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Abstract

Looking at the valuation of a swap when funding costs and counterparty risk are
neglected (i.e., when there is a unique risk free discounting curve), it is natural to ask
“What is the discounting curve of a swap in the presence of funding costs, counterparty
risk and/or collateralization”.

In this note we try to give an answer to this question. The answer depends on who
you are and in general it is “There is no such thing as a unique discounting curve (for
swaps).” Our approach is somewhat “axiomatic”, i.e., we try to make only very few
basic assumptions. We shed some light on use of own credit risk in mark-to-market
valuations, giving that the mark-to-market value of a portfolio increases when the
owner’s credibility decreases.

We presents two different valuations. The first is a mark-to-market valuation which
determines the liquidation value of a product. It does, buy construction, exclude any
funding cost. The second is a portfolio valuation which determines the replication value
of a product including funding costs.

We will also consider counterparty risk. If funding costs are presents, i.e., if we
value a portfolio by a replication strategy then counterparty risk and funding are tied
together:

• In addition to the default risk with respect to our exposure we have to consider
the loss of a potential funding benefit, i.e., the impact of default on funding.

• Buying protection against default has to be funded itself and we account for that.
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1 Introduction

Looking at the valuation of a swap when funding costs and counterparty risk are
neglected (i.e., when there is a unique risk free discounting curve), it is natural to ask
“What is the discounting curve of a swap in the presence of funding costs, counterparty
risk and/or collateralization”.

The answer depends on who you are and how we value. Factoring in funding costs
the answer to that question is “There is no such thing as a unique discounting curve (for
swaps).”

1.1 Two Different Valuations

In Section 2 we will first take a simplified view in valuing claims and cash flows: We
view the market price of a zero coupon bond as the value of a claim and value all claims
according to such zero coupon bond prices. However, this is only one point of view.
We could call it the third party (mark-to-market) liquidation view which is to ask what
is the value of a portfolio of claims if we liquidate it today. This approach does not
value funding cost.

In Section 3 we will then construct a different valuation which includes the funding
costs of net cash requirements. These funding costs occur over the life time of the
product. They are of course not present if the portfolio is liquidated. This alternative
valuation will also give an answer to an otherwise puzzling problem: In the mark-to-
market valuation it appears that the value of the portfolio increases if its credit rating
decreases (because liabilities are written down). However, if we include the funding
cost, then the effect is reversed since funding costs are increased, and since we are not
liquidating the portfolio we have to factor them in.

The difference of the two valuations is their point of view. Liquidating a portfolio
we value it from “outside” as a third party. Accounting for operational cost we value it
from the “inside”. The two parties come to different values because of a very simple
fact: We cannot short sell our own bond (sell protection on our self). However, a third
party can do.

1.2 Related Works

The backward algorithm to valuate under different curves for borrowing and lending
was already given in the textbook [4]. Some of our examples below (e.g., the multi-
curve model using determinstic default intensities in Section 2.4.1) were also taken
from this book.

The usual setup of other papers discussing “multiple” curves is to consider a two or
three curve valuation framework: one (forward) curve for the indices (forward rates
and swap rates), one (discounting) curve for collateralized deals and one (discounting)
curve for funded deals, see, e.g., [1, 9]. However, as we will illustrate, funding cost
and netting agreements may imply that there is no such thing as a product independent
discounting curve.

Piterbarg [8] discusses the effects of the correlation term induced by a mismatch
of the index and the discounting curve, i.e., convexity adjustments. Those convexity
adjustment are reflected by our (numerical) valuation algorithm once corresponding

c©2010 Christian Fries 4 Version 0.9.12 (20100530)
http://www.christianfries.com/finmath/discounting

http://www.christianfries.com/finmath/discounting


Discounting Revisited Christian Fries

assumptions (e.g., correlations of rates and spreads) are introduced into the underlying
model.1 The formulas derivend in [8] are of great importnance since they can be used
to provide efficient approximations for a multi-curve model’s calibration products.

For the modeling of rates (e.g., through basis swap spreads) see, e.g., [5].
In [7] Morini and Prampolini cosidered a zero coupon bond together with its

funding and counterparty risk. They showed that, for a zero coupon, the mark-to-market
valuation including own credit can be re-interpreted as a funding benefit. However,
there argument relies on the fact that there is a premium payed which can be factored in
as a funding benefit, i.e., they consider the liquidation or inception of the deal (i.e., they
consider a mark-to-market valuation). Doing so, the premium payed for a future liability
can always function as funding, hence funding cost beyond the bond-cds basis do not
occure. Our approach is more general in the sense that we consider the true net cash
position. The net cash position will give rise to a complex disocunting algorithm, where
a funding benefit may or may not occure (in a stochastic way). Morini and Prampolini
clarify the relation of the so called bond-cds-basis, i.e. the difference between bond
spread and cds spread. In theory a defaultable bond for which one buys protection
should equal a non defaultable bond as long as the protection itself cannot default.
However, market prices often do not reflect that situation, which is attributed to liquidity
aspects of the products. See also the short comment after equation (2).

For the valuation of CVAs using the modeling of default times / stopping times to
value the contract under default see [2] and Section 8 in [6]. In the latter a homogeneity
assumption is made resulting in PA(T ; t) = PB(T ; t). In contrast to the CVA approach
modeling default times we considered market prices of zero coupon bonds only and
the valuation would require a model of the zero coupon bond process (one way is to
modeling default times, another is to model spreads and survival probabilities). With
the possible exception of the Section 6 on “Modeling” we did not explicitly model the
impact of liquidity or default risk.

1 Our presentation is essntially “model free”.
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2 Discounting Cash Flows: The Third Party (Mark-to-Market)
Liquidation View

Let us first take the point of view of being a third party and value claims between
to other entities A and B. We lay the foundation of discounting, which is given by
considering a single financial product: the zero coupon bond. Discounting, i.e., discount
factors are given by the price at which a zero coupon bond can be sold or bought. Let
us formalize this set up:

2.1 Discount Factors for Outgoing and Incoming Cash Flows

Assume entity A can issue a bond with maturity T and notional 1. By this we mean
that A offers the financial product which offers the payment of 1 in time T . Let us
denote the time t market price of this product by PA(T ; t). This is the value at which
the market is willing to buy or sell this bond.

Likewise let PB(T ; t) denote the price at which the market is willing to buy or sell
bonds issued by some other entity B.

Assume that A receives a cash flow C(T ) > 0 from entity B. This corresponds to
A holding a zero coupon bond from entity B having notional C(T ) and maturity T .
Hence, the time T value of this isolated cash flow is C(T )PB(T ;T ) (seen from A’s
perspective). Given that C(T ) is not stochastic, the time t < T value of this isolated
cash flow then is C(T )PB(T ; t). We will call this cash flow “incoming”, however we
want to stress that we view ourself as a third party independent of A and B trading in
bonds. Thus we have: PB(T ; t) is the discount factor of all incoming cash flows from
entity B.

Consider some other contract featuring a cash flow C(T ) > 0 from A to B at time T .
The time T value of this cash flow is −C(T )PA(T ;T ), where we view the value from
A’s perspective, hence the minus sign. We will call this cash flow outgoing, however we
want to stress again that view ourself as a third party independent of A and B trading in
bonds. Given that C(T ) is not stochastic, the time t < T value of this isolated cash flow
then is C(T )PA(T ; t). Thus we have: PA(T ; t) is the discount factor of all outgoing
cash flows of entity A.

Since we view ourself as a third party, we have that in this framework the discount
factor of a cash flow is determined by the value of the zero coupon bonds of the
originating entity.

If we view a cash flow |C(T )| between A and B from the perspective of the entity
A such that C(T ) > 0 means that the cash flow is incoming (positive value for A) and
C(T ) < 0 means that the cash flow is outgoing, then its time T value can be written as

min(C(T ), 0) PA(T ;T ) + max(C(T ), 0) PB(T ;T ).

2.1.1 Valuation of a Fixed Coupon Bond

The knowledge of the discount factors allows the valuation of a fixed coupon bond,
because here all future cash flows have the same origin.
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2.2 Counterparty Risk

The price PA(T ; t) contains the time-value of a cash flow from A (e.g., through a risk
free interest rate) and the counterparty risk of A.

Usually we expect
0 ≤ PA(T ;T ) ≤ 1,

and due to A’s credit risk we may have PA(T ;T, ω) < 1 for some path ω. As a
consequence, we will often use the symbol PA(T ;T ) which would not be present if
counterparty risk (and funding) would have been neglected.

In Section 2.6 we will see a case where PAC(T ;T, ω) > 1 will be meaningful for
some “virtual” entity AC, namely for over-collateralized cash flows from A.

2.2.1 Example

If we do not consider “recoveries” then PA(T ;T, ω) ∈ {0, 1}. For example, if entity A
defaults in time τ(ω), then we have that PA(T ; t, ω) = 0 for t > τ(ω).

2.3 Netting

Let us now consider that entity A and B have two contracts with each other: one
resulting in a cash flow from A to B. The other resulting in a cash flow from B to A.
Let us assume further that both cash flow will occur at the same future time T . Let
CA(T ) > 0 denote the cash flow originating from A to B. Let CB(T ) > 0 denote the
cash flow originating from B to A. Individually the time T value of the two contracts is

−CA(T ) PA(T ;T ) and + CB(T ) PB(T ;T ),

where the signs stem from considering the value from A’s perspective. From B’s
perspective we would have the opposite signs. If CA(T ) and CB(T ) are deterministic,
then the time t value of these cash flows is

−CA(T ) PA(T ; t) and + CB(T ) PB(T ; t),

respectively.
However, if we have a netting agreement, i.e., the two counter parties A and B agree

that only the net cash flow is exchanged, then we effectively have a single contract with
a single cash flow of

C(T ) := −CA(T ) + CB(T ).

The origin of this cash flow is now determined by its sign. If C(T ) < 0 then |C(T )|
flows from A to B. If C(T ) > 0 then |C(T )| flows from B to A. The time T value of
the netted cash flow C(T ), seen from A’s perspective, is

min(C(T ), 0) PA(T ;T ) + max(C(T ), 0) PB(T ;T ).

Note that if
PA(T ; t) = PB(T ; t) =: P (T ; t)

then there is no difference between the value of a netted cash flow and the sum the
individual values, but in general this property does not hold.
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2.4 Valuation of Stochastic Cash Flows

If cash flows C(T ) are stochastic, then we have to value their time t value using a
valuation model, e.g., risk neutral valuation using some numeraire N and a correspond-
ing martingale measure QN . The analytic valuation (which actually stems from a
static hedge) as C(T )PA(T ; t) no longer holds. Let N denote a numeraire and QN a
corresponding martingale measure, such that,

PA(T ; t)
N(t)

= EQN

(
PA(T ;T )
N(T )

|Ft

)
.

Then a possibly stochastic cash flow C(T ), outgoing from A is evaluated in the usual
way, where the value is given as

EQN

(
C(T ) PA(T ;T )

N(T )
|Ft

)
Note that the factor PA(T ;T ) determines the effect of the origin of the cash flow, here
A. In theories where counterparty risk (and funding) is neglected, the cash flow C(T ) is
valued as

EQN

(
C(T )
N(T )

|Ft

)
.

2.4.1 Example: A simple approach to construct a multi-curve model

A simple approach to include counterparty risk, i.e., different discounting curves, into a
standard single curve interest rate model is by assuming a deterministic default intensity.
To formalize this, let Ft denote the filtration including counterparty risk and assume
that

Ft = Gt ×Ht,

where Gt is the filtration associated with our given the counterparty risk-free model. In
other words, we assume that default free payoffs are valued as

P (T ; t) = N(t) EQN

(
1

N(T )

∣∣∣ FT

)
= N(t) EQN

(
1

N(T )

∣∣∣ GT

)
and we implicitly define the counterparty risk as

PA(T ; t) = N(t) EQN

(
PA(T ;T )
N(T )

∣∣∣ FT

)
= N(t) EQN

(
1

N(T )

∣∣∣ GT

)
PA(t; t) exp

(
−
∫ T

t
λA(τ) dτ

)
= P (T ; t) PA(t; t) exp

(
−
∫ T

t
λA(τ) dτ

)
.

So in other words, every time T cashflow has to carry a marker PA(T ;T ) which
identifies its counterparty (source), here A. The time t valuation of this cashflow, i.e.,
the numeraire relative conditional expectation of the cashflow, is given by the contitional
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expectation of the corresponding counterparty risk-free cashflow (i.e., with respect to
the filtration G of the single curve model) times the survival probablity times a new
marker PA(t; t). Obviously, the process PA(T ) is a QN -martingale (with respect to
the full filration F . Note that the default event, i.e., the filtrationH, is not modelled at
all. The assumption that the default intensity λ is deterministic is sufficient to value the
default indicator function. See also Chapter 28 in [4].

Note that such a model does not explicitly distinguish liquiditiy effects and default
risk effects. They are all subsummed in the market implied default intensity λ.

2.5 Credit Linking

Let us consider a bond PC(T ; t) issued by entity C. Let us consider a contract where
A pays PC(T ;T ) in t = T , i.e., A pays 1 only if C survived, otherwise it will pay C’s
recovery. However, this cash flow still is a cash flow originating (granted) by A. The
time T value of this cash flow is PC(T ;T )PA(T ;T ).

This contract can been seen as a credit linked deal.

2.5.1 Examples

If PC(T ;T, ω) = 1 for all ω ∈ Ω, then PC has no credit risk. In this case we have

N(t)EQN

(
PC(T ;T )PA(T ;T )

N(T )
| Ft

)
= PA(T ; t).

Also, If PC(T ;T, ω) = PA(T ;T, ω) ∈ {0, 1} for all ω ∈ Ω, then C defaults if and
only if A defaults and there are no recoveries. In that case we also have

N(t)EQN

(
PC(T ;T )PA(T ;T )

N(T )
| Ft

)
= PA(T ; t).

If the two random variables PA(T ;T ) and PC(T ;T ) are independent we have

N(t)EQN

(
PC(T ;T )PA(T ;T )

N(T )
| Ft

)
= PC(T ; t) PA(T ; t)

1
P (T ; t)

,

where P (T ; t) := N(t)EQN
(

1
N(T ) | Ft

)
.

To prove the latter we switch to terminal measure (i.e., choose N = P (T ) such that
N(T ) = 1) and get

N(t)EQN

(
PC(T ;T )PA(T ;T )

N(T )
| Ft

)
= N(t) EQN

(
PC(T ;T ) | Ft

)
EQN

(
PA(T ;T ) | Ft

)
= PC(T ; t) PA(T ; t)

1
N(t)

= PC(T ; t) PA(T ; t)
1

P (T ; t)
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2.6 Collateralization

Collateralization is not some “special case” which has to be considered in the above
valuation framework. Collateralization is an additional contract with an additional
netting agreement (and a credit link). As we will illustrate, we can re-interpret a
collateralized contract as a contract with a different discount curve, however, this is
only a re-interpretation.

For simplicity let us consider the collateralization of a single future cash flow.
Let us assume that counterparty A pays M in time T = 1. Thus, seen from the

perspective of A, there is a cash flow

−MPA(T ;T ) in t = T .

Hence, the time t value of the non-collateralized cash flow is −MPA(T ; t). Next,
assume that counterparty A holds a contract where an entity C will pay K in time T .
Thus, seen from the the perspective of A there is a cash flow

KPC(T ;T ) in t = T .

Hence, the time t value of this cash flow is KPC(T ; t).
If we value both contracts separately, then the first contract evaluates to −N , the

second contract evaluates to K. If we use the second contract to “collateralize” the first
contract we bundle the two contracts in the sense that the second contract is passed to
the counterparty B as a pawn. This can be seen as letting the second contract default if
the first contract defaults. The time T value thus is(

KPC(T ;T )−M
)
PA(T ;T ),

where we assumed that the net cash flow is non-positive, which is the case if K < M
and PC(T ;T ) ≤ 1, so we do not consider over-collateralization. The random variable
PC(T ;T ) accounts for the fact that the collateral may itself default over the time, see
“credit linked” above.

We have(
KPC(T ;T )−M

)
PA(T ;T )

= KPC(T ;T )−MPA(T ;T ) + K
(
PC(T ;T )PA(T ;T )− PC(T ;T )

)
Thus, the difference of the value of the collateralized package and the sum of the
individual deals (M −K) is

K
(
PC(T ;T )PA(T ;T )− PC(T ;T )

)
.

It is possible to view this change of the value of the portfolio as a change of the
value of the outgoing cash flow. Let us determine the implied zero coupon bond process
PAC such that

−M PAC(T ;T ) != −M PA(T ;T )

+K
(
PC(T ;T )PA(T ;T )− PC(T ;T )

)
.
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It is

PAC(T ;T ) := PA(T ;T )− K

M

(
PC(T ;T )PA(T ;T )− PC(T ;T )

)
. (1)

We refer to PAC as the discount factor for collateralized deals. It should be noted that a
corresponding zero coupon bond does not exist (though it may be synthesized) and that
this discount factor is simply a computational tool. In addition, note that the discount
factor depends on the value (K) and quality (PC(T ;T )) of the collateral.

2.6.1 Interpretation

From the above, we can check some limit cases:

• For PC(T ;T )PA(T ;T ) = PC(T ;T ) we find that PAC(T ;T ) = PA(T ;T ).
Note that this equations holds, for example, if PA(T ;T ) < 1 ⇒ PC(T ;T ).
This can be interpreted as: if the quality of the collateral is “less or equal” to the
quality of the original counterpart, then collateralization has no effect.

• ForPC(T ;T )PA(T ;T ) = PA(T ;T ) and 0 ≤ K ≤M we find thatPAC(T ;T ) =
αPC(T ;T ) + (1 − α)PA(T ;T ), where α = K

M , i.e., if the collateral does not
compromise the quality of the bond as a credit linked bond, then collateralization
constitutes a mixing of the two discount factors at the ratio of the collateralized
amount.

• For PC(T ;T )PA(T ;T ) = PA(T ;T ) and K = M we find that PAC(T ;T ) =
PC(T ;T ), i.e., if the collateral does not compromise the quality of the bond as
a credit linked bond and the collateral matches the future cash flow, then the
collateralized discount factor agrees with the discount factor of the collateral.

Given that PC(T ;T )PA(T ;T ) = PA(T ;T ) we find that collateralization has a
positive value for the entity receiving the collateral. The reason can be interpreted in a
funding sense: The interest payed on the collateral is less than the interest payed on an
issued bond. Hence, the entity receiving collateral can save funding costs.

2.6.2 Example

Let us consider entities A and C where

N(t) EQN

(
PA(T ;T )
N(T )

|Ft

)
= exp(−r(T − t)) exp(−λA(T − t))

N(t) EQN

(
PC(T ;T )
N(T )

|Ft

)
= exp(−r(T − t)) exp(−λC(T − t))

and

N(t) EQN

(
PC(T ;T ) PA(T ;T )

N(T )
|Ft

)
= exp(−r(T − t)) exp(−λC(T − t)) exp(−λA(T − t)).
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The first two equations could be viewed as a definition of some base interest rate level r
and the counterparty dependent default intensities λ. So to some extend these equations
are definitions and do not constitute an assumption. However, given that the base level
r is given, the third equation constitutes and assumption, namely that the defaults of A
and C are independent.

From this we get for the impact of collateralization that

PAC(T ; t) = exp(−r(T − t)) exp(−λA(T − t))·

·
(

1 +
K

M
exp(−λC(T − t))

(
exp(λA(T − t))− 1

))
.

Note that for K > M this discount factor could have PAC(T ;T ) > 1. This would
correspond to the case where the original deal is over-collateralized. We excluded
this case in the derivation and in fact the formula above does not hold in general for
an over-collateralized deal, since we would need to consider the discount factor of
the counterpart receiving the collateral (the the over-collateralized part is at risk now).
Nevertheless, a similar formula can be derived.

2.6.3 Full Bilateral Collateralization

Full bilateral collateralization with collateral having the same discount factor, i.e.,
PAC(T ) = PBD(T ), will result in a single discounting curve (namely that of the
collateral) regardless of the origin of the cash flow.
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3 Discounting Cash Flows: The Hedging View

We now take a different approach in valuing cash flows and we change our point of
view. We now assume that we are entity A and as a consequence postulate that

Axiom 1: (Going Concern)

Entity A wants to stay in business (i.e., liquidation is not an option) and cash flows
have to be “hedged” (i.e., neutralized, replicated). In order to stay in business, future

outgoing cash flows have to be ensured.

The axiom means that we do not value cash flows by relating them to market
bond prices (the liquidation view). Instead we value future cash flows by trading in
assets such that future cash flows are hedged (neutralized). The costs or proceeds
of this trading define the value of future cash flows. An entity must do this because
all uncovered negative net cash flow will mean default. Future net (!) cash flow is
undesirable. A future cash flow has to be managed.

This is to some extend reasonable since cash itself is a bad thing. It does not earn
interest. It needs to be invested. We will take a replication / hedging approach to value
future cash. In addition we take a conservative point of view: a liability in the future
(which cannot be neutralized by trading in some other asset (netting)) has to be secured
in order to ensure that we stay in business. Not paying is not an option. This relates to
the “going concern” as a fundamental principle in accounting.

At this point one may argue that a future outgoing cash flow is not a problem. Once
the cash has to flow we just sell an asset. However, then we would be exposed to risk
in that asset. This is not the business model of a bank. A bank hedges its risk and so
future cash flow has to be hedged as well. Valuation is done by valuing hedging cost.

Changing the point of view, i.e., assuming that we are entity A has another conse-
quence, which we also label as an “Axiom”:

Axiom 2:

We cannot short sell our own bond.

The rationale of this is clear: While a third party E actually can short sell a bond
issued by A by selling protection on A, A itself cannot offer such an instrument. It
would offer an insurance on its own default, but if the default occurs, the insurance does
not cover the event. Hence the product is worthless.

3.1 Moving Cash Flow through Time

Axiom 1 requires that we consider transactions such that all future cash flow is converted
into todays cash flow, where then a netting of cash occurres. Axiom 2 then restricts the
means how we can move cash flows around.

Let us explore the means of “moving” cash through time. To illustrate the concept
we first consider deterministic cash flows only. These allow for static hedges through
the construction of appropriate forward bonds in Section 3.2. Dynamic hedges will be
considered in Section 3.3.
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Let us assume that there is a risk free entity issuing risk free bonds P ◦(T ; t) by
which we may deposit cash.2

3.1.1 Moving Positive Cash to the Future

If entity A (i.e., we) has cash N in time t it can invest it and buy bonds P ◦(T ; t). The
cash flow received in T then is N 1

P ◦(T ;t) .
This is the way by which positive cash can be moved from t to a later time T > t

(risk less, i.e., suitable for hedging). Note that investing in to a bond PB(T ; t) of some
other entity B is not admissible since then the future cash flow would be credit linked
to B.

3.1.2 Moving Negative Cash to the Future

If entity A (i.e., we) has cash −N in time t it has to issue a bond in order to cover
this cash. In fact, there is no such thing as negative cash. Either we have to sell assets
or issue a bond. Assume for now that selling assets is not an option. Issuing a bond
generating cash flow +N (proceeds) the cash flow in T then is −N 1

PA(T ;t)
(payment).

This is the way by which negative cash can be moved from t to a later time T > t.

3.1.3 Hedging Negative Future Cash Flow

If entity A (i.e., we) is confronted with a cash flow −N in time T it needs to hedge
(guarantee) this cash flow by depositing −N 1

P ◦(T ;t) today (in bonds P ◦(T ; t)).
This is the way by which negative cash can be moved from T to an earlier time

t < T .
A remark is in order now: An alternative to net a future outgoing cash flow is by

buying back a corresponding −PA(T ; t) bond. However, let us assume that buying
back bonds is currently not an option, e.g., for example because there are no such bonds.
Note that due to Axiom 2 it is not admissible to short sell our own bond.3

3.1.4 Hedging Positive Future Cash Flow

If entity A (i.e., we) is confronted with a cash flow +N in time T it needs to hedge (net)
this cash flow by issuing a bond with proceeds N 1

PA(T ;t)
today (in bonds P ◦(T ; t)).

This is the way by which positive cash can be moved from T to an earlier time
t < T .

3.2 Construction of Forward Bonds

The basic instrument to manage cash flows will be the forward bond transaction, which
we consider next. To comply with Axiom 2 we simply assume that we can only enter in
one of the following transactions, never sell it. Hence we have to consider two different
forward bonds.

2 Counterparty risk will be considered at a later stage.
3 We will later relax this assumption and allow for (partial) funding benefits by buying back bonds.
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3.2.1 Forward Bond 1: Hedging Future Incoming Cash with Outgoing Cash

Assume we haven an incoming cash flow M from some counterparty risk free entity to
entity A in time T2 and an outgoing cash flow cash flow −N from entity A (i.e., we) to
some other entity in time T1. Then we perform the following transactions

• We neutralize (secure) the outgoing cash flow by an incoming cash flow N by
investing −NP ◦(T1; 0) in time 0.

• We net the incoming cash flow by issuing a bond in t = 0 paying back −M ,
where we securitize the issued bond by the investment in NP ◦(T1; 0), resulting
in MPA(T2; 0)P ◦(T1;0)

PA(T1;0)
. Note that the issued bond is securitized only over the

period [0, T1].

This transaction has zero costs if N = M PA(T2;0)
PA(T1;0)

. Let

PA(T1, T2) :=
PA(T2)
PA(T1)

.

3.2.2 Forward Bond 2: Hedging Future Outgoing Cash with Incoming Cash

Assume we haven an outgoing cash flow −M in T2 and an incoming cash flow N from
some counterparty risk free entity to entity A (i.e., us) in T1. Then we perform the
following transactions

• We neutralize (secure) the outgoing cash flow by an incoming cash flow N by
investing −NP ◦(T2; 0) in time t = 0.

• We net the incoming cash flow by issuing a bond in t = 0 paying back −M ,
where we securitize the issued bond by the investment in NP (T2; 0), resulting in
MP ◦(T1; 0).

This transaction has zero costs if N = M P ◦(T2;0)
P ◦(T1;0) . Let

P ◦(T1, T2) :=
P ◦(T2)
P ◦(T1)

.

3.2.3 Forward Bond 1’: Hedging Future Credit Linked Incoming Cash with
Credit Linked Outgoing Cash

In the presents of counterparty risk, the construction of the forward bond (discounting
of an incoming cash flow) is a bit more complex. Assume we have an incoming cash
flow M from entity B to entity A in time T2. We assume that we can buy protection on
M received from B at −CDSB(T2; t), where this protection fee is paid in T2. Assume
further that we can sell protection on N received from B at CDSB(T1; t), where this
protection fee is paid in T1. Then we repeat the construction of the forward bond with
the net protected amounts M(1− CDSB(T2; t)) and N(1− CDSB(T1; t)), replacing
M and N in 3.2.1 respectively. In other words we perform the following transactions

• We buy protection on B resulting in a cash flow −MCDSB(T2; t) in T2.
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• We issue a bond to net the T2 net cash flow M(1− CDSB(T2; t)).

• We sell protection on B resulting in a cash flow NCDSB(T1; t) in T1.

• We invest N(1− CDSB(T1; t))P ◦(T1; 0) in t to generate a cash flow of N(1−
CDSB(T1; t)) in T1.

• We collateralized the issued bond using the risk free bond over [0, T1] resulting
in proceeds M(1− CDSB(T2; t))PA(T2; 0)P ◦(T1;0)

PA(T1;0)
in t.

This transaction has zero costs if N = M PA(T2;0)
PA(T1;0)

1−CDSB(T2;t)

1−CDSB(T1;t)
. Let

PA|B(T1, T2) :=
PA(T2)
PA(T1)

1− CDSB(T2; t)
1− CDSB(T1; t)

.

However, while this construction will give us a cash flow in T1 which is (because
of selling protection) under counterparty risk, netting of such a cash flow will require
more care. We will consider this in Section 3.4, there we apply this construction with
t = T1 such that selling protection does not apply.

3.2.4 Price of Counterparty Risk Protection

We denote the price of one unit of counterparty risk protection until T2 as contracted
in t by CDSB(T2; t). If we do not consider liquidity effects a fair (mark-to-marked)
valuation will give

PB(T2; t) + CDSB(T2; t)P ◦(T2; t) = P ◦(T2; t),

where we assume that the protection fee flows in T2 (and independently of the default
event). This gives

1− CDSB(T2; t) =
PB(T2; t)
P ◦(T2; t)

.

The latter can be interpreted as as a market implied survival probability.

3.2.5 Example: Expressing the Forward Bond in Terms of Rates

If we define

P ◦(T2; t)
P ◦(T1; t)

=: exp
(
−
∫ T2

T1

r(τ ; t)dτ
)

PA(T2; t)
PA(T1; t)

=: exp
(
−
∫ T2

T1

r(τ ; t) + sA(τ ; t)dτ
)

1− CDSB(T2; t)
1− CDSB(T1; t)

=: exp
(
−
∫ T2

T1

λB(τ ; t)dτ
)
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then we have

PA|B(T1, T2) = exp
(
−
∫ T2

T1

r(τ ; t) + sA(τ ; t) + λB(τ ; t)dτ
)

(2)

and we see that discounting an outgoing cash flow backward in time by buying the
corresponding forward bonds generates additional costs of exp

(
−
∫ T2

T1
sA(τ ; t)dτ

)
(funding) compared to discounting an incoming cash flow. In addition incoming cash
flows carry the counterparty risk by the additional discounting (cost of protection) at
exp

(
−
∫ T2

T1
λB(τ ; t)dτ

)
.

The expression (2) is similar to a corresponding term in [7], except that there

exp
(
−
∫ T2

T1

r(τ ; t) + γA(τ ; t) + λB(τ ; t)dτ
)

had been derived, where γA is the bond-cds basis (i.e., γA = sA − λA). The difference
stems from the fact that [7] always factors in own-credit, which we do not do according
to axiom 1. However, in the end we can arrived at a similar result since the effective
funding required applies only on the net amount (after all netting has been performed).4

Not that these single time step static hedges do not consider any correlation, e.g.,
the colleation between A’s funding and B’s counterparty risk. This correlation will
come in once we assume a dynamic model for the corresponding rates and consider
dynamic hedges (e.g., in a time-discrete model). We will do so next, in Section 3.3.

3.2.6 Interpretation: Funding Cost as Hedging Costs in Cash Flow Manage-
ment

From the above, we see that moving cash flows around generates costs and the cash flow
replication value of future cash flows will be lower than the portfolio liquidation value
of future cash flow. The difference of the two corresponds to the “operating costs of
managing un-netted cash flows”, which are just the funding costs. Clearly, liquidating
there are no operating cost (so we save them). However these costs are real. If we have
cash lying around we can invest only at a risk free rate, however we fund ourself at a
higher rate. The only way to reduce cash cost is to net them with other cash flows (e.g.
of assets generating higher returns).

3.3 Valuation with Hedging Costs in Cash flow Management (Funding)

The cash flow replication value is now given by the optimal combination of forward
bonds to hedge (replicate) the future cash flow, where nearby cash flows are “netted” as
good a possible. This is given by a backward algorithm, discounting each cash flow
according to the appropriate forward bond and then netting the result with the next cash
flow.

4 Netting will play an important role how funding and counterparty risk will enter. Note that for the net
exposure we have to net all cashflows related to a single counterpart, for the net funding we have to net
all cashflows over all counterparts.
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Let us first consider the valuation neglecting counter party risk, or, put differently,
all future cash flows exposed to counter party risk have been insured by buying the
corresponding protection first (and reducing net the cash flow accordingly). We will
detail the inclusion of counterparty risk in Section 3.4.

3.3.1 Interest for Borrowing and Lending

Obviously, using our two assumptions (Axiom 1 and Axiom 2) we arrived at a very
natural situation. The interest to be paid for borrowing money over a period [T1, T2] is
(as seen in t)

1
T2 − T1

(
PA(T1; t)
PA(T2; t)

− 1
)

,

i.e., our funding rate. The interest earned by depositing money (risk free) over a period
[T1, T2] is

1
T2 − T1

(
P ◦(T1; t)
P ◦(T2; t)

− 1
)

,

i.e., the risk free rate. Hence we are in a setup where interest for borrowing and lending
are different. The valuation theory in setups when rates for lending and borrowing are
different is well understood, see for example [3].

3.3.2 From Static to Dynamic Hedging

The forward bonds, e.g., P ◦(T1, T2; t) or PA(T1, T2; t) define a static hedge in the
sense that their value is known in t. If we are discounting / hedging stochastic cash
flows C(T ) a dynamic hedge is required and C(Ti)PA(Ti−1, Ti;Ti−1) is replaced by

N(Ti−1) EQN

(
C(Ti)PA(Ti;Ti)

N(Ti)

)
.

Note: It is

PA(Ti−1, Ti;Ti−1) = PA(Ti;Ti−1) = N(Ti−1) EQN

(
PA(Ti;Ti)
N(Ti)

)
,

i.e., for t = S the forward bond P (S, T ; t) is just a bond.

Example: Implementation using Euler simulation of Spreads and Intensities

If we express the bonds in terms of the risk free bond P ◦, e.g.,

PA(Ti; t)
P ◦(Ti; t)

=: exp

(
−
∫ Ti

Ti−1

sA(τ ; t)dτ

)

and model (!) the process on the right hand side such that sA(τ ; t) is FTi−1-measurable
for t ∈ [Ti−1, Ti] (which is usually case if we employ a numerical scheme like the Euler
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scheme for the simulation of spreads s and default intensities λ), then we find that for
any cash flow C(Ti)

N(Ti−1) EQN

(
C(Ti)PA(Ti;Ti)

N(Ti)

)
= N(Ti−1) EQN

(
C(Ti)
N(Ti)

)
exp

(
−
∫ Ti

Ti−1

sA(τ ; t)dτ

)
PA(Ti−1;Ti−1)

and likewise for PB.

3.3.3 Valuation of a Single Product including Cash Flow Costs

Let us consider the valuation of a collateralized swap being the only product held by
entity A. Let us assume the swap is collateralized by cash. The package consisting of the
swap’s (collateralized) cash flows and the collateral flows has a mark-to-market value
of zero (valued according to Section 2), by definition of the collateral. However, the
package represents a continuous flow of cash (margining). If valued using the collateral
curve PC = P ◦ these marginal collateral cash flows have mark-to-market value zero
(by definition of the collateral).

Let us assume that this swap constitutes the only product of entity A and that we
value cash flows by a hedging approach, i.e., dynamically using the two forward bonds
from Section 3.2. Taking into account that for cash we have different interest for
borrowing and lending, the collateral cash flow will generate additional costs. These
are given by the following recursive definition:

V d
i (Ti−1)
N(Ti−1)

= EQN

(
max(Xi + V d

i+1(Ti), 0)
N(Ti)

PA(Ti;Ti)

+
min(Xi + V d

i+1(Ti), 0)
N(Ti)

P ◦(Ti;Ti)
∣∣∣ FTi−1

)
.

(3)

Here V d
i+1(Ti) is the net cash position required in Ti to finance (e.g., fund) the future

cash flows in t > Ti. Xi is the collateral margin call occurring in time t = Ti. Hence
we have to borrow or lend the net amount

V d
i (Ti) = Xi + V d

i+1(Ti)

over the period (Ti−1, Ti]. This amount is then transferred to Ti−1 using the appropriate
forward bond (discounting) for netting with the next margining cash flow Xi−1.

This is the valuation under the assumption that the Xi is the net cash flow of entity
A, e.g., as if the collateralized swap is our only product.

3.3.4 Valuation within a Portfolio Context - Valuing Funding Benefits

The situation of Section 3.3.3 now carries over to the valuation of a portfolio of products
hold by entity A. In this the algorithm (3) will determine the discount factor to be used
in the period [Ti−1, Ti] from the portfolios net cash position V d

i (Ti), regardless of a
product having an outgoing or incoming cash flow.

Let us discuss a product having a cash flow C(Ti) in Ti being part of entity A’s
portfolio resulting in a net (cash) position V d

i (Ti).
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Incoming Cash Flow, Positive Net Position

Given that our net position V d
i (Ti) is positive in Ti, an incoming (positive) cash flow

C(Ti) can be factored in at earlier time only by issuing a bond. Hence it is discounted
with PA (resulting in a smaller value at t < Ti, compared to a discounting with P ◦).
Note that for t > Ti this cash flow can provide a funding benefit for a future negative
cash flow which would be considered in the case of a negative net position, see 3.3.4).

Outgoing Cash Flow, Positive Net Position

Given that our net position V d
i (Ti) is positive in Ti, an outgoing (negative) cash flow

C(Ti) can be served from the positive (net) cash position. Hence it does not require
funding for t < Ti as long as our net cash position is positive. Factoring in the funding
benefit it is discounted with PA (resulting in a larger value at t < Ti, compared to a
discounting with P ◦).

Incoming Cash Flow, Negative Net Position

Given that our net position V d
i (Ti) is negative in Ti, an incoming (positive) cash flow

C(Ti) reduces the funding cost for the net position. Hence it represents a funding
benefit and is discounted with P ◦ (resulting in a larger value at t < Ti, compared to a
discounting with PA).

Outgoing Cash Flow, Negative Net Position

Given that our net position V d
i (Ti) is negative in Ti, an outgoing (negative) cash flow

C(Ti) has to be funded on its own (as long as our net position remains negative).
Hence it is discounted with P ◦ (resulting in a smaller value at t < Ti, compared to a
discounting with PA).

3.4 Valuation with Counterparty Risk and Funding Cost

So far Section 3 did not consider counterparty risk in incoming cash flow. Of course,
it can be included using the forward bond which includes the cost of protection of a
corresponding cash flow.

3.4.1 Static Hedge of Counterparty Risk in the Absence of Netting

Assume that all incoming cash flows from entity B are subject to counterparty risk
(default), but all outgoing cash flow to entity B have to be served. This would be the
case if we consider a portfolio of (zero) bonds only and there is no netting agreement.

Since there is no netting agreement we need to buy protection on each individual
cash flow obtained from B. It is not admissible to use the forward bond PA|B(T1, T2)
to net a T2 incoming cash flow for which we have protection over [T1, T2] with a T1

outgoing (to B) cash flow and then buy protection only on the net amount.
If we assume, for simplicity, that all cash flows XBj

i,k received in Ti from some
entity Bj are known in T0, i.e., FT0-measurable, then we can attribute for the required
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protection fee in T0 (i.e., we have a static hedge against counterparty risk) and our
valuation algorithm becomes

V d
i (Ti−1)
N(Ti−1)

= EQN

(
max(Xi + V d

i+1(Ti), 0)
N(Ti)

PA(Ti;Ti)

+
min(Xi + V d

i+1(Ti), 0)
N(Ti)

P ◦(Ti;Ti)
∣∣∣ FTi−1

)
.

(4)

where the time Ti net cash flow Xi is given as

Xi := X◦i +
∑

j

∑
k

(
min(XBj

i,k , 0) + (1− CDSBj (Ti;T0)) max(XBj

i,k , 0)
)

.

where Bj denote different counterparties and XBj

i,k is the k-th cash flow (outgoing or
incoming) between us and Bj at time Ti. So obviously we are attributing full protection
costs for all incoming cash flows and consider serving all outgoing cash flow a must.
Note again, that in any cash flow X

Bj

i,k we account for the full protection cost from T0

to Ti.
Although this is only a special case we already see that counterparty risk cannot be

separated from funding since (4) makes clear that we have to attribute funding cost for
the protection fees.5

3.4.2 Dynamic Hedge of Counterparty Risk in the Presence of Netting

However, many contracts feature netting agreements which result in a “temporal netting”
for cash flows exchanged between two counterparts and only the net cash flow carries
the counterparty risk. It appears as if we could then use the forward bond PA|B(Ti−1, Ti)
and PB(Ti−1, Ti) on our future Ti net cash flow and then net this one with all Ti−1 cash
flows, i.e., apply an additional discounting to each netted set of cash flows between two
counterparts. This is not exactly right. Presently we are netting Ti cash flows with Ti−1

cash flows in a specific way which attributes for our own funding costs. The netting
agreement between two counterparties may (and will) be different from our funding
adjusted netting. For example, the contract may specify that upon default the close out
of a product (i.e., the outstanding claim) is determined using the risk free curve for
discounting.

Let us denote by V B
CLSOUT,i(Ti) the time Ti cash being exchanged / being at risk

at Ti if counterparty B defaults according to all netting agreements (the deals close
out). This value is usually a part of the contract / netting agreement. Usually it will be
a mark-to-market valuation of V B at Ti. One approach to account for the mismatch
is to buy protection over [Ti−1, Ti] for the positive part of V B

CLSOUT,i(Ti) (i.e., the
exposure), then additionally buy protection for the mismatch of the contracted default
value V B

CLSOUT,i(Ti) and netted non-default value V B
i (Ti).

5 We assumed that the protection fee is paid at the end of the protection period, it is straight forward to
include periodic protection fees.
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As before let XBj

i,k denote the k-th cash flow (outgoing or incoming) exchanged
between us and entity Bj at time Ti. Let

R
Bj

i (Ti) :=
∑

k

X
Bj

i,k + V
Bj

i+1(Ti)

denote the value contracted with Bj , valued in Ti, including our future funding costs.
Then

V
Bj

i (Ti) := R
Bj

i (Ti) − pj max(RBj

i (Ti), 0)︸ ︷︷ ︸
protection on netted value

including our funding

+ pj

(
min(V Bj

CLSOUT,i(Ti), 0)−min(RBj

i (Ti), 0)
)

︸ ︷︷ ︸
mismatch of liability

in case of default

is the net value including protection fees over the period [Ti−1, Ti], where pj is the price
of buying or selling one unit of protection against Bj over the period [Ti−1, Ti], i.e.,

pj := CDSBj (Ti;Ti−1).

Let
Vi(Ti) :=

∑
j

V
Bj

i (Ti).

The general valuation algorithm including funding and counterparty risk is then given
as

Vi(Ti−1)
N(Ti−1)

= EQN

(
max(Vi(Ti), 0)

N(Ti)
PA(Ti;Ti)

+
min(Vi(Ti), 0)

N(Ti)
P ◦(Ti;Ti)

∣∣∣ FTi−1

)
.

(5)

In our valuation the time Ti−1 value being exposed to entities Bj counterparty risk is
given by

V
Bj

i (Ti−1)
N(Ti−1)

:= EQN

(
max(Vi(Ti), 0)−max(Vi(Ti)− V

Bj

i (Ti), 0)
N(Ti)

PA(Ti;Ti)

+
min(Vi(Ti), 0)−min(Vi(Ti)− V

Bj

i (Ti), 0)
N(Ti)

P ◦(Ti;Ti)
∣∣∣ FTi−1

)
.

In other words, V Bj

i (Ti−1) is the true portfolio impact (including side effects of funding)
if the flows XBj

l,k , l ≥ i, are removed from the portfolio.
In the case where the mismatch of contracted default value V B

CLSOUT,i(Ti) and
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netted non-default value RBj

i (Ti) is zero we arrive at

V
Bj

i (Ti) := min
(
R

Bj

i (Ti), 0
)

+ (1− pj) max
(
R

Bj

i (Ti), 0
)

= R
Bj

i (Ti) + pj max
(
R

Bj

i (Ti), 0
)

= R
Bj

i (Ti)− pj max
(
R

Bj

i (Ti), 0
)

=
∑

k

X
Bj

i,k + V
Bj

i+1(Ti)− pj max

(∑
k

X
Bj

i,k + V
Bj

i+1(Ti), 0

)
.

- in this case we get an additional discount factor on the positive part (exposure) of the
netted value, attributing for the protection costs.

3.4.3 Interpretation

From algorithm (5) it is obvious that the valuation of funding (given by the discounting
using either P ◦ or PA) and the valuation of counterparty risk (given by buying/selling
protection at p) cannot be separated. Note that

• We not only account for the default risk with respect to our exposure (V B
CLSOUT,i(Ti)),

but also to the loss of a potential funding benefit, i.e., the impact of default on
funding.

• Buying protection against default has to be funded itself and we account for that.

The algorithms (5) values the so called wrong-way-risk, i.e., the correlation between
counterparty default and couterparty exposure via the term pj max(RBj

i (Ti), 0).

3.4.4 The Collateralized Swap with Funding Costs

Let us consider the collaterlaized swap again. While the mark-to-market value of a
collateralized (secured) cash flow can be calculate off the curve implied by the collateral,
the presents of funding cost changes the picture significantly:

• The discount curve determining the collateral may be different from the curve
discount curve attributing for the funding cost. Hence, the collateral will not
match the expected value of the future cashflows inclunding funding costs.

• Collateral may require funding or may represent a funding benefit. In case of
default these cashflows are lost.

The surprising result is, that the presents of funding cost may introduce counterparty
risk into a collateralize (secured) deal. As a consequence, the collateralized deal has to
be valued within (5) to account for these effects.

4 The Relation of the Different Valuations

Let us summarize the relation of the two different discounting in the presents of
counterparty risk. The mark-to-market value of a time Ti cash flow is
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cash flow discount factor over [Ti−1, Ti]
outgoing (C(Ti) < 0) PA(Ti−1, Ti)
incoming (C(Ti) > 0) PB(Ti−1, Ti)

In this situation a liability of A is written down, because in case of liquidation of A its
counterparts accepts to receive less than the risk free discounted cash flow today.

The hedging (replication) value of a time Ti cash flow depends however on our net
cash position, because the net cash position decides if funding cost apply or a funding
benefit can be accounted for. The net cash position has to be determined with the
backward algorithm (3) where each cash flow Xi is adjusted according to his (netted)
counterparty risk. Using PB(Ti;Ti)P ◦(Ti−1, Ti) = PB(Ti−1, Ti) we can formally
write

discount factor over [Ti−1, Ti]
cash flow positive net cash in T negative net cash in Ti

outgoing (C(Ti) < 0) PA(Ti−1, Ti) P ◦(Ti−1, Ti)
incoming (C(Ti) > 0) PB(Ti;Ti)PA(Ti−1, Ti) PB(Ti−1, Ti)

The two valuation concepts coincide when PA(Ti−1, Ti) = P ◦(Ti−1, Ti), i.e., we
do not have funding cost. They also coincide if an outgoing cash flow appears only
in the situation of positive net cash in Ti (funding benefit) and an incoming cash flow
appears only in the situation of negative net cash Ti (funding benefit).

Put differently: The liquidation valuation neglects funding by assuming funding
benefits in all possible situations.6

4.1 One Product - Two Values

Given the valuation framework discussed above a product has at least two values:

• the product can be evaluated “mark-to-marked” as a single product. This value
can be seen as a “fair” market price. Here the product is valued according to
Section 2. This is the product’s idiosyncratic value.

• the product can be evaluated within its context in a portfolio of products owned
by an institution, i.e., including possible netting agreements and operating costs
(funding). This will constitute the value of the product for the institution. Here the
value of the product is given by the change of the portfolio value when the product
is added to the portfolio, where the portfolio is valued with the algorithm (3).
This is the products marginal portfolio value.

However, both valuations share the property that the sum of the values of the products
belonging to the portfolio does not necessarily match the portfolio’s value. This is
clear for the first value, because netting is neglected all together. For the second value,
removing the product from the portfolio can change the sign of netted cash flow, hence
change the choice of the chosen discount factors.

6 This is, assuming zero bond-cds basis spread, the situation in [7].
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4.2 Valuation of a Bond

To test our frameworks, lets us go back to the zero coupon bond from which we started
and value it.

4.2.1 Valuation of a Bond at Mark-To-Market

Using the mark-to-market approach we will indeed recover the bonds market value
−PA(T ; 0) (this is a liability). Likewise for PB(T ) we get +PB(T ; 0).

4.2.2 Valuation of a Bond at Funding

Factoring in funding costs it appears as if issuing a bond would generate an instantaneous
loss, because the bond represents a negative future cash flow which has to be discounted
by P ◦ according to the above. This stems from assuming that the proceeds of the issued
bond are invested risk fee. Of course, it would be unreasonable to issue a risky bond
and invest its proceeds risk free.

However, note that the discount factor only depends on the net cash position. If the
net cash position in T is negative, it would be indeed unreasonable to increase liabilities
at this maturity and issue another bond.

Considering the hedging cost approach we get for PA(T ) the value −P ◦(T ; 0) if
the time T net position is negative. This will indeed represent loss compared to the
mark-to-market value. This indicated that we should instead buy back the bond (or not
issue it at all). If however our cash position is such that this bond represents a funding
benefit (in other words, it is needed for funding), it’s value will be PA(T ; 0).

For PB we get

N(0)EQ
(
PB(T ;T )PA(T ;T )

N(T )
| F0

)
Assuming that A’s funding and B’s counterparty risk are independent from P ◦(T ) we
arrive at

PB(T ; 0)
PA(T ; 0)
P ◦(T ; 0)

which means we should sell B’s bond if its return is below our funding (we should not
hold risk free bonds if it is not necessary).

4.3 Convergence of the two Concepts

Not that if A runs a perfect business, securing every future cash flow by hedging
it (using the risk free counterpart P ◦(T ;T )), and if there are no risk in its other
operations, then the market will likely value it as risk free and we will come close to
PA(T ;T ) = P ◦(T ;T ). In that case, we find that both discounting methods agree and
symmetry is restored.

However, there is even a more closer link between the two valuations. Let us con-
sider that entity A holds a large portfolio of products V1, . . . , VN . Let V1(0), . . . , VN (0)
denote the mark-to-market (liquidation) value of those products. Let Π[V1, . . . , VN ](0)
denote the hedging value of the portfolio of those products. If the portfolio’s cash
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flows are hedged in the sense that all future net cash flows are zero, then, neglecting
counterparty risk, we have (approximately)

Vk(0) ≈ Π[V1, . . . , VN ](0)−Π[V1, . . . , Vk−1, Vk+1, . . . , VN ](0).

Thus, the mark-to-market valuation which includes “own-credit” for liabilities corre-
sponds to the marginal cost or profit generated when removing the product from a large
portfolio which includes finding costs. However, portfolio valuation is non-linear in the
products and hence the sum of the mark-to-market valuation does not agree with the
portfolio valuation with funding costs.

We proof this result only for product consisting of a single cash flow. A linearization
argument shows that it then hold (approximately) for products consisting of many small
cash flows.

If the portfolio is fully hedged the all future cash flows are netted. In other words,
the entity A attributed for all non-netted cash flows by considering issued bonds or
invested money. Then we have V d

j (Tj) = 0 for all j. Let Vk be a product consisting of
a single cash flow C(Ti) in Ti, exchanged with a risk free entity. If this cash flow is
incoming, i.e, C(Ti) > 0 then removing it the portfolio will be left with an un-netted
outgoing cash flow −C(Ti), which is according to our rules discounted with P ◦(Ti).
Likewise, if this cash flow is outgoing, i.e, C(Ti) < 0 then removing it the portfolio
will be left with an un-netted incoming cash flow C(Ti), which is according to our rules
discounted with PA(Ti).

Hence the marginal value of this product corresponds to the mark-to-market valua-
tion.

5 Credit Valuation Adjustments

The valuation defined above includes counter party risk as well as funding cost. Hence,
valuing a whole portfolio using the above valuation, there is no counter party risk
adjustment.

However, the valuation above is computationally very demanding. First, all products
have to be valued together, hence it is not straight forward to look at a single products
behavior without valuing the whole portfolio.

Second, even very simple products like a swap have to be evaluated in a backward
algorithm using conditional expectations in order to determine the net exposure and their
effective funding costs. This is computationally demanding, especially if Monte-Carlo
simulations is used.

As illustrated above, the valuation simplifies significantly if all counterparts share
the same zero coupon bond curve P (T ; t) and/or the curve for lending an borrowing
agree. A credit valuation adjustment is simply a splitting of the following form

V (t) = V |P ·=P ∗(t) + (V (t)− V |P ·=P ∗(t))︸ ︷︷ ︸
CVA

where V |P ·=P ∗(t) denotes the simplified valuation assuming a single discounting curve
P ∗ (neglecting the origin or collateralization of cash flows).

While the use of a credit valuation adjustment may simplify the implementation of
a valuation system it brings some disadvantages:
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• The valuation using the simplified single curve, in general, is not correct.

• Hedge parameters (sensitivities) calculated such valuation, in general, are wrong.

In order to cope with this problem we propose the following setup:

• Construction of proxy discounting curve P ∗ such that the CVA is approximately
zero.

• Transfer of sensitivity adjustments calculated from the CVA’s sensitivities.

6 Modeling and Implementation

So far we expressed all valuation in terms of products of cash flows and zero coupon
bond processes like PA(T ; t). The value of a stochastic time T cash flow C(T )
originating from entity A was given as of time T as

C(T )PA(T ;T )

and the corresponding time t < T value was expressed using risk neutral valuation

N(0)EQN

(
C(T )PA(T ;T )

N(T )

∣∣∣ F0

)
.

Our presentation was model independent so far. Depending on the cash flow the term
C(T )PA(T ;T ) may give rise to valuation changes stemming from the covariance of
C(T ) and PA(T ;T )

N(T ) .
For an implementation of the valuation algorithm consider a time discretization

0 =: t0 < t1 < · · · < tn. We assume that the discretization scheme of the model
primitives models the counterparty risk over the interval [ti, ti+1) as an Fti-measurable
survival probability such that we have for all ti+1 cash flows C(ti+1) that

N(ti)EQN

(
C(ti+1)PA(ti+1; ti+1)

N(ti)

∣∣∣ Fti+1

)
= N(ti)EQN

(
C(ti+1)
N(ti+1)

∣∣∣ Fti

)
exp

(
−
∫ ti+1

ti

λA(s; ti)ds
)

.
(6)

The expression exp
(
−
∫ ti+1

ti
λA(s; ti)ds

)
represents an additional “discounting” stem-

ming from the issuers credit risk / funding costs. It can be interpreted as and (implied)
survival probability (see Chapter 28 in [4]).7

Hence any counterparty-risk-free valuation model can be augmented with funding
costs, counterparty risk and collateralization effects by two modifications:

• The model is augmented by a simulation of the (conditional) one step (forward)
survival probabilities (or funding spreads), e.g., exp

(
−
∫ ti+1

ti
λA(s; ti)ds

)
.

• The valuation is performed using the backward algorithm (3), where in each
time step the survival probabilities and/or funding adjusted discount factors are
applied according to (6).

7 A very simple model is to assume that exp
(
−
∫ ti+1

ti
λA(s; ti)ds

)
is deterministic.
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7 Conclusion

We considered the valuation of cash flows including counterparty risk and funding. We
sheded some light on the own credit risk paradox that the mark-to-market value of a
portfolio increases if its owner’s credibility decreases. After our discussion the situation
now appears much clear: This increase in value is reasonable when considering the
portfolios liquidation since lenders are willing to accept a lower return upon liquidation
in exchange for the increased credit risk.

If we value the portfolio under a hedging perspective (where hedging to some
extend means funding) we see that the portfolio value decreases if its owner’s credibility
decreases. This is also reasonable since funding cost (operating costs) have risen.

The two notion of valuation can co-exist. They do not contradict. One discount-
ing should be used for mark-to-market valuation. The other should be used for risk
management and the governance (managing) of positions.

To see the effect of a single deal on the cash flow management the bank could use a
curve for borrowing and lending and every deal would have to be valuated according to
the algorithm (3).
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