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Abstract

In recent years, we have observed dramatic increase of collateralization as an im-
portant credit risk mitigation tool in over the counter (OTC) market [6]. Combined
with the significant and persistent widening of various basis spreads, such as Libor-OIS
and cross currency basis, the practitioners have started to notice the importance of
difference between the funding cost of contracts and Libors of the relevant currencies.
In this article, we integrate the series of our recent works [1, 2, 4] and explain the
consistent construction of term structures of interest rates in the presence of collat-
eralization and all the relevant basis spreads, their no-arbitrage dynamics as well as
their implications for derivative pricing and risk management. Particularly, we have
shown the importance of the choice of collateral currency and embedded ”cheapest-
to-deliver” (CTD) option in a collateral agreement.
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1 Introduction

The recent financial crisis and the following liquidity and credit squeeze have caused signif-
icant and persistent widening of various basis spreads1. In particular, we have witnessed
drastic movement of cross currency swap (CCS), Libor-OIS, and tenor swap2 (TS) basis
spreads. In some occasions, the size of spreads has exceeded several tens of basis points,
which is far wider than the general size of bid/offer spreads. Furthermore, there has been
a dramatic increase of collateralization in financial contracts recent years, and it has be-
come almost a market standard among the major financial institutions, at least [6]. The
importance of the collateralization is mainly twofold: 1) reduction of the counterparty
credit risk, and 2) change of the funding cost of the trade. The first one is well recognized,
and there exist a large number of studies in the context of credit value adjustment (CVA).
Although it is not as obvious as the first one, the second effect is also important and it
has started to attract strong attentions among practitioners.

As we will see later, the details of collateralization specified in CSA (credit support
annex), the existence of various basis spreads change the effective discounting rate appro-
priate for the specific contract. Because of the characteristic of the products, the effects
are most relevant in interest rate and long-dated foreign exchange (FX) markets. These
findings cast a strong warning to the financial institutions using the standard Libor Mar-
ket Model (LMM), which treats the Libor as a risk-free interest rate and hence cannot
reflect the existence of various basis spreads and collateralization. These drawbacks make
the LMM incapable of calibrating to the relevant swap markets nor their dynamics, which
is likely to cause the financial firms overlooking critical risk exposures.

In this article, we provide a systematic solution for the above market developments
by integrating our series works, Fujii, Shimada & Takahashi (2009, 2009, 2010) [1, 2, 4].
We first present the pricing formula of derivatives under the collateralization, including
the case where the payment and collateral currencies are different. Based on this result,
we propose the procedures for the consistent term structure construction of collateralized
swaps in multi-currency environment. Secondly, we provide the no-arbitrage dynamics
under Heath-Jarrow-Morton (HJM) framework which is capable of calibrating to all the
relevant swaps and allow full stochastic modeling of basis spreads. Thirdly, we explain
the importance of the choice of collateral currency and the effects of embedded ”cheapest-
to-deliver” option in collateral agreement when it allows the replacement of collateral
currency. And then, we conclude.

As related works, we refer to Johannes & Sundaresan (2007) [7] (and its working paper)
as the first work focusing on the cost of collateral posting and studying its effect on the
swap par rates based on empirical analysis of the US treasury and swap markets. More
recently, Piterbarg (2010) [8] has used the similar formula given in [7] to take the collateral
cost into account for the option pricing in general, but he has not discussed the case where
the payment and collateral currencies are different, nor the term structure modeling of
interest rate and FX under the collateralization.

1A basis spread generally means the interest rate differentials between two different floating rates.
2It is a floating-vs-floating swap that exchanges Libors with two different tenors with a fixed spread in

one side.
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2 Pricing under the collateralization

This section reviews [1], our results on pricing derivatives under the collateralization. Let
us make the following simplifying assumptions about the collateral contract.

1. Full collateralization (zero threshold) by cash.

2. The collateral is adjusted continuously with zero minimum transfer amount.

In fact, the daily margin call is now quite popular in the market and there is also an
increasing tendency to include a provision for ”add-hoc call”, which allows the participants
to call margin arbitrary time in addition to the periodical regular calls. Furthermore, there
is a wide movement to reduce the threshold and minimum transfer amount since the various
studies indicate that the existence of meaningful size of these variables significantly reduces
the effectiveness of credit risk mitigation of collateralization, which results in higher CVA
charge in turn. These developments make our assumptions a good proxy for the market
reality at least for the standard fixed income products. Since the assumptions allow us
to neglect the loss given default of the counterparty, we can treat each trade/payment
separately without worrying about the non-linearity arising from the netting effects and
the asymmetric handling of exposure.

We consider a derivative whose payoff at time T is given by h(i)(T ) in terms of currency
”i”. We suppose that the currency ”j” is used as the collateral for the contract. Note
that the instantaneous return (or cost when it is negative ) by holding the cash collateral
at time t is given by

y(j)(t) = r(j)(t)− c(j)(t) , (2.1)

where r(j) and c(j) denote the risk-free interest rate and collateral rate of the currency
j, respectively. In the case of cash collateral, the collateral rate c(i) is usually given by
the overnight rate of the corresponding currency, such as Fed-Fund rate for USD. If we
denote the present value of the derivative at time t by h(i)(t) (in terms of currency i),

the collateral amount posted from the counterparty is given by
(
h(i)(t)/f (i,j)

x (t)
)
, where

f
(i,j)
x (t) is the foreign exchange rate at time t representing the price of the unit amount of
currency j in terms of currency i. These considerations lead to the following calculation
for the collateralized derivative price,

h(i)(t) = EQi
t

[
e−

∫ T
t r(i)(s)dsh(i)(T )

]
+ f (i,j)

x (t)E
Qj

t

[∫ T

t
e−

∫ s
t r(j)(u)duy(j)(s)

(
h(i)(s)

f
(i,j)
x (s)

)
ds

]
, (2.2)

where EQi
t [·] is the time t conditional expectation under the risk-neutral measure of cur-

rency i, where the money-market account of currency i is used as the numeraire. Here, the
second term takes into account the return/cost from holding the collateral. By aligning
the measure to Qi, we obtain

h(i)(t) = EQi
t

[
e−

∫ T
t r(i)(s)dsh(i)(T ) +

∫ T

t
e−

∫ s
t r(i)(u)duy(j)(s)h(i)(s)ds

]
. (2.3)
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Now, it is easy to see that

X(t) := e−
∫ t
0 r(i)(s)dsh(i)(t) +

∫ t

0
e−

∫ s
0 r(i)(u)duy(j)(s)h(i)(s)ds (2.4)

is a Qi-martingale under appropriate integrability conditions. This tells us that the process
of the option value can be written as

dh(i)(t) =
(
r(i)(t)− y(j)(t)

)
h(i)(t)dt+ dM(t) (2.5)

with some Qi-martingale M .
As a result, we have the following theorem:

Theorem 1 3 Suppose that h(i)(T ) is a derivative’s payoff at time T in terms of currency
”i” and that the currency ”j” is used as the collateral for the contract. Then, the value of
the derivative at time t, h(i)(t) is given by

h(i)(t) = EQi
t

[
e−

∫ T
t r(i)(s)ds

(
e
∫ T
t y(j)(s)ds

)
h(i)(T )

]
(2.6)

= D(i)(t, T )E
T c
(i)

t

[
e−

∫ T
t y(i,j)(s)dsh(i)(T )

]
, (2.7)

where
y(i,j)(s) = y(i)(s)− y(j)(s) (2.8)

with y(i)(s) = r(i)(s) − c(i)(s) and y(j)(s) = r(j)(s) − c(j)(s). Here, we have also defined
the collateralized zero-coupon bond of currency i as

D(i)(t, T ) = EQi
t

[
e−

∫ T
t c(i)(s)ds

]
(2.9)

and the collateralized forward measure T c
(i), where the collateralized zero-coupon bond is

used as the numeraire; thus, E
T c
(i)

t [·] denotes the time t conditional expectation under the
measure T c

(i).

As a corollary of the theorem, we have

h(t) = EQ
t

[
e−

∫ T
t c(s)dsh(T )

]
= D(t, T )ET c

t [h(T )] (2.10)

when the payment and collateral currencies are the same.
Finally, let us also define the forward collateral rate of currency i, c(i)(t, T ), for the

convenience of later discussion:

c(i)(t, T ) = − ∂

∂T
lnD(i)(t, T ) , (2.11)

or equivalently

D(i)(t, T ) = exp

(
−
∫ T

t
c(i)(t, s)ds

)
. (2.12)

3Although we are dealing with continuous processes here, we obtain the same result as long as there is
no simultaneous jump of underlying assets when the counterparty defaults even in more general setting.
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3 Calibration to Single Currency Swaps

In this section, we construct the relevant yield curves in a single currency market, where
there exist three different types of interest rate swap, which are overnight index swap (OIS),
standard interest rate swap (IRS), and tenor swap (TS). In the following, we explain how
we can extract relevant forwards based on the result of previous section following the works
[1, 3, 4]. Throughout this section, we assume that the relevant swap is collateralized by
the domestic (or payment) currency.

3.1 Overnight Index Swap

As we have seen in the previous section, it is critical to determine the forward curve
of overnight rate for the pricing of collateralized swaps. Fortunately, there is a product
called ”overnight index swap” (OIS), which exchanges the fixed coupon and the daily-
compounded overnight rate. Here, let us assume that the OIS itself is continuously collat-
eralized by the domestic currency. In this case, using the Eq.(2.10), we get the consistency
condition of T0-start TN -maturing OIS rate as

OISN

N∑
n=1

∆nE
Q
[
e−

∫ Tn
0 c(s)ds

]
=

N∑
n=1

EQ
t

[
e−

∫ Tn
0 c(s)ds

(
e
∫ Tn
Tn−1

c(s)ds − 1

)]
. (3.1)

Here, OISN is the market quote of par rate for the length-N OIS, and c(t) is the overnight
(and hence collateral) rate at time t of the domestic currency. ∆ and δ denote day-count
fractions for fixed and floating legs, respectively. We can simplify the above equation into
the form

OISN

N∑
n=1

∆nD(0, Tn) = D(0, T0)−D(0, TN ) (3.2)

by using the collateralized zero-coupon bond. Now, from Eq.(3.2), we can easily obtain
the term structure of D(0, ·) by the standard bootstrap and spline techniques [5].

3.2 Interest rate swap

In the standard interest rate swap (IRS), two parties exchange a fixed coupon and Libor
for a certain period with a given frequency. The tenor of Libor ”τ” is determined by the
frequency of floating payments, i.e., 6m-tenor for semi-annual payments, for example. For
a T0-start TM -maturing IRS with the Libor of tenor τ , we have

IRSM

M∑
m=1

∆mD(0, Tm) =

M∑
m=1

δmD(0, Tm)ET c
m [L(Tm−1, Tm; τ)] (3.3)

as a consistency condition. Here, IRSM is the market IRS quote, L(Tm−1, Tm; τ) is the
Libor rate with tenor τ for a period of (Tm−1, Tm). Since we already have the term
structure of D(0, ·), it is straightforward to extract the set of ET c

m [L(Tm−1, Tm; τ)] for
each Tm from Eq. (3.3).
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3.3 Tenor swap

A tenor swap is a floating-vs-floating swap where the parties exchange Libors with different
tenors with a fixed spread on one side, which we call TS basis spread in this article.
Usually, the spread is added on top of the Libor with shorter tenor. For example, in
a 3m/6m tenor swap, quarterly payments with 3m Libor plus spread are exchanged by
semi-annual payments of 6m Libor flat. The condition that the tenor spread should satisfy
is

N∑
n=1

δnD(0, Tn)
(
ET c

n [L(Tn−1, Tn; τS)] + TSN
)
=

M∑
m=1

δmD(0, Tm)ET c
m [L(Tm−1, Tm; τL)] ,

(3.4)
where TN = TM , ”m” and ”n” distinguish the difference of payment frequency. TSN
denotes the market quote of of the basis spread for the T0-start TN -maturing tenor swap.
The spread is added on the Libor with the shorter tenor τS in exchange for the Libor with
longer tenor τL. From the above relation, one can extract the forward Libor with different
tenors.

Here, we have explained using slightly simplified terms of contract. In the actual mar-
ket, it is more common that the coupons of the Leg with the shorter tenor are compounded
by Libor flat and being paid with the same frequency of the other Leg. However, the size
of correction from the above simplification can be shown negligibly small.

3.4 Calibration Example

Figure 1: USD zero rate curves of Fed-Fund rate, 3m and 6m Libors.

In Fig. 1, we have given examples of calibrated yield curves for USD market on
2009/3/3 and 2010/3/16, where ROIS, R3m and R6m denote the zero rates for OIS (Fed-
Fund rate), 3m and 6m forward Libor, respectively. ROIS(·) is defined as ROIS(T ) =
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− ln(D(0, T ))/T . For the forward Libor, the zero-rate curve Rτ (·) is determined recur-
sively through the relation

ET c
m [L(Tm−1, Tm; τ)] =

1

δm

(
e−Rτ (Tm−1)Tm−1

e−Rτ (Tm)Tm
− 1

)
. (3.5)

In the actual calculation of D(0, ·), we have used the Fed-Fund vs 3m-Libor basis swap,
where the two parties exchange 3m Libor and the compounded Fed-Fund rate with spread,
which seems more liquid and a larger number of quotes available than the usual OIS. In
Fig. 2, one can see the historical behavior of the spread between 1yr IRS and OIS for
USD, JPY and EUR, where the underlying floating rates of IRS are 3m-Libor for USD
and EUR and 6m-Libor for JPY.

Figure 2: Difference between 1yr IRS and OIS. Underlying floating rates are 3m-Libor for
USD and EUR, and 6m-Libor for JPY.

Remarks: In the above calculations, we have assumed that the conditions given in the
previous section are satisfied, and also that all the instruments are collateralized by the
cash of domestic currency which is the same as the payment currency. Cautious readers
may worry about the possibility that the market quotes contain significant contributions
from market participants who use a foreign currency as collateral. However, the induced
changes in IRS/TS quotes are very small and impossible to distinguish from the bid/offer
spreads in normal circumstances, because the correction appears both in the fixed and
floating legs which keeps the market quotes almost unchanged 4. However, as we will
see in the later sections, the present values of off-the-market swaps will be significantly
affected when the collateral currency is different.

4As for cross currency swaps, the change can be a few basis point, and hence comparable to the market
bid/offer spreads.
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4 Calibration to Cross Currency Swaps

After completing the calibration to the single currency swaps, we should have obtained the
terms structures of D(i)(0, T ) and E

T c
(i)
[
L(i)(Tm−1, Tm; τ)

]
for each currency and tenor.

The remaining freedom of the model is the term structure of y(i,j)(·) for each relevant
currency pair. As we will see, this is the most important ingredient to determine the value
of CCS.

4.1 Mark-to-Market Cross Currency Swap

In this section, we will discuss how to make the term structure consistent with CCS (cross
currency swap) markets [1, 3]. The current market is dominated by USD crosses where
3m USD Libor flat is exchanged with 3m Libor of a different currency with additional
basis spread. There are two types of CCS, one is CNCCS (Constant Notional CCS), and
the other is MtMCCS (Mark-to-Market CCS). In a CNCCS, the notionals of both legs
are fixed at the inception of the trade and kept constant until its maturity. On the other
hand, in a MtMCCS, the notional of USD leg is reset at the start of every calculation
period of the Libor while the notional of the other leg is kept constant throughout the
contract period. Although the required calculation becomes a bit more complicated, we
will use MtMCCS for calibration due to its better liquidity 5.

First, let us define y(i,j)(t, s), the forward rate of y(i,j)(s) at time t as

e−
∫ T
t y(j,i)(t,s)ds = E

Qj

t

[
e−

∫ T
t y(j,i)(s)ds

]
. (4.1)

We consider a MtMCCS of (i, j) currency pair, where the leg of currency i (intended to
be USD) needs notional refreshments. We assume that the collateral is posted in currency
i, which seems common in the market. The value of j-leg of a T0-start TN -maturing
MtMCCS is calculated as

PVj = −D(j)(0, T0)E
T c
0,(j)

[
e−

∫ T0
0 y(j,i)(s)ds

]
+D(j)(0, TN )E

T c
n,(j)

[
e−

∫ TN
0 y(j,i)(s)ds

]
+

N∑
n=1

δ(j)n D(j)(0, Tn)E
T c
n,(j)

[
e−

∫ Tn
0 y(j,i)(s)ds

(
L(j)(Tn−1, Tn; τ) +BN

)]
, (4.2)

where the basis spread BN is available as a market quote. In [2], we have assumed that all
of the {y(k)(·)} and hence {y(i,j)(·)} are deterministic functions of time to make the curve
construction more tractable. Here, we slightly relax the assumption allowing randomness
of {y(i,j)(·)}. As long as we assume that {y(i,j)(·)} is independent from the dynamics of
Libors and collateral rates, the procedures of bootstrapping given in [2] can be applied in
the same way 6. Under the assumption of independence, we obtain

PVj = −D(j)(0, T0)e
−

∫ T0
0 y(j,i)(0,s)ds +D(j)(0, TN )e−

∫ TN
0 y(j,i)(0,s)ds

+

N∑
n=1

δ(j)n D(j)(0, Tn)e
−

∫ Tn
0 y(j,i)(0,s)ds

(
E

T c
n,(j) [L(j)(Tn−1, Tn; τ)] +BN

)
. (4.3)

5As for the details of MtMCCS and CNCCS, see [1, 3].
6In practice, it would not be a problem even if there is a non-zero correlation as long as it does not

meaningfully change the model implied quotes compared to the market bid/offer spreads.
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On the other hand, the present value of i-leg in terms of currency j is given by

PVi = −
N∑

n=1

EQi

[
e−

∫ Tn−1
0 c(i)(s)dsf (i,j)

x (Tn−1)

]
/f (i,j)

x (0)

+
N∑

n=1

EQi

[
e−

∫ Tn
0 c(i)(s)dsf (i,j)

x (Tn−1)
(
1 + δ(i)n L(i)(Tn−1, Tn; τ)

)]
/f (i,j)

x (0)

=

N∑
n=1

δ(i)n D(i)(0, Tn)E
T c
n,(i)

[
f
(i,j)
x (Tn−1)

f
(i,j)
x (0)

B(i)(Tn−1, Tn; τ)

]
, (4.4)

where

B(i)(t, Tk; τ) = E
T c
k,(i)

t

[
L(i)(Tk−1, Tk; τ)

]
− 1

δ
(i)
k

(
D(i)(t, Tk−1)

D(i)(t, Tk)
− 1

)
, (4.5)

which represents a Libor-OIS spread. Since we found no persistent correlation between FX
and Libor-OIS spread in historical data, we have treated them as independent variables.
Even if a non-zero correlation exists in a certain period, the expected correction seems not
numerically important due to the typical size of bid/offer spreads for MtMCCS (about a
few bps at the time of writing). Since 3-month timing adjustment of FX is safely negligible,
an approximate value of i-leg is obtained as

PVi ≃
N∑

n=1

δ(i)n D(i)(0, Tn)
D(j)(0, Tn−1)

D(i)(0, Tn−1)
e−

∫ Tn−1
0 y(j,i)(0,s)dsB(i)(0, Tn; τ). (4.6)

Here, we have used the following expression of the forward FX collateralized with currency
i:

f (i,j)
x (t, T ) = f (i,j)

x (t)
D(j)(t, T )

D(i)(t, T )
e−

∫ T
t y(j,i)(t,s)ds . (4.7)

Notice that, after calibrating to the single currency swaps for each currency, the only
unknown in Eqs. (4.3) and (4.6) is y(j,i)(0, ·). Therefore, one can easily see that the
consistency condition PVi = PVj with given market spread BN for each maturity allows
us to bootstrap the term structure of {y(i,j)(0, ·)}. Finally, let us mention the fact that
the (i, j)-MtMCCS par spread is expressed as

BN =


N∑

n=1

δ(i)n D
(i)
Tn

D
(j)
Tn−1

D
(i)
Tn−1

 e−
∫ Tn−1
0 y(j,i)(0,s)dsB

(i)
Tn

−
N∑

n=1

δ(j)n D
(j)
Tn

e−
∫ Tn
0 y(j,i)(0,s)dsB

(j)
Tn


−

N∑
n=1

D
(j)
Tn−1

e−
∫ Tn−1
0 y(j,i)(0,s)ds

(
e
−

∫ Tn
Tn−1

y(j,i)(0,s)ds − 1

)]
/

N∑
n=1

δ(j)n D
(j)
Tn

e−
∫ Tn
0 y(j,i)(0,s)ds ,

(4.8)

in the above mentioned approximation, where we have shortened the notations asD(k)(0, T ) =

D
(k)
T and B(k)(0, T ; τ) = B

(k)
T .
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4.2 Calibration Example and Historical Behavior

In Fig. 3, we have given examples of calibration for EUR/USD and USD/JPY MtMCCS
as of 2010/3/16. We have plotted the zero rates of y(j,i) defined as

Ry(j,i)(T ) = −
ln
(
EQj

[
e−

∫ T
0 y(j,i)(s)ds

])
T

=
1

T

∫ T

0
y(j,i)(0, s)ds (4.9)

together with the term structure of MtMCCS basis spreads. It is easy to expect that
there are significant contributions from the second line of Eq. (4.8) to the CCS basis
spreads from the similarities between Ry(X,USD) and CCS quotes. The implied forward
FXs derived from Eq. (4.7) were well within the bid/offer spreads 7.

Figure 3: MtMCCS par spreads, Ry(JPY,USD) and Ry(EUR,USD) as of 2010/3/16.

Let us also check the historical behavior of Ry(EUR,USD) and Ry(JPY,USD) given in
Fig. 4 to 8 8. For both cases, the term structures of Ry have quite similar shapes and
levels to those of the corresponding CCS basis spreads. In Fig. 4, historical behavior
of Ry(X,USD)(T = 5y) (X = EUR, JPY ) and corresponding 5y-MtMCCS spreads are
given. One can see that a significant portion of CCS spreads movement stems from the
change of y(i,j), rather than the difference of Libor-OIS spread between two currencies.
The level (difference)-correlation between Ry and CCS spread is quite high, which is about
93% (75%) for EUR or about 70% (92%) for JPY for the historical series used in the figure,
for example.

The 3m-roll historical volatilities of y(EUR,USD) instantaneous forwards, which are
annualized in absolute terms, are given in Fig. 9. In a calm market, they tend to be
50 bps or so, but they were more than a percentage point just after the market crisis,

7In any case, it is quite wide for long maturities.
8Due to the lack of OIS data for JPY market, we have only a limited data for (JPY,USD) pair. We

have used Cubic Monotone Spline for calibration although the figures are given in linear plots for ease.
For spline technique, see [5], for example.
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Figure 4: Ry(EUR,USD)(5y), Ry(JPY,SD)(5y) and corresponding quotes of 5y-MtMCCS.

which is reflecting a significant widening of the CCS basis spread to seek USD cash in the
low liquidity market. Except the CCS basis spread, y does not seem to have persistent
correlations with other variables such as OIS, IRS and FX forwards. At least, within
our limited data, the 3m-roll historical correlations with these variables fluctuate mainly
around ±20% or so.

5 No-arbitrage dynamics in Heath-Jarrow-Morton Frame-
work

In this section, we give the set of SDEs for the whole system 9. From the previous
discussion, we have seen that the relevant building blocks of term structures are given by

{D(i)(t, T )}, {E
T c
n,(i)

t

[
L(i)(Tn−1, Tn; τ)

]
}, and {y(i,j)(t, T )} , (5.1)

or equivalently
{c(i)(t, T )}, {B(i)(t, T ; τ)}, and {y(i,j)(t, T )} , (5.2)

for each maturity T , tenor τ , currency i, and currency pair (i, j). As seen in Sec.2, the
collateral rate plays a critical role as the effective discounting rate. Thus, let us fix the
base currency i, and consider the dynamics of c(i)(t, s). Suppose that the dynamics of the
forward collateral rate under the Qi is given by

dc(i)(t, s) = α(i)(t, s)dt+ σ(i)
c (t, s) · dWQi(t) , (5.3)

where α(i)(t, s) is a scalar function for its drift, and WQi(t) is a d-dimensional Brown-

ian motion under the Qi-measure. σ
(i)
c (t, s) is a d-dimensional vector and the following

9See [2, 3, 4] for details.
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abbreviation have been used:

σ(i)
c (t, s) · dWQi(t) =

d∑
j=1

[
σ(i)
c (t, s)

]
j
dWQi

j (t). (5.4)

Here, we will not specify the details of the volatility process : It can depend on the
collateral rate itself, or any other state variables.

Applying Itô’s formula to Eq.(2.12), we have

dD(i)(t, T )

D(i)(t, T )
=

{
c(i)(t)−

∫ T

t
α(i)(t, s)ds+

1

2

∣∣∣∣∣∣∣∣∫ T

t
σ(i)
c (t, s)ds

∣∣∣∣∣∣∣∣2
}
dt−

(∫ T

t
σ(i)
c (t, s)ds

)
·dWQi

t .

(5.5)
On the other hand, by definition, the drift rate of D(i)(t, T ) should be c(i)(t) = c(i)(t, t).
Therefore, it is necessary that

α(i)(t, s) =

d∑
j=1

[σ(i)
c (t, s)]j

(∫ s

t
σ(i)
c (t, u)du

)
j

(5.6)

= σ(i)
c (t, s) ·

(∫ s

t
σ(i)
c (t, u)du

)
, (5.7)

and as a result, the process of c(i)(t, s) under the Qi-measure is given by

dc(i)(t, s) = σ(i)
c (t, s) ·

(∫ s

t
σ(i)
c (t, u)du

)
dt+ σ(i)

c (t, s) · dWQi(t) . (5.8)

In exactly the same way, we obtain

dy(i,j)(t, s) = σ(i,j)
y (t, s) ·

(∫ s

t
σ(i,j)
y (t, u)du

)
dt+ σ(i,k)

y (t, s) · dWQi(t) . (5.9)

Next, let us consider the dynamics of Libor-OIS spread, B(i)(t, T ; τ). From the def-
inition in Eq. (4.5), it is clear that B(i)(·, T ; τ) is a martingale under the collateralized
forward measure T c

(i), where the numeraire is given by D(i)(· , T ). Using the Maruyama-
Girsanov theorem, one can see that Brownian motion under the forward measure T c

(i), or

W
T c
(i) , is related to the WQi as

dW
T c
(i)(t) =

(∫ T

t
σ(i)
c (t, s)ds

)
dt+ dWQi(t) , (5.10)

and hence, one easily obtains

dB(i)(t, T ; τ)

B(i)(t, T ; τ)
= σ

(i)
B (t, T ; τ) ·

(∫ T

t
σ(i)
c (t, s)ds

)
dt+ σ

(i)
B (t, T ; τ) · dWQi(t) . (5.11)

Since we have the relation

r(i)(t)− r(j)(t) = c(i)(t)− c(j)(t) + y(i,j)(t) (5.12)
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the SDE for the spot FX process is given by

df (i,j)
x (t)/f (i,j)

x (t) =
(
c(i)(t)− c(j)(t) + y(i,j)(t)

)
dt+ σ

(i,j)
X (t) · dWQi(t) . (5.13)

Maruyama-Girsanov theorem tells us that Brownian motions in two different currencies
are related by the formula

dWQj (t) = −σ
(i,j)
X (t)dt+ dWQi(t) , (5.14)

which allows us to derive the SDEs of these building blocks under a different base currency,
too. For example, the SDE of collateral rate of the foreign currency j is given by

dc(j)(t, s) = σ(j)
c (t, s) ·

[(∫ s

t
σ(j)
c (t, u)du

)
− σ

(i,j)
X (t)

]
dt+ σ(j)

c (t, s) · dWQi(t) . (5.15)

Pricing formulas for some of the vanilla options are available in [2].

6 Implications for Derivative Pricing

Although it is worth exploring various implications of collateralization by using the dy-
namics given in the previous section, the leading order effects are expected to arise from
the change of the effective discounting rate. In this section, we discuss some of these
important implications by using the calibrated yield curves.

6.1 Choice of Collateral Currency

When the payment and collateral currencies are the same, the discounting factor is given
by the collateral rate which is under control of the relevant central bank as indicated in
Eq. (2.10). Traditionally, among financial firms, the Libor curve has been widely used to
discount the future cash flows. However, this method would easily underestimate their
values by several percentage points for long maturities, even with the current level of Libor-
OIS spread, or 10 ∼ 20 bps. Considering the mechanism of collateralization, financial firms
need to hedge the change of OIS in addition to the standard hedge against the movement
of Libors. Especially, the risk of floating-rate payments needs to be checked carefully, since
the overnight rate can move in the opposite direction to the Libor as was observed in this
financial crisis. In Fig. 10, the present values of Libor floating legs with final principal
(= 1) payment

PV =

N∑
n=1

δnD(0, Tn)E
T c
n [L(Tn−1, Tn; τ)] +D(0, TN ) (6.1)

are given for various maturities. If traditional Libor discounting is being used, the stream
of Libor payments has the constant present value ”1”, which is obviously wrong from
our results. This point is very important in risk-management, since financial firms may
overlook the quite significant interest-rate risk exposure when they adopt the traditional
interest rate model in their system.
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If a trade with payment currency j is collateralized by foreign currency i, an additional
modification to the discounting factor appears ( See, Eq. (4.1).) 10:

e−
∫ T
t y(j,i)(t,s)ds = E

Qj

t

[
e−

∫ T
t y(j,i)(s)ds

]
. (6.2)

From Figs. 6 and 8, one can see that posting USD as collateral tends to be expensive
from the view point of collateral payers, which is particularly the case when the market is
illiquid. For example, from Fig. 8, one can see that the value of JPY payment in 10 years
time is more expensive by around 3% when it is collateralized by USD instead of JPY.
The effects should be more profound for emerging currencies where the implied CCS basis
spread can easily be 100 bps or more.

6.2 Embedded Cheapest-to-Deliver Option

We now discuss the embedded CTD option in a collateral agreement. In some cases,
financial firms make contracts with CSA allowing several currencies as eligible collateral.
Suppose that the payer of collateral has a right to replace a collateral currency whenever
he wants. If this is the case, the collateral payer should choose the cheapest collateral
currency to post, which leads to the modification of the discounting factor as

E
Qj

t

[
e−

∫ T
t maxi∈C{y(j,i)(s)}ds

]
, (6.3)

where C is the set of eligible currencies. Note that, by the definition of collateral payers,
they want to make (−PV ) (> 0) as small as possible. Although there is a tendency
toward a CSA allowing only one collateral currency to reduce the operational burden, it
does not seem uncommon to accept the domestic currency and USD as eligible collateral,
for example. In this case, the above formula turns out to be

E
Qj

t

[
e−

∫ T
t max{y(j,USD)(s),0}ds

]
. (6.4)

In Figs. 11 and 12, we have plotted the modifications of discounting factors given in
Eq. (6.4), for j = EUR and JPY as of 2010/3/16. We have used the Hull-White model
for the dynamics of y(EUR,USD)(·) and y(JPY,USD)(·), with a mean reversion parameter
1.5% per annum and the set of volatilities, σ = 0, 25, 50 and 75 bps 11, respectively. As
can be seen from the historical volatilities given in Fig. 9, σ can be much higher under
volatile environment. The curve labeled by USD (EUR, JPY) denotes the modification
of the discount factor when only USD (EUR, JPY) is eligible collateral for the ease of
comparison. One can easily see that there is significant impact when the collateral currency
chosen optimally. For example, from Fig. 12, one can see if the parties choose the collateral
currency from JPY and USD optimally, it roughly increases the effective discounting rate
by around 50 bps annually even when the annualized volatility of spread y(JPY,USD) is 50
bps.

In the calculation, we have used daily-step Monte Carlo simulation. Although we can
expect that there are various obstacles to implement the optimal strategy in practice, the
development of common infrastructure for collateral management, such as the electronic
automation of the margin call and collateral delivery, will make the optimal choice of
collateral currency be an important issue in coming years.

10Here, we are assuming independence of y from reference assets.
11These are annualized volatilities in absolute terms.
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7 Conclusions

In this article, which integrates the series of our recent works [1, 2, 4], we explain the
consistent construction of multiple swap curves in the presence of collateralization and
cross currency basis spreads, their no-arbitrage dynamics, and implications for derivative
pricing. Especially, we have shown the importance of the choice of collateral currency
and embedded ”cheapest-to-deliver” (CTD) option in collateral agreements. We have also
emphasized dangers to use the standard LMM in actual financial business since it allows
the financial firms to overlook potentially critical risk exposures.
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Figure 5: Historical movement of calibrated Ry(EUR,USD).

Figure 6: Examples of Ry(EUR,USD) term structure.
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Figure 7: Historical movement of calibrated Ry(JPY,USD).

Figure 8: Examples of Ry(JPY,USD) term structure.
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Figure 9: 3M-Roll historical volatility of y(EUR,USD) instantaneous forward. Annualized
in absolute terms.

Figure 10: Present value of USD Libor stream with final principal (= 1) payment.
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Figure 11: Modification of EUR discounting factors based on HW model for y(EUR,USD)

as of 2010/3/16. The mean-reversion parameter is 1.5%, and the volatility is given at each
label.

Figure 12: Modification of JPY discounting factors based on HW model for y(JPY,USD) as
of 2010/3/16. The mean-reversion parameter is 1.5%, and the volatility is given at each
label.
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