS)] + TSN(0)

)
=

M∑
m=1

δmD(0, Tm)ETm [L(Tm−1, Tm; τL )]

(∆m, ∆n, δm, δn: daycount fractions)

.

.

. ..

.

.

Market quotes of collateralized OIS, IRS, TS, (and a proper spline method) allow us to
determine all the relevant {D(0, T)}, and forward Libors {ETm [L(Tm−1, Tm, τ)]}.

6The short-tenor Leg may be compounded, and then exits additional small corrections.
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Curve Construction

Collateralized FX Forward: USD/JPY

Suppose USD= ( i), JPY= ( j) and collateral currency is USD.

Current time: t. Maturity: T

At T , one unit of ( i) is exchanged for K (fixed at t) units of ( j).

FX forward is the break-even value of K.

KEQ( j)

t

[
e−

∫ T
t (c( j)

s +y(i,i)
s )ds

]
= f ( j,i)

x (t)EQ(i)

t

[
e−

∫ T
t c(i)

s ds1
]
.7

f ( j,i)
x (t, T; ( i)) = f ( j,i)

x (t)
D(i)(t, T)

D( j)(t, T)
exp

(∫ T

t
y( j,i)(t, u)du

)
,

y( j,i)(t, T) = − ∂
∂T

ln ET( j)

t

[
e−

∫ T
t y( j,i)

s ds
]
.

FX Forward → Forward curve of funding spread ( {y( j,i)(t, T)})
CCS for longer maturities.

7 f ( j,i)
x (t) denotes spot FX rate at t that is, the price of the unit amount of currency (i) in

terms of currency ( j).
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Curve Construction

Remark: Constant Notional CCS vs MtM-CCS
(USD-LIBOR) is exchanged for (X-currency LIBOR + basis spread).

Constant Notional CCS (CNCCS)

Notional of both legs are kept constant.

Mark-to-Market CCS (MtMCCS)

Notional of currency X is kept constant at NX.
Notional of USD is readjusted to f (USD;X)

x × NX at every start of
LIBOR accrual period.
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Curve Construction

Remark: the difference between MtM and Constant notional basis spreads:

BMtM
N

− BCN
N
=

∑N
n=1
δ(i)n D(i)(0, Tn)ET(i)

n

[(
f (i, j)
x (Tn−1)

f (i, j)
x (0)

− 1
)

B(i)(Tn−1, Tn)
]

∑N
n=1
δ

( j)
n D( j,i)(0, Tn)

,

where B(i)(Tn−1, Tn) stands for the Libor-OIS spread of the currency i at Tn−1. This
spread is not zero in general.

For the two USDJPY CCSs, the two swaps should have the same basis spreads if

USD LIBOR-OIS spreads are all zero. This held approximately well before the Lehman

crisis but the spread has been far from zero since then. If USD interest rate level is

higher than JPY, as is usually the case, the equation tells us that the spread for

MtMCCS is quite likely to be higher than that of CNCCS, BMtM
N

> BCN
N

. The size of

spread may not be negligible dependent on situations, and hence it is worthwhile

paying enough attention to the difference in this post crisis era.
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Curve Construction

Ry( j, i) =
(∫ T

0 y j,i (0, u)du
)
/T(funding spread curve): posting USD as collateral tends

to be expensive for collateral payers. 22 / 90
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Curve Construction

.

Close relationship - CCS Basis and Funding Spread -

.

.

.

. ..

.

.

A significant portion of CCS spreads movement stems from the change in
the funding spreads. Libor-OIS spread seems to have minor effect. 23 / 90
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HJM-framework under full collateralization

.

.

. ..

.

.

dc(i)(t, s) = σ(i)
c (t, s) ·

(∫ s

t
σ(i)

c (t, u)du
)

dt + σ(i)
c (t, s) · dWQ(i)

t

dy(i,k)(t, s) = σ(i,k)
y (t, s) ·

(∫ s

t
(σ(i,k)

y (t, u) + σi
c(t, u))du

)
dt + σ(i,k)

y (t, s) · dWQ(i)

t

dB(i)(t, T; τ)

B(i)(t, T; τ)
= σ(i)

B
(t, T; τ) ·

(∫ T

t
σ(i)

c (t, s)ds
)

dt + σ(i)
B

(t, T; τ) · dWQ(i)

t

d f (i, j)
x (t)

f (i, j)
x (t)

=
(
c(i)(t) − c( j)(t) + y(i, j)(t)

)
dt + σ(i, j)

X
(t) · dWQ(i)

t
,

B(i)(t, Tk; τ) = E
T(i)

k

t

[
L(i)(Tk−1, Tk; τ)

]
− 1

δ(i)
k

(
D(i)(t, Tk−1)

D(i)(t, Tk)
− 1

)

is forward LIBOR-OIS spread.
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Choice of Collateral Currency

.

Special Cases

.

.

.

. ..

.

.

Case 3 : Multiple Eligible Collaterals

bilateral perfect collateralization (δ1 = δ2 = 1)

both parties choose the optimal currency from the eligible collateral
set C. Currency (i) is used as the evaluation currency.

V(i)
t
= EQ(i)

[∫
] t,T]

exp
(
−

∫ s

t

(
c(i)

u + max
k∈C

[y(i,k)
u ]

)
du

)
dDs

∣∣∣∣∣∣Ft

]
The party who needs to post collateral has optionality.

The cheapest collateral currency is chosen based on CCS information.
To choose ”strong” currency, such as USD,
is expensive for the collateral payer.
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Choice of Collateral Currency

.

Role of y( j,i)

.

.

.

. ..

.

.

Optimal behavior of collateral payer can significantly change the
derivative value.

Payment currency and USD as eligible collateral is relatively
common. Then, the effective discounting factor becomes

D( j)(t, T) ⇒ ET( j)

t

[
e−

∫ T

t
max{y( j,USD)(s),0}ds

]
D( j)(t, T)

except correlation effects.

Volatility of y( j,USD) is an important determinant. (Embedded
option change effective discounting factor, which crucially
depends on the volatility of funding spread.)
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Choice of Collateral Currency

vols tend to be 50 bps in a calm market, but they were more than a

percentage point just after the market crisis, which reflects a significant

widening of the CCS basis to seek USD cash in the low liquidity market.
27 / 90
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Choice of Collateral Currency

Figure: Modification of JPY discounting factors based on HW model for y(J PY,USD) as of 2010/3/16.

the effective discounting rate is increased by around 50 bps annually even when the annualized vol. of y(J PY,USD) is 50 bps.
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More generic situations: marginal impact of asymmetry

Vt = EQ

[∫
] t,T]

exp
(
−

∫ s

t

(
ru − µ(u,Vu)

)
du

)
dDs

∣∣∣∣∣∣Ft

]
µ(t, v) = ỹ1

t 1{v<0} + ỹ2
t 1{v≥0}

ỹi
t = δi

t y
i
t − (1− δi

t)
+(l i

t h
i
t) + (δi

t − 1)+(l j
t
h j

t
)

Make use of Gateaux derivative(GD) as the first-order Approximation 8:

lim
ϵ↓0

sup
t

∣∣∣∣∣∣∇Vt(η̄; η) −
Vt(η̄ + ϵη) − Vt(η̄)

ϵ

∣∣∣∣∣∣ = 0, (η,η̄: bounded and predictable)

We want to expand the price around a symmetric benchmark price .

µ(t, v) = yt + ∆ỹ1
t 1{v<0} + ∆ỹ2

t 1{v≥0}, (∆ỹi
t
= ỹi

t
− yt)

Calculate GD at symmetric µ = y point.

Vt(µ) ≃ Vt(y) + ∇Vt(y, µ − y)
8Duffie&Skiadas (1994), Duffie&Huang (1996)
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Asymmetric Collateralization(marginal impact of asymmetry)

Then, Vt is decomposed as Vt = V t + ∇Vt , where

V t = EQ

[∫
] t,T]

exp
(
−

∫ s

t
(ru − yu)du

)
dDs

∣∣∣∣∣∣Ft

]
∇Vt = EQ

[∫ T

t
e−

∫ s
t (ru−yu)duVs

(
∆ỹ1

s1{Vs<0} + ∆ỹ2
s1{Vs≥0}

)
ds

∣∣∣∣∣∣Ft

]

.

.

. ..

.

.

If y is chosen in such a way that it reflects the funding cost of the standard
collateral agreements, V turns out to be the market benchmark price , and
∇V represents the correction for it.
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Asymmetric Collateralization(marginal impact of asymmetry)

An example of asymmetric perfect collateralization

party 1 choose optimal currency from the eligible collateral set C, but
the party 2 can only use currency (i) as collateral, either due to the
asymmetric CSA or lack of easy access to foreign currency pool. The
evaluation (payment) currency is (i).

V t = EQ(i)
[∫

] t,T]
exp

(
−

∫ s

t
c(i)

u du
)

dDs

∣∣∣∣∣∣Ft

]
∇Vt = EQ(i)

[∫ T

t
exp

(
−

∫ s

t
c(i)

u du
) [−Vs

]+ max
k∈C

[y(i,k)
s ]

∣∣∣∣∣∣Ft

]
Vt ≃ V t + ∇Vt

⇒ Expansion around the symmetric collateralization with currency (i).
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Asymmetric Collateralization(marginal impact of asymmetry)

Numerical Example of ∇V for JPY-OIS 9.
Eligible collateral are USD and JPY for party- 1 but only JPY for party- 2.

OIS rate is set to make V = 0.
Difference between Receiver and Payer comes from up-ward sloping term
structure. (the receiver’s mark-to-market value tends to be negative in the long
end of the contract, which makes the optionality larger.)

9based on the data in early 2010, see [15] for the detail. 32 / 90
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Imperfect Collateralization

.

CVA as the Deviation from the Perfect Collateralization

.

.

.

. ..

.

.

Assume the both parties use the same currency for simplicity, and
hence y1 = y2 = y.

µ(t, v) = yt −{(
(1− δ1t )yt + (1− δ1t )

+(l1t h1
t ) − (δ1t − 1)+(l2t h2

t )
)

1{v<0}

+
(
(1− δ2t )yt + (1− δ2t )

+(l2t h2
t ) − (δ2t − 1)+(l1t h1

t )
)

1{v≥0}
}

GD(Gateaux derivative) around µ = y decomposes the price into three
parts:

Symmetric perfectly collateralized benchmark price
(1− δi )y1{v≶0} ⇒ Collateral Cost Adjustment (CCA)
Remaining h dependent terms ⇒ Credit Value Adjustment (CVA)

Vt ≃ V t + ∇Vt

= V t + CCA + CVA
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Imperfect Collateralization

V t = EQ
[∫

] t,T]
exp

(
−

∫ s

t
(ru − yu)du

)
dDs

∣∣∣∣∣∣Ft

]
CCA = EQ

[∫ T

t
e−

∫ s
t (ru−yu)duys

(
(1− δ1s)[−Vs]+ − (1− δ2s)[Vs]+

)
ds

∣∣∣∣∣∣Ft

]
CVA =

EQ
[∫ T

t
e−

∫ s
t (ru−yu)du(l1sh1

s)
[
(1− δ1s)+[−Vs]+ + (δ2s − 1)+[Vs]+

]
ds

−
∫ T

t
e−

∫ s
t (ru−yu)du(l2sh2

s)
[
(1− δ2s)+[Vs]+ + (δ1s − 1)+[−Vs]+

]
ds

∣∣∣∣∣∣Ft

]

The discounting rate is different from the risk-free rate and reflects the funding
cost of collateral, while the terms in CVA are pretty similar to the usual result of
bilateral CVA.

Dependence among y, δ and other variables such as V, hi is particularly
important. ⇒ New type of Wrong (Right)-way Risk. (e.g. y is closely related to
the CCS basis spread. Hence, y is expected to be highly sensitive to the market
liquidity, and is also strongly affected by the overall market credit conditions.)
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Collateral Thresholds

Thresholds: Γi > 0 for party- i: A threshold is a level of exposure below
which collateral will not be called, and hence it represents an amount
of uncollateralized exposure. Only the incremental exposure will be
collateralized if the exposure is above the threshold.

.

Case of perfect collateralization above the thresholds

.

.

.

. ..

.

.

St = βt EQ
[∫

] t,T]
β−1

u 1{τ>u}
{
dDu + q(u,Su)Sudu

}
+

∫
] t,T]
β−1

u 1{τ≥u}
{
Z1(u,Su−)dH1

u + Z2(u,Su−)dH2
u

}∣∣∣∣∣∣Ft

]

q(t,St ) = y1
t

1+ Γ
1
t

St

 1{St<−Γ1
t
} + y2

t

1− Γ
2
t

St

 1{St>Γ
2
t
}

Z1(t,St ) = St


1+ l1t

Γ1
t

St

 1{St<−Γ1
t
} + R1

t 1{−Γ1
t
≤St<0} + 1{St≥0}


Z2(t,St ) = St


1− l2t

Γ2
t

St

 1{St≥Γ2
t
} + R2

t 1{0≤St<Γ
2
t
} + 1{St<0}
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Collateral Thresholds

Assume the domestic currency as collateral y1 = y2 = y.

V t = EQ
[∫

] t,T]
exp

(
−

∫ s

t
cudu

)
dDs

∣∣∣∣∣∣Ft

]
CCA = −EQ

[∫ T

t
e−

∫ s
t cu duysVs1{−Γ1

s≤Vs<Γ
2
s}

ds

∣∣∣∣∣∣Ft

]
+EQ

[∫ T

t
e−

∫ s
t cu duys

{
Γ1

s1{Vs<−Γ1
s}
− Γ2

s1{Vs≥Γ2
s}

}
ds

∣∣∣∣∣∣Ft

]
CVA =

EQ
[∫ T

t
e−

∫ s
t cu du

{
(l1sh1

s)
[−Vs1{−Γ1

s≤Vs<0} + Γ
1
s1{Vs<−Γ1

s}
]}

ds

∣∣∣∣∣∣Ft

]
−EQ

[∫ T

t
e−

∫ s
t cu du

{
(l2sh2

s)
[
Vs1{0<Vs≤Γ2

s}
+ Γ2

s1{Vs>Γ
2
s}
]}

ds

∣∣∣∣∣∣Ft

]
The terms in CCA reflect the fact that no collateral is posted in the range
{−Γ1

t
≤ Vt ≤ Γ2

t
}, and that the posted amount of collateral is smaller than |V|

by the size of threshold.

The terms in CVA represent bilateral uncollateralized credit exposure,

which is capped by each threshold.
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FBSDE Approximation Scheme

([17])

The forward backward stochastic differential equations (FBSDEs) have
been found particularly relevant for various valuation problems (e.g.
pricing securities under asymmetric/imperfect collateralization ,
optimal portfolio and indifference pricing issues in incomplete and/or
constrained markets).

Their financial applications are discussed in details for example,
El Karoui, Peng and Quenez [1997], Ma and Yong [2000], a recent book
edited by Carmona [2009], Cr épey [2011], and references therein.

We will present a simple analytical approximation with perturbation
scheme for the non-linear FBSDEs.
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FBSDE Approximation Scheme - Setup-

We consider the following FBSDE:

dVt = − f (Xt ,Vt , Z t)dt + Z t · dWt (6.1)

VT = Φ(XT), (6.2)

where V takes the value in R, W is a r-dimensional Brownian
motion, and Xt ∈ Rd is assumed to follow a diffusion which is
the solution to the (forward) SDE:

dXt = γ0(Xt)dt + γ(Xt) · dWt ; X0 = x . (6.3)

We assume that the appropriate regularity conditions are
satisfied for the necessary treatments.
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Perturbative Expansion for Non-linear Generator

In order to solve the pair of (Vt , Z t) in terms of Xt , we extract
the linear term from the generator f and treat the residual
non-linear term as the perturbation to the linear FBSDE .

We introduce the perturbation parameter ϵ, and then write the
equation as

dV(ϵ)
t
= c(Xt)V

(ϵ)
t

dt − ϵg(Xt ,V
(ϵ)
t
, Z(ϵ)

t
)dt + Z(ϵ)

t
· dWt (6.4)

V(ϵ)
T
= Φ(XT) ,

where ϵ = 1 corresponds to the original model by 10

f (Xt ,Vt , Z t) = −c(Xt)Vt + g(Xt ,Vt , Z t) . (6.5)

10Or, one can consider ϵ = 1 as simply a parameter convenient to count the
approximation order. The actual quantity that should be small for the approximation is the
residual part g.
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Perturbative Expansion for Non-linear Generator

One should choose the linear term c(Xt)V
(ϵ)
t

in such a way that
the residual non-linear term g becomes as small as possible to
achieve better convergence.

Now, we are going to expand the solution of BSDE ( 6.4) in
terms of ϵ: that is, suppose V(ϵ)

t
and Z(ϵ)

t
are expanded as

V(ϵ)
t
= V(0)

t
+ ϵV(1)

t
+ ϵ2V(2)

t
+ · · · (6.6)

Z(ϵ)
t
= Z(0)

t
+ ϵZ(1)

t
+ ϵ2Z(2)

t
+ · · · . (6.7)
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Perturbative Expansion for Non-linear Generator

Once we obtain the solution up to the certain order, say k for
example, then by putting ϵ = 1,

Ṽt =

k∑
i=0

V(i)
t
, Z̃ t =

k∑
i=0

Z(i)
t

(6.8)

is expected to provide a reasonable approximation for the
original model as long as the residual term g is small enough to
allow the perturbative treatment.

V(i)
t

and Z(i)
t

, the corrections to each order can be calculated
recursively using the results of the lower order approximations.
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Recursive Approximation
Zero-th Order

For the zero-th order of ϵ, one can easily see the following
equation should be satisfied:

dV(0)
t
= c(Xt)V

(0)
t

dt + Z(0)
t
· dWt (6.9)

V(0)
T
= Φ(XT) . (6.10)

It can be integrated as

V(0)
t
= E

[
e−

∫ T

t
c(Xs)dsΦ(XT)

∣∣∣∣∣Ft

]
(6.11)

which is equivalent to the pricing of a standard European
contingent claim, and V(0)

t
is a function of Xt .

Applying It ô’s formula (or Malliavin derivative), we obtain Z(0)
t

as
a function of Xt , too.
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Recursive Approximation
First Order

Now, let us consider the process V(ϵ) − V(0). One can see that its
dynamics is governed by

d
(
V(ϵ)

t
− V(0)

t

)
= c(Xt)

(
V(ϵ)

t
− V(0)

t

)
dt

− ϵg(Xt ,V
(ϵ)
t
, Z(ϵ)

t
)dt +

(
Z(ϵ)

t
− Z(0)

t

) · dWt

V(ϵ)
T
− V(0)

T
= 0 . (6.12)

Now, by extracting the ϵ-first order term, we can once again recover
the linear FBSDE

dV(1)
t
= c(Xt)V

(1)
t

dt − g(Xt ,V
(0)
t
, Z(0)

t
)dt + Z(1)

t
· dWt

V(1)
T
= 0 , (6.13)

which leads to

V(1)
t
= E

[∫ T

t
e−

∫ u
t c(Xs)dsg(Xu,V

(0)
u , Z

(0)
u )du

∣∣∣∣∣∣Ft

]
. (6.14)
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Recursive Approximation

Because V(0)
u and Z(0)

u are some functions of Xu, we obtain Z(1)
t

as a function of Xt through It ô’s formula (or Malliavin
derivative).

In exactly the same way, one can derive an arbitrarily higher
order correction. Due to the ϵ in front of the non-linear term g,
the system remains to be linear in the every order of
approximation. e.g.

dV(2)
t
= c(Xt)V

(2)
t

dt −
(
∂

∂v
g(Xt ,V

(0)
t
, Z(0)

t
)V(1)

t

+ ∇zg(Xt ,V
(0)
t
, Z(0)

t
) · Z(1)

t

)
dt + Z(2)

t
· dWt

V(2)
T
= 0
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Evaluation of (V(i), Z(i)) in terms of X

Suppose we have succeeded to express backward components
(Vt , Z t) in terms of Xt up to the (i − 1)-th order. Now, in order to
proceed to a higher order approximation, we have to give the
following form of expressions with some deterministic function
G(·) in terms of the forward components Xt , in general:

V(i)
t
= E

[∫ T

t
e−

∫ u

t
c(Xs)dsG

(
Xu

)
du

∣∣∣∣∣∣Ft

]
(6.15)
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Evaluation of (V(i), Z(i)) in terms of X

Even if it is impossible to obtain the exact result, we can still
obtain an analytic approximation for (V(i)

t
, Z(i)

t
).

For instance, an asymptotic expansion method allows us to
obtain the expression. (See [ 28]-[29], [38]-[41] for the detail of
the asymptotic expansion method.)
In fact, applying the method, [ 17] has provided some explicit
approximations for V(i)

t
and Z(i)

t
.

Also, [ 18] has explicitly derived an approximation formula for
the dynamic optimal portfolio in an incomplete market and
confirmed its accuracy comparing with the exact result by
Cole-Hopf transformation. (Zariphopoulou [2001])
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Remark on Approximation of Coupled FBSDEs

Let us consider the following generic coupled non-linear FBSDE:

dVt = − f (t, Xt ,Vt , Z t)dt + Z t · dWt

VT = Φ(XT)

dXt = γ0(t, Xt ,Vt , Z t)dt + γ(t, Xt ,Vt , Z t) · dWt ; X0 = x .

We can treat this case in the similar way as before(decoupled case) by
introducing the following perturbation to the forward process:

dṼt = c(t, X̃t)Ṽt dt − ϵg(t, X̃t , Ṽt , Z̃ t)dt + Z̃ t · dWt

ṼT = Φ(X̃T)

dX̃t =
(
r(t, X̃t) + ϵµ(t, X̃t , Ṽt , Z̃ t)

)
dt

+
(
σ(t, X̃t) + ϵη(t, X̃t , Ṽt , Z̃ t)

)
· dWt

We can also apply the same method under PDE(partial differential
equation) formulation based on four step scheme (e.g. Ma-Yong [2000]).

Please consult [ 17] for the details.
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A forward agreement with bilateral default risk

As the first example, we consider a toy model for a forward agreement
on a stock with bilateral default risk of the contracting parties, the
investor (party- 1) and its counter party (party- 2). The terminal payoff of
the contract from the view point of the party- 1 is

Φ(ST) = ST − K (6.16)

where T is the maturity of the contract, and K is a constant.

We assume the underlying stock follows a simple geometric Brownian
motion:

dSt = rSt dt + σSt dWt (6.17)

where the risk-free interest rate r and the volatility σ are assumed to
be positive constants.

The default intensity of party- i h i is specified as

h1 = λ, h2 = λ + h (6.18)

where λ and h are also positive constants.
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A forward agreement with bilateral default risk

In this setup, the pre-default value of the contract at time t, Vt , follows

dVt = rV t dt − h1 max(−Vt , 0)dt + h2 max(Vt , 0)dt + Z t dWt

= (r + λ)Vt dt + h max(Vt , 0)dt + Z t dWt (6.19)

VT = Φ(ST) . (6.20)

Now, following the previous arguments, let us introduce the expansion
parameter ϵ, and consider the following FBSDE:

dV(ϵ)
t
= µV(ϵ)

t
dt − ϵg(V(ϵ)

t
)dt + Z(ϵ)

t
dWt (6.21)

V(ϵ)
T
= Φ(ST) (6.22)

dSt = St(rdt + σdWt) , (6.23)

where we have defined µ = r + λ and g(v) = −hv1{v≥0}.
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A forward agreement with bilateral default risk

The next figure shows the numerical results of the forward contract
with bilateral default risk with various maturities with the direct
solution from the PDE (as in Duffie-Huang [1996]).

We have used

r = 0.02, λ = 0.01, h = 0.03, (6.24)

σ = 0.2, S0 = 100 , (6.25)

where the strike K is chosen to make V(0)
0
= 0 for each maturity.

We have plot V(1) for the first order, and V(1) + V(2) for the second order.
(Note that we have put ϵ = 1 to compare the original model.)
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A forward agreement with bilateral default risk

Figure: Numerical Comparison to PDE
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A forward agreement with bilateral default risk

One can observe how the higher order correction improves the
accuracy of approximation.

In this example, the counter party is significantly riskier than the
investor, and the underlying contract is volatile.

Even in this situation, the simple approximation to the second order
works quite well up to the very long maturity.

In another example of [ 17] 11, our second order approximation has
obtained a fairly close value( 2.953) to the one( 2.95 with std 0.01) by a
regression-based Monte Carlo simulation of Gobet-Lemor-Warin[2005].

11a self-financing portfolio under the situation where there exists a difference between the
lending and borrowing interest rates
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Example: CVA

([12])

When this technique is applied to evaluation of a pre-default
contract value with bilateral counter party risk, Its first order
approximation term can be regarded as CVA(credit value
adjustment) 12.

We present a simple example of an analytic approximation for
this term by our 3rd order asymptotic expansion method.

In particular, we consider a forex forward contract with bilateral
counter party risk, where both parties post their collateral
perfectly with the constant time-lag ( ∆) by the same currency as
the payment currency. We also assume the risk-free interest
rate is equal to the collateral rate.

12Our convention of CVA is different from other literatures by sign where it is defined as
the “charge” to the clients. Thus, our CVA = -CVA.
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FBSDE

We consider a forward contract on forex Sδ with strike K and
maturity τ; the relevant FBSDE for the pre-default contract value is
given as follows: ( h j,δ ( j = 1, 2): each counter party’s hazard rate
process; ϵ, δ: perturbative and expansion parameters, respectively.)

dVϵ
t
= rV ϵ

t
dt − ϵ f (h1,δ

t
, h2,δ

t
,Vϵ

t
,Vϵ

t−∆)dt + Zϵ
t
dWt ; Vτ = Sδτ − K,

f (h1,δ
t
, h2,δ

t
,Vϵ

t
,Vϵ

t−ϵ) = h1,δ
t

(Vϵ
t−∆ − Vϵ

t
)+ − h2,δ

t
(Vϵ

t
− Vϵ

t−∆)
+

dh j,δ
t
= α j h j,δ

t
dt + δσh j h j,δ

t
(

j∑
η=1

c j,ηdWη
t
); h j,δ

0
= h j

0
, ( j = 1, 2)

dSδ
t
= µSδ

t
dt + δνδ

t

(
Sδ

t

)β
(

3∑
η=1

c3,ηdWη
t
); Sδ

0
= s0, µ = r − r f ,

dνδ
t
= κ(θ − νδ

t
)dt + δξνδ

t
(

4∑
η=1

c4,ηdWη
t
); νδ

0
= ν0.
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First order of ϵ

The first order equation is expressed as follows:

dV1
t = rV1

t dt − f (t,V0
t
,V0

t−∆)dt +
4∑
η=1

Z1
t,ηdWη

t
; V1

τ = 0

Then, our CVA is represented by the following:

V1
t =

∫ T

t
e−r(u−t)Et

[
f (u,V0

u,V
0
u−∆)

]
du

f (u,V0
u,V

0
u−∆) = h1,δ

u · (V
0
u−∆ − V0

u)+ − h2,δ
u · (V

0
u − V0

u−∆)
+,

where Vu−∆ = 0 when u < t + ∆.

V0
u = e−r f (τ−u)Sδu − e−r(τ−u)K,

V0
u − V0

u−∆ = e−r f (τ−u)Sδu − e−r f (τ−u+∆)Sδ
u−∆ − k(u; ∆, r),

k(u; ∆, r) := e−r(τ−u)(1− e−r∆)K.
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Numerical Example

We apply the asymptotic expansion method to evaluation of
IC(t, u) = e−r(u−t)Et

[
f (u,V0

u,V
0
u−∆)

]
up to the third order. Then,

the value of CVA is approximated by

CV A(t, τ) =

∫ τ

t
IC AE(t, u)du+ o(δ3). (6.26)

Due to the analytical approximation of each IC AE(t, u), we have
no problem in computation, which is very fast.
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Numerical Example

The parameters are set as follows:

parameters of h1;
h1

0
= 0.02, α1 = −0.02, σh1 = 20%.

parameters of h2;
h2

0
= 0.01, α2 = 0.02, σh2 = 30%.

parameters of S;
S0 = 10, 000, r = µ = 1%, β = 1.
parameters of ν;
ν0 = 10%, κ = 1, θ = 20%, ξ = 30%.
correlation matrix

h1 h2 S ν

h1 1 0.5 -0.3 0.2
h2 0.5 1 0.1 0.1
S -0.3 0.1 1 -0.8
ν 0.2 0.1 -0.8 1
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Density of CVA

We show the density function of approximate CVA by the
asymptotic expansion method with Monte Carlo simulation. The
maturity of forward contract is τ, T denotes the future time when
CVA is evaluated, and ∆ denotes the lag of collateral.

maturity ( τ): 5 years, evaluation date ( T): 2.5 years.
strike: 10, 000.
time step size: 1

400year.
the number of trials: 325,000 with antithetic variates.

Procedure:

.

.

.

1 implement Monte carlo simulation of the state variables ( h1, h2, S, ν)
until T.

.

.

.

2 given each realization of the state variables, compute IC AE(T, u).

.

.

.

3 integrate IC AE(T, u) numerically with respect to the time parameter u
from T to τ, and plot the values and their frequencies after
normalization.

58 / 90



Introduction Framework Symmetric Asymmetric Imperfect FBSDE Approximation Scheme Perturbation Technique for Non-linear FBSDEs with Interacting Particle Method References

Density of CVA

Figure: Density Functions of CVA with Different Time-Lags
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Density of CVA

The longer the time lag is, the wider the density is.

The mode (average) moves to the right when the time-lag
becomes longer.

f (u,V0
u,V

0
u−∆) = h1,ϵ

u · (V
0
u−∆ − V0

u)+ − h2,ϵ
u · (V

0
u − V0

u−∆)
+.

When the first term increases, the CVA also increases.
The hazard rate h1 in the first term tends to be larger than h2 in
the second term in our parameterization.
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Perturbation Technique with Interacting Particle Method

([19], [12])

We will provide a straightforward simulation scheme to solve nonlinear
FBSDEs at each order of perturbative approximation.

Due to the convoluted nature of the perturbative expansion, it contains
multi-dimensional time integrations of expectation values, which make
standard Monte Carlo too time consuming.
To avoid nested simulations, we applied the particle representation
inspired by the ideas of branching diffusion models(e.g. McKean (1975),
Fujita (1966), Ikeda-Nagasawa-Watanabe (1965,1966,1968),
Nagasawa-Sirao (1969)).
Comparing the direct application of the branching diffusion method, our
method is expected to be less numerically intensive since the interested
system is already decomposed into a set of linear problems.
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Perturbation Technique with Interacting Particle Method

Again, let us introduce the perturbation parameter ϵ: dV(ϵ)
s = −ϵ f (Xs,V

(ϵ)
s , Z

(ϵ)
s )ds+ Z(ϵ)

s · dWs

V(ϵ)
T
= Ψ(XT),

(7.1)

where Xt ∈ Rd is assumed to follow a generic Markovian forward SDE

dXs = γ0(Xs)ds+ γ(Xs) · dWs; Xt = xt . (7.2)

Let us fix the initial time as t. We denote the Malliavin derivative of
Xu (u ≥ t) at time t as

Dt Xu ∈ Rr×d. (7.3)

62 / 90



Introduction Framework Symmetric Asymmetric Imperfect FBSDE Approximation Scheme Perturbation Technique for Non-linear FBSDEs with Interacting Particle Method References

Perturbation Technique with Interacting Particle Method

Its dynamics in terms of the future time u is specified by stochastic flow,
(Yt,u)i

j
= ∂x j

t
Xi

u

d(Yt,u)i
j
= ∂kγ

i
0
(Xu)(Yt,u)k

j
du+ ∂kγ

i
a(Xu)(Yt,u)k

j
dWa

u

(Yt,t)i
j
= δi

j
(7.4)

where ∂k denotes the differential with respect to the k-th component of
X, and δi

j
denotes Kronecker delta. Here, i and j run through {1, · · · , d}

and {1, · · · , r} for a. Here, we adopt Einstein notation which assumes
the summation of all the paired indexes.

Then, it is well-known that

(Dt Xi
u)a = (Yt,uγ(xt))i

a,

where a ∈ {1, · · · , r} is the index of r-dimensional Brownian motion.
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Perturbation Technique with Interacting Particle Method

ϵ-0th order: For the zeroth order, it is easy to see

V(0)
t
= E

[
Ψ(XT)

∣∣∣∣Ft

]
(7.5)

Za(0)
t

= E
[
∂iΨ(XT)(YtTγ(Xt))i

a

∣∣∣∣Ft

]
. (7.6)

It is clear that they can be evaluated by standard Monte Carlo
simulation. However, for their use in higher order approximation, it is
crucial to obtain explicit approximate expressions for these two
quantities. We apply asymptotic expansion technique as before.

In the following, let us suppose we have obtained the solutions up to a
given order of asymptotic expansion, and write each of them as a
function of xt :  V(0)

t
= v(0)(xt)

Z(0)
t
= z(0)(xt).

(7.7)
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Perturbation Technique with Interacting Particle Method

ϵ-1st order:

V(1)
t
=

∫ T

t
E
[
f (Xu,V

(0)
u , Z

(0)
u )

∣∣∣∣Ft

]
du

=

∫ T

t
E
[
f
(
Xu, v(0)(Xu), z(0)(Xu)

)∣∣∣∣Ft

]
du (7.8)

Next, define the new process for (s > t):

V̂(1)
ts
= e

∫ s
t λu duV(1)

s , (7.9)

where deterministic positive process λt (It can be a positive constant
for the simplest case.).
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Perturbation Technique with Interacting Particle Method

Then, its dynamics is given by

dV̂(1)
ts
= λsV̂

(1)
ts

ds− λs f̂ ts(Xs, v(0)(Xs), z(0)(Xs))ds+ e
∫ s

t λu duZ(1)
s · dWs ,

where

f̂ ts(x, v(0)(x), z(0)(x)) =
1

λs
e
∫ s

t λu du f (x, v(0)(x), z(0)(x)).

Since we have V̂(1)
t t
= V(1)

t
, one can easily see the following relation

holds:

V(1)
t
= E

[∫ T

t
e−

∫ u
t λsdsλu f̂ tu(Xu, v(0)(Xu), z(0)(Xu))du

∣∣∣∣∣∣Ft

]
(7.10)

As in credit risk modeling (e.g. Bielecki-Rutkowski [2002]), it is the
present value of default payment where the default intensity is λs with
the default payoff at s(> t) as f̂ ts(Xs, v(0)(Xs), z(0)(Xs)). Thus, we obtain
the following proposition.
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Perturbation Technique with Interacting Particle Method

.

Proposition

.

.

.

. ..

.

.

The V(1)
t

in (7.8) can be equivalently expressed as

V(1)
t
= 1{τ>t}E

[
1{τ<T} f̂ tτ

(
Xτ, v(0)(Xτ), z(0)(Xτ)

)∣∣∣∣Ft

]
. (7.11)

Here τ is the interaction time where the interaction is drawn independently from

Poisson distribution with an arbitrary deterministic positive intensity process λt . f̂
is defined as

f̂ ts(x, v(0)(x), z(0)(x)) =
1

λs
e
∫ s

t λu du f (x, v(0)(x), z(0)(x)) . (7.12)
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Perturbation Technique with Interacting Particle Method

Now, let us consider the component Z(1). It can be expressed as

Z(1)
t
=

∫ T

t
E

[
Dt f

(
Xu, v(0)(Xu), z(0)(Xu)

)∣∣∣∣Ft

]
du (7.13)

Firstly, let us observe the dynamics of Malliavin derivative of V(1)

follows

d(DtV
(1)
s ) = −(Dt Xi

s)∇i(x, v(0), z(0)) f (x, v(0), z(0)) + (Dt Z
(1)
s ) · dWs;

DtV
(1)
t
= Z(1)

t
, (7.14)

where

∇i(x, v(0), z(0)) ≡ ∂i + ∂iv(0)(x)∂v + ∂i za(0)(x)∂za , (7.15)

f (x, v(0), z(0)) ≡ f (x, v(0)(x), z(0)(x)). (7.16)
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Perturbation Technique with Interacting Particle Method

Define, for (s > t),

D̂tV
(1)
s = e

∫ s
t λu du(DtV

(1)
s ). (7.17)

Then, its dynamics can be written as

d(D̂tV
(1)
s ) = λs(D̂tV

(1)
s )ds− λs(Dt X i

s)∇i(Xs, v(0), z(0)) f̂ ts(Xs, v(0), z(0))ds

+e
∫ s

t λu du(Dt Z
(0)
s ) · dWs. (7.18)

We again have

D̂tV
(1)
t
= Z(1)

t
. (7.19)

Hence,

Z(1)
t
= E

[∫ T

t
e−

∫ u
t λsdsλu(Dt Xi

u)∇i(Xu, v(0), z(0)) f̂ tu(Xu, v(0), z(0))du

∣∣∣∣∣∣Ft

]
.(7.20)
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Perturbation Technique with Interacting Particle Method

Thus, following the same argument for the previous proposition, we
have the result below:

.

Proposition

.

.

.

. ..

.

.

Z(1)
t

in (7.13) is equivalently expressed as

Za(1)
t
= 1{τ>t}E

[
1{τ<T}(Ytτγ(Xτ))i

a∇i(Xτ, v(0), z(0)) f̂ tτ(Xτ, v(0), z(0))
∣∣∣∣Ft

]
(7.21)

where the definitions of random time τ and the positive deterministic process λ

are the same as those in the previous proposition.
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Perturbation Technique with Interacting Particle Method
Monte Carlo Method

Now, we have a new particle interpretation of (V(1), Z(1)) as follows:

V(1)
t
= 1{τ>t}E

[
1{τ<T} f̂ tτ

(
Xτ, v(0), z(0)

)∣∣∣∣Ft

]
(7.22)

Z(1)
t
= 1{τ>t}E

[
1{τ<T}(Yt,τγ(Xτ))i∇i(Xτ, v(0), z(0)) f̂ tτ(Xτ, v(0), z(0))

∣∣∣∣Ft

]
(7.23)

which allows efficient time integration with the following Monte Carlo
scheme:
• Run the diffusion processes of X and Y
• Carry out Poisson draw with probability λs∆s at each time s and if ”one” is
drawn, set that time as τ.
• Then stores the relevant quantities at τ, or in the case of (τ > T) stores 0.
• Repeat the above procedures and take their expectation.

71 / 90



Introduction Framework Symmetric Asymmetric Imperfect FBSDE Approximation Scheme Perturbation Technique for Non-linear FBSDEs with Interacting Particle Method References

Z(2)
t

The second order stochastic flow: for t < s < u,

(Γt,s,u)i
jk

:=
∂2

∂x j
t
∂xk

s

Xi
u; ((Γt,s,s)i

jk
= 0).
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Figure:
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Numerical Example

V: pre-default value process,
h: hazard rate for the option seller,
S: the underlying asset price,
ν: the volatility of the asset price.

Both parties post no collateral or their collateral perfectly with the
constant time-lag ( ∆) by the same currency as the payment currency.
We also assume the risk-free interest rate is equal to the collateral rate
as 0 for simplicity.

dVϵ
t
= −ϵ f (ht ,Vϵt ,V

ϵ
t−∆)dt + Zϵ

t
dWt ;

VT = (ST − K)+

f (ht ,Vϵt ,V
ϵ
t−∆) = −ht(Vϵt )

+, for the no collateral case or ,

f (ht ,Vϵt ,V
ϵ
t−∆) = −ht(Vϵt − Vϵ

t−∆)
+.
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Numerical Example

CEV-Heston model for asset price processes,

CIR model for the hazard rate process.

We apply our 3rd order asymptotic expansion method for
approximations of V0. (δ ∈ (0, 1] below stands for the expansion
parameter. See [ 28]-[29], [38]-[41] for the detail of the asymptotic
expansion method.)

dhδ
t
= κ

(
θ − hδ

t

)
dt + δγ

√
hδ

t
c1dW1

t ; hδ
0
= h0

dSδ
t
= µiSδt dt + δζ

√
νδ

t

(
Sδ

t

)β
(

2∑
η=1

c2,ηdWη
t
); Sδ

0
= s0,

dνδ
t
= Λ

(
Θ − νδ

t

)
dt + δΓ

√
νδ

t
(

3∑
η=1

c3,ηdWη
t
); νδ

0
= ν0.
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Numerical Example

We set the parameters following Hull-White(2005),
Denault-Gauthier-Simonato(2009) and [ 37].

h(0) κ θ γ

h 2.38% 0.007 14.65% 7.83%

ν(0) Λ Θ Γ

ν 1 0.212 1 65.16%

S(0) µ ζ β

S 5.05% 0 3.50% 0.5

1 billion notional with 5 year maturity contract .

We will see the pre-default values up to the 2nd order for different
correlations of ( S vs h), (S vs v), and ( h vs v).

(Monte Carlo simulation) time step size : 0.005/year;

the number of trials : 2 millions; Poisson parameter: λs ≡ 1(constant).
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Numerical Example(Option Contracts)

Table: Pre-default values of option contracts without collateral (ATM)

Correlation -0.7 -0.35 0 0.35 0.7

S and h 0th 66.86bp 66.86bp 66.86bp 66.86bp 66.86bp
1st -5.11bp -6.75bp -8.64bp -10.78bp -13.20bp
2nd 0.27bp 0.48bp 0.77bp 1.14bp 1.59bp
Total 62.02bp 60.60bp 59.00bp 57.22bp 55.25bp

S and v 0th 65.64bp 66.27bp 66.86bp 67.40bp 67.89bp
1st -8.48bp -8.56bp -8.64bp -8.69bp -8.74bp
2nd 0.75bp 0.76bp 0.77bp 0.77bp 0.78bp
Total 57.91bp 58.47bp 59.00bp 59.48bp 59.93bp

h and v 0th 66.86bp 66.86bp 66.86bp 66.86bp 66.86bp
1st -7.67bp -8.14bp -8.64bp -9.16bp -9.70bp
2nd 0.62bp 0.69bp 0.77bp 0.85bp 0.94bp
Total 59.81bp 59.41bp 59.00bp 58.56bp 58.10bp
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Numerical Example(Option Contracts)

Table: Pre-default values of option contracts with collateral (time-lag:∆ = 0.1)

Correlation -0.7 -0.35 0 0.35 0.7

S and h 0th 66.86bp 66.86bp 66.86bp 66.86bp 66.86bp
1st -0.59bp -0.72bp -0.87bp -1.02bp -1.19bp
2nd 0.00bp 0.00bp 0.00bp 0.00bp 0.00bp
Total 66.27bp 66.14bp 65.99bp 65.84bp 65.67bp

S and v 0th 65.64bp 66.27bp 66.86bp 67.40bp 67.89bp
1st -0.74bp -0.81bp -0.87bp -0.92bp -0.98bp
2nd 0.00bp 0.00bp 0.00bp 0.00bp 0.00bp
Total 64.90bp 65.47bp 65.99bp 66.47bp 66.91bp

h and v 0th 66.86bp 66.86bp 66.86bp 66.86bp 66.86bp
1st -0.72bp -0.79bp -0.87bp -0.95bp -1.03bp
2nd 0.00bp 0.00bp 0.00bp 0.00bp 0.00bp
Total 66.14bp 66.07bp 65.99bp 65.91bp 65.83bp
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Numerical Example(Implied Volatility)

Table: Implied volatility of option contracts without collateral

Correlation -0.7 -0.35 0 0.35 0.7

S and h ATM*0.8 12.60% 11.84% 10.98% 10.00% 8.83%
ATM 13.83% 13.50% 13.15% 12.75% 12.31%
ATM*1.2 13.98% 13.79% 13.57% 13.30% 13.00%

S and v ATM*0.8 12.35% 11.76% 10.98% 9.99% 8.71%
ATM 12.90% 13.03% 13.15% 13.25% 13.35%
ATM*1.2 11.72% 12.71% 13.57% 14.31% 14.94%

h and v ATM*0.8 11.21% 11.10% 10.98% 10.85% 10.71%
ATM 13.33% 13.24% 13.15% 13.05% 12.94%
ATM*1.2 13.74% 13.66% 13.57% 13.47% 13.37%
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Numerical Example(Implied Volatility)

Table: Implied volatility of option contracts with collateral (time-lag:∆ = 0.1)

Correlation -0.7 -0.35 0 0.35 0.7

S and h ATM*0.8 15.66% 15.61% 15.57% 15.52% 15.47%
ATM 14.78% 14.75% 14.72% 14.68% 14.65%
ATM*1.2 14.40% 14.38% 14.35% 14.32% 14.29%

S and v ATM*0.8 16.91% 16.32% 15.57% 14.65% 13.56%
ATM 14.47% 14.60% 14.72% 14.83% 14.92%
ATM*1.2 12.34% 13.42% 14.35% 15.16% 15.85%

h and v ATM*0.8 15.62% 15.59% 15.57% 15.54% 15.51%
ATM 14.75% 14.74% 14.72% 14.70% 14.68%
ATM*1.2 14.38% 14.37% 14.35% 14.34% 14.32%
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Numerical Example(Implied Volatility)

Table: Implied volatility of default free option contracts without collateral

Correlation -0.7 -0.35 0 0.35 0.7

S and h ATM*0.8 15.96% 15.96% 15.96% 15.96% 15.96%
ATM 14.91% 14.91% 14.91% 14.91% 14.91%
ATM*1.2 14.48% 14.48% 14.48% 14.48% 14.48%

S and v ATM*0.8 17.26% 16.69% 15.96% 15.08% 14.02%
ATM 14.64% 14.78% 14.91% 15.03% 15.14%
ATM*1.2 12.43% 13.52% 14.48% 15.30% 16.00%

h and v ATM*0.8 15.96% 15.96% 15.96% 15.96% 15.96%
ATM 14.91% 14.91% 14.91% 14.91% 14.91%
ATM*1.2 14.48% 14.48% 14.48% 14.48% 14.48%
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Numerical Example(Implied Volatility)

Figure: Implied Volatilities
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