

# Rate curves for forward Euribor estimation and CSA-discounting

Ferdinando M. Ametrano Banca IMI - Financial Engineering ferdinando.ametrano@bancaimi.com

Banca del gruppo INTESA m SNPAOLO

# Goals

- To provide key elements for rate curve estimation understanding
  - Curve parameterization: discretization and interpolation schemes
  - Bootstrapping algorithm
  - Financial instrument selection
- What is changed since summer 2007
  - How to build multiple forwarding curve
  - Which curve has to be used for discounting



## **Sections**

- 1. Rate curve parameterization and interpolation
- 2. Plain vanilla products
- 3. Rate curve bootstrapping
- 4. Turn of year
- 5. What has changed
- 6. Forwarding rate curves
- 7. Discounting rate curve
- 8. Bibliography





# Rate curves for forward Euribor estimation and CSA-discounting

1. Rate curve parameterization and interpolation



#### Rate curve parameterization

Discrete time-grid of

- discount factors
- continuous (sometime compounded) zero rates
- instantaneous continuous forward rates

$$D(t_i) = \exp(-z(t_i)t_i) = \exp(-\int_0^{t_i} f(t)d\tau)$$

Only discount factors are well defined at t=0



## Interpolation

- Whatever parameterization has been chosen an interpolation for off-grid dates/times is needed
- Discount factors have exponential decay so it makes sense to interpolate on log-discounts
- A (poor) common choice is to interpolate (linearly) on zero rates
- The smoothness of a rate curve is to be measured on the smoothness of its (simple) forward rates. So it would make sense to use a smooth interpolation on (instantaneous continuous) forward rates



### The most popular: linear interpolation

- Linear interpolation is
  - Easy
  - Local (it only depends on the 2 surrounding points)
- Linear interpolation on log-discounts generates piecewise flat forward rates
- Linear interpolation on zero rates generates seesaw forward rates
- Linear interpolation on forward rates generates non-smooth forward rates



## **Smoothness beyond linear: cubic interpolations**

A cubic interpolation is fully defined when the  $\{f_i\}$  function values at points  $\{x_i\}$  are supplemented with  $\{f'_i\}$  function derivative values.

Different type of first derivative approximations are available:

- Local schemes (Fourth-order, Parabolic, Fritsch-Butland, Akima, Kruger, etc) use only  $\{f_i\}$  values near  $x_i$  to calculate each  $f'_i$
- Non-local schemes (spline with different boundary conditions) use all  $\{f_i\}$  values and obtain  $\{f'_i\}$  by solving a linear system of equations.
- Local schemes produce  $C^1$  interpolants, while the spline schemes generate  $C^2$  interpolants.



## **Cubic interpolation problems**

- Simple cubic interpolations suffer of well-documented problems such as spurious inflection points, excessive convexity, and lack of locality.
- Wide oscillation can generate negative forward rates.
- Andersen has addressed these issues through the use of shapepreserving splines from the class of generalized tension splines.
- Hagan and West have developed a new scheme based on positive preserving forward interpolation.



## Monotonic cubic interpolation: Hyman filter

- Hyman monotonic filter is the simpler, more general, most effective approach to avoid spurious excessive oscillation
- It can be applied to all schemes to ensure that in the regions of local monotoniticity of the input (three successive increasing or decreasing values) the interpolating cubic remains monotonic.
- If the interpolating cubic is already monotonic, the Hyman filter leaves it unchanged preserving all its original features.
- In the case of C<sup>2</sup> interpolants the Hyman filter ensures local monotonicity at the expense of the second derivative of the interpolant which will no longer be continuous in the points where the filter has been applied.

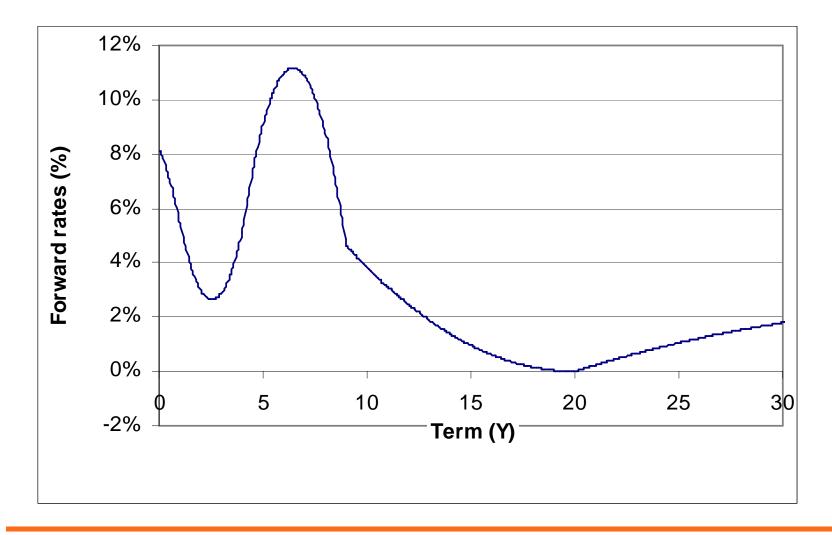


## The favourite choice

- Discount factors are a monotonic non-increasing function of *t*: it is reasonable to interpolate on a (log-)discount grid using an interpolation that preserves monotonicity
- My favourite choice is (Hyman) monotonic cubic interpolation on logdiscounts
  - Defined in t=0
  - Ensure positive rates
  - $C^{1}$  on forward rates ( $C^{0}$  where Hyman filter is really applied)
- It's equivalent to (monotonic) parabolic interpolation on forward rates
- Easy to switch to/from linear interpolation on log-discounts to gain robust insight on the curve shape and its problems

**BANCA IMI** 

#### Hagan West stress case (1)


| Term | Zero rate | Capitalization<br>factor | Discount<br>factor | Log Discount<br>factor | Discrete<br>forward | FRA      |
|------|-----------|--------------------------|--------------------|------------------------|---------------------|----------|
| 0.0  | 0.00%     | 1.000000                 | 1.000000           | 0.000000               |                     |          |
| 0.1  | 8.10%     | 1.008133                 | 0.991933           | 0.008100               | 8.1000%             | 8.1329%  |
| 1.0  | 7.00%     | 1.072508                 | 0.932394           | 0.070000               | 6.8778%             | 7.0951%  |
| 4.0  | 4.40%     | 1.192438                 | 0.838618           | 0.176000               | 3.5333%             | 3.7274%  |
| 9.0  | 7.00%     | 1.877611                 | 0.532592           | 0.630000               | 9.0800%             | 11.4920% |
| 20.0 | 4.00%     | 2.225541                 | 0.449329           | 0.800000               | 1.5455%             | 1.6846%  |
| 30.0 | 3.00%     | 2.459603                 | 0.406570           | 0.900000               | 1.0000%             | 1.0517%  |

**BANCA IMI** 

12/94

Forward Euribor estimation and CSA-discounting January 18th 2011 - Ferdinando M. Ametrano

#### Hagan West stress case (2)



**BANCA IMI** 



# Rate curves for forward Euribor estimation and CSA-discounting

2. Plain vanilla products



## **Pillars and financial instruments**

- Each time-grid pillar of the rate curve is usually equal to the maturity of a given financial instrument used to define the curve. The so-called interbank curve was usually bootstrapped using a selection from the following market instruments:
  - Deposits covering the window from today up to 1Y;
  - FRAs from 1M up to 2Y;
  - short term interest rate futures contracts from spot/3M (depending on the current calendar date) up to 2Y and more;
  - interest rate Swap contracts from 2Y-3Y up to 30Y, 60Y.

## **Pillars and financial instruments (2)**

- The main characteristics of the above instruments are:
  - they are not homogeneous, having different Euribor indexes as underlying
  - the four blocks overlap by maturity and requires further selection.
- The selection is generally done according to the principle of maximum liquidity:
  - Futures
  - Swaps
  - FRA
  - Deposits



# **Deposits and FRA**

- Interest rate Deposits are OTC zero coupon contracts that start at reference date t<sub>0</sub> (today or spot), span the length corresponding to their maturity, and pay the (annual, simply compounded) interest accrued over the period with a given rate fixed at t<sub>0</sub>
  - O/N (overnight), T/N (tomorrow-next), S/N (spot-next)
  - 1W (spot-week)
  - 1M, 2M, 3M, 6M, 9M, 12M
- FRAs pay the difference between a given strike and the underlying Euribor fixing.
- 4x7 stands for 3M Euribor fixing in 4 months time
- The EUR market quotes FRA strips with different fixing dates and Euribor tenors.



## **Euribor futures**

- Exchange-traded contracts similar to OTC FRAs. Any profit and loss is regulated through daily marking to market (margining process). Such standard characteristics reduce credit risk and transaction costs, thus enhancing a very high liquidity.
- The most common contracts insist on Euribor3M and expire every March, June, September and December (IMM dates). The first front contract is the most liquid interest rate instrument, with longer expiry contracts having decent liquidity up to about the 8th contract.
- There are also the so called serial futures, expiring in the upcoming months not covered by the quarterly IMM futures. The first serial contract is quite liquid, especially when it expires before the front contract.
- Futures are quoted in terms of prices instead of rates, the relation being rate = 100-price



# **Convexity adjustment**

- Because of their daily marking to market mechanism futures do not have the same payoff of FRAs
  - An investor long a futures contract will have a loss when the futures price increases (rate decreases) but he will finance such loss at lower rate;
  - vice versa when the futures price decreases the profit will be reinvested at higher rate.
- Forward rate volatility and its correlation to the spot rate have to be accounted for.
- Easiest evaluation using Hull-White (Bloomberg: fixed mean reversion, rough volatility evaluation)
- A convexity adjustment is needed to convert the rate implied in the futures price to its corresponding FRA rate: 100-Fut = FRA Conv



#### **Interest Rate Swaps**

- Swaps are OTC contracts in which two counterparties agree to exchange fixed against floating rate cash flows.
- The EUR market quotes standard plain vanilla swaps starting at spot date with annual fixed leg versus floating leg indexed to 6M (or 3M) Euribor rate
- Swaps can be regarded as weighted portfolios of 6M (or 3M) FRA contracts



## **Basis swaps**

- Interest rate (single currency) Basis Swaps are usually floating vs floating swaps with different tenors on the two legs
- The EUR market quotes standard plain vanilla basis swaps as portfolios of two regular fixed-floating swaps with the floating legs paying different Euribor indexes.
- The quotation convention is to provide the difference (in basis points) between the fixed rate of the two regular swaps.
- Basis is positive and decreasing with maturity, reflecting the preference of market players for receiving payments with higher frequency (e.g. 3M instead of 6M, 6M instead of 12M, etc.) and shorter maturities.
- Basis swaps allow to imply levels for non-quoted swaps on Euribor 1M, 3M, and 12M from the quoted swap rates on Euribor 6M



### **Overnight indexed swaps**

- Fixed interest rate is exchanged for the overnight rate.
- The overnight rate is compounded and paid at maturity.
- On both legs there is a single payment for maturity up to 1Y, yearly payments with short stub for longer maturities





# Rate curves for forward Euribor estimation and CSA-discounting

3. Rate Curve Bootstrapping



## **Current rate curve**

- Pricing complex interest rate derivatives requires modeling the *future* dynamics of the rate curve term structure. But any modeling approach will fail to produce good/reasonable prices if the *current* term structure is not correct.
- Most of the literature assumes the existence of the current rate curve as given and its construction is often neglected, or even obscured.
- Financial institutions, software houses and practitioners have developed their own proprietary methodologies in order to extract the rate curve term structure from quoted prices of a finite number of liquid market instruments.
- It is more an art than a science



## Best or exact fit

- Best-fit algorithms assume a smooth functional form for the term structure and calibrate their parameters by minimizing the re-pricing error of a chosen set of calibration instruments.
  - Popular due to the smoothness of the curve, calibration easiness, intuitive financial interpretation of functional form parameters (often level, slope, and curvature in correspondence with the first three principal components).
  - The fit quality is typically not good enough for trading purposes in liquid markets.
- Exact-fit algorithms are often preferred: they fix the rate curve on a time grid of N pillars in order to exactly re-price N calibration instruments.



## Bootstrapping

- The bootstrapping algorithms is (often) incremental, extending the rate curve step-by-step with the increasing maturity of the ordered instruments
- Intermediate rate curve values are obtained by interpolation on the bootstrapping grid.
- Little attention has been devoted in the literature to the fact that interpolation is often already used during bootstrapping, not just after that, and that the interaction between bootstrapping and interpolation can be subtle if not nasty



## **Bootstrapping and interpolation**

- When using non-local interpolation the shape of the already bootstrapped part of the curve is altered by the addition of further pillars.
- This is usually remedied by cycling in iterative fashion: after a first bootstrap the resulting complete grid is altered one pillar at time using again the same bootstrapping algorithm, until convergence is reached.
- The first iteration can use a local interpolation scheme to reach a robust first guess
- Even better: use a good grid guess, the most natural one being just the previous state grid in a dynamically changing environment.



#### The standard rate curve

- ON, TN (for curve defined from today)
- Spot: SN, SW, 1M, 2M, etc. (at least up to the first IMM date)
- Futures (8 contracts, maybe one serial)
- Swaps (2Y, 3Y, .., 30Y and beyond)



## Some warnings

- Naive algorithms may fail to deal with market subtleties such as
  - date conventions
  - the intra-day fixing of the first floating payment of a swap
  - the futures convexity adjustment
  - the turn-of-year effect
- Note that all instruments are calibrated zeroing their NPV on the boostrapped curve. This is equivalent to zeroing their only cashflow for all instruments but swaps.
- Swaps NPV zeroing depends on the discount curve.



#### **QuantLib Approach: interpolated curves**

template <class Interpolator>
class InterpolatedDiscountCurve

template <class Interpolator>
class InterpolatedZeroCurve

template <class Interpolator>
class InterpolatedForwardCurve

template <class Traits, class Interpolator,
 template <class> class Bootstrap = IterativeBootstrap>
class PiecewiseYieldCurve



## QL Approach: bootstrapping instrument wrappers

```
template <class TS>
class BootstrapHelper : public Observer , public Observable {
  public :
     BootstrapHelper(const Handle<Quote>& quote);
     virtual ~BootstrapHelper() {}
     Real quoteError() const;
     const Handle<Quote>& quote() const;
     virtual Real impliedQuote() const = 0;
     virtual void setTermStructure(TS*);
     virtual Date latestDate() const;
     virtual void update();
   protected :
     Handle<Quote> quote_ ;
     TS* termStructure_ ;
     Date latestDate ;
```

};

### **QuantLib Approach: iterative bootstrap (1)**

```
template <class Curve>
void IterativeBootstrap<Curve>::calculate() const {
    Size n = ts_->instruments_.size();
    // sort rate helpers by maturity
    // check that no two instruments have the same maturity
    // check that no instrument has an invalid quote
    for (Size i=0; i<n; ++i)
      ts ->instruments [i]->setTermStructure(const cast<Curve*>(ts ));
    ts_->dates_ = std::vector<Date>(n+1);
    // same for the time & data vectors
    ts_->dates_[0] = Traits::initialDate(ts_);
    ts_->times_[0] = ts_->timeFromReference (ts_->dates_[0]);
    ts_->data_[0] = Traits::initialValue(ts_);
    for (Size i=0; i<n; ++i) {
      ts_->dates_[i+1] = ts_->instruments_[i]->latestDate();
      ts_->times_[i+1] = ts_->timeFromReference(ts_->dates_[i+1]);
```

## **QuantLib Approach: iterative bootstrap (2)**

```
Brent solver;
for (Size iteration=0; ; ++iteration) {
  for (Size i=1; i<n+1; ++i) {
    if (iteration==0) {
      // extend interpolation a point at a time
      ts_->interpolation_=ts_->interpolator_.interpolate(
                    ts_->times_.begin(), ts_->times_.begin()+i+1,
                    ts ->data .begin());
       ts ->interpolation .update();
     Rate quess, min, max;
     // estimate guess using previous iteration's values,
     // extrapolating, or asking the traits, then bracket
     // the solution with min and max
     BootstrapError<Curve> error(ts , instrument, i);
     ts_->data_[i]=solver.solve(error, ts_->accuracy_, quess,min,max);
   if (! Interpolator::global)
     break ; // no need for convergence loop
   // check convergence and break if tolerance is reached, bail out
   // if tolerance wasn't reached in the given number of iterations
```



# Rate curves for forward Euribor estimation and CSA-discounting

4. Turn Of Year



## **Smoothness and jumps**

- Smooth forward rates is the key point of state-of-the-art bootstrapping.
- For even the best interpolation schemes to be effective any market rate jump must be removed, and added back only at the end of the smooth curve construction.
- The most relevant jump in rates is the so-called turn of year effect, observed in market quotations of rates spanning across the end of a year.
- From a financial point of view, the TOY effect is due to the increased search for liquidity by year end for official balance sheet numbers and regulatory requirements.



### Turn of year (TOY) effect



**BANCA IMI** 

36/94

Forward Euribor estimation and CSA-discounting January 18th 2011 - Ferdinando M. Ametrano

# Jump amplitude

- The larger jump is observed the last working day of the year (e.g. 31th December) for the Overnight Rate
- Other Euribor indexes with longer tenors display smaller jumps when their maturity crosses the same border:
  - the Euribor 1M jumps 2 business days before the 1st business day of December;
  - the Euribor 3M jumps 2 business days before the 1st business day of October;
  - Etc.
- There is a decreasing jump amplitude with increasing rate tenor. Think of 1M Euribor as an average of 22 (business days in one month) overnight rates (plus a basis). If this 1M Euribor spans over the end of year, the TOY overnight rate weights just 1/22th. For rates with longer tenors the TOY overnight rate has even smaller weight.

**BANCA IMI** 

# How many TOYs ?

- The December IMM futures always include a jump, as well as the October and November serial futures
- 2Y Swaps always include two jumps; etc.
- The effect is generally observable at the first two TOYs and becomes negligible at the following ones.



# **TOY estimation using 3M futures strip**

- a fictitious non-jumping December rate is obtained through interpolation of surrounding non-TOY non-jumping rates;
- the jump amplitude is the difference between this fictitious December rate and the real one
- Given eight liquid futures this approach always allows the estimation of the second TOY.
- The first TOY can be estimated only up to (two business days before) the September contract expiration: later in the year the first TOY would be extrapolated, which is non robust

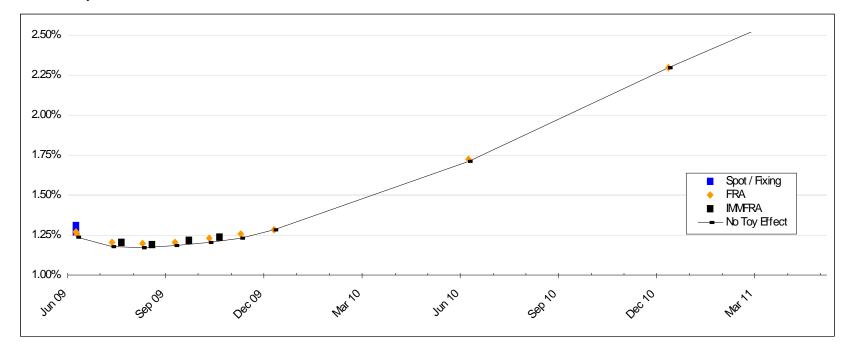


#### **Euribor 3M: TOY effect**

#### Strip 3M



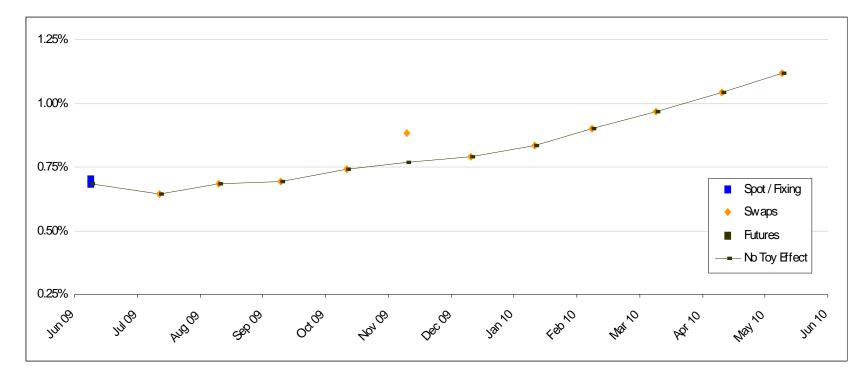
Manca IMI


# **Alternative first TOY estimations**

- With the same approach one can use
  - 6M FRA sequence up to (two business days before) the first business day of July
  - 1M swap strip up to (two business days before) the first business day of December
- All these empirical approaches, when available at the same time, give estimates in good agreement with each other.



## **Euribor 6M: TOY effect**


#### Strip 6M





#### **Euribor 1M: TOY effect**

#### Strip 1M

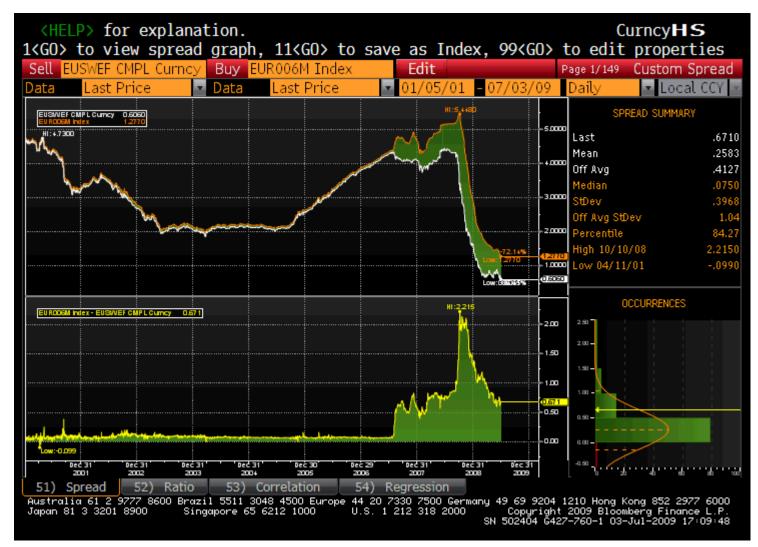




# RESET

- RESET is a weekly FRA strip consensus average.
- This approach is valid all year long, but it allows only a discontinuous weekly update.






# Rate curves for forward Euribor estimation and CSA-discounting

5. What has changed



# EURIBOR 6M vs EONIA SWAP 6M



**BANCA IMI** 

Forward Euribor estimation and CSA-discounting January 18th 2011 - Ferdinando M. Ametrano

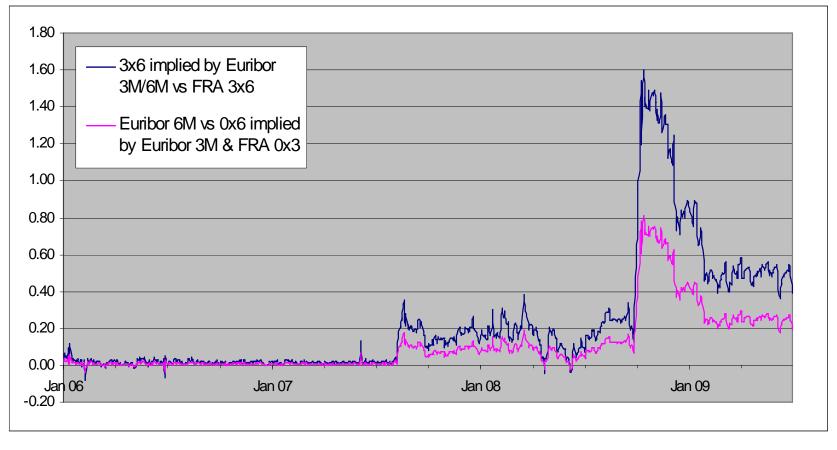
# **BASIS SWAP 3M vs 6M maturity 5Y**

**BANCA IMI** 



Forward Euribor estimation and CSA-discounting January 18th 2011 - Ferdinando M. Ametrano

47/94

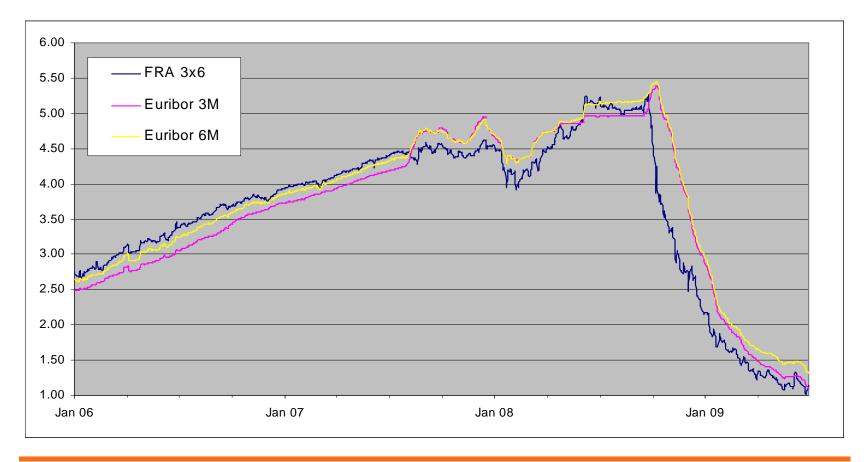

## What's New

- Higher basis spreads observed on the interest rate market since summer 2007 reflect increased credit/liquidity risk and the corresponding preference for higher frequency payments (quarterly instead of semiannually, for instance).
- These large basis spreads imply that different rate curves are required for market coherent estimation of forward rates with different tenors



## The end of the 3x6 FRA textbook example

#### { 3M Euribor, 3x6 } != 6M Euribor




MANCA IMI

Forward Euribor estimation and CSA-discounting January 18th 2011 - Ferdinando M. Ametrano

## The end of the 3x6 FRA textbook example

#### It's not a correlation break



**BANCA IMI** 

50/94

Forward Euribor estimation and CSA-discounting January 18th 2011 - Ferdinando M. Ametrano

## The death of the single rate curve

- Alternative empirical evidences that a single curve cannot be used to estimate forward rates with different tenors:
  - two consecutive futures are not in line with their spanning 6M FRA
  - FRA and futures rates are not in line with EONIA based Overnight Indexed Swaps over the same period
- One single curve is not enough anymore to account for forward rates of different tenor, such as 1M, 3M, 6M, 12M
- Even sophisticated old-school bootstrapping algorithms fail to estimate correct forward Euribor rates in the new market conditions observed since the summer of 2007





# Rate curves for forward Euribor estimation and CSA-discounting

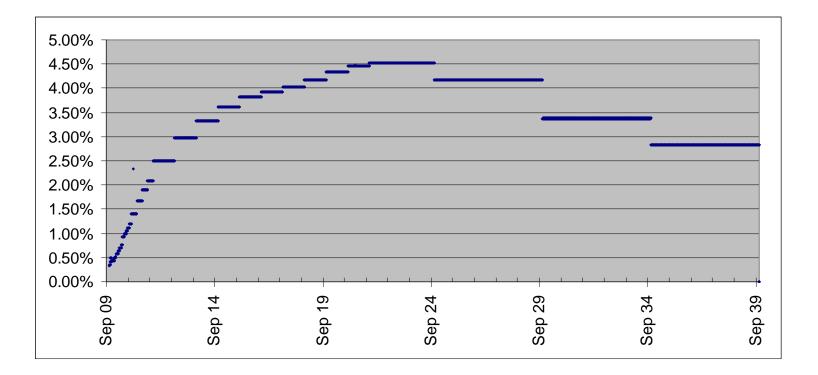
6. Forwarding Rate Curves



# **Moltiple curves**

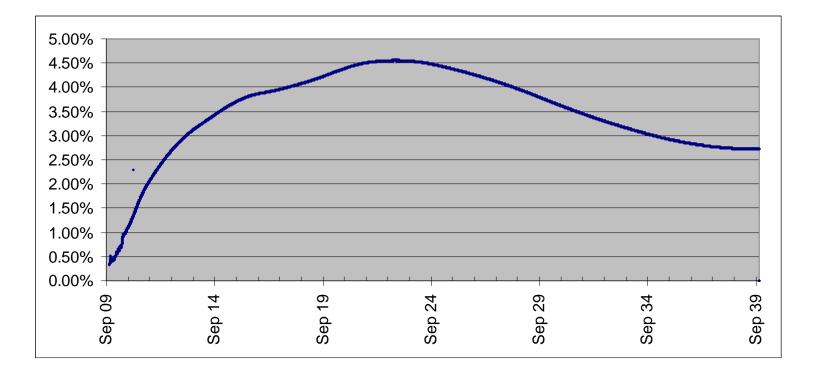
At least five different forwarding curve are needed:

- EONIA
- 1M
- **3**M
- 6M
- 1Y




# **Overnight Curve**

- ON, TN, SN
  - Note: EONIA is an average index, while ON, TN, SN are not average and do not have other fixings
- Spot EONIA OIS (SW, 2W, 3W, 1M, ..., 12M, 15M, 18M, 21M, 2Y)
- ECB dated EONIA OIS (from spot to about 6M)
- EONIA OIS from 6M Euribor Swap minus basis (3Y-30Y)
- EONIA is roughly constant between ECB dates
- It makes sense to use piecewise constant interpolation for the first 2Y, smooth interpolation later




## **EONIA: piecewise constant forward**



**BANCA IMI** 

#### **EONIA: smooth forward**



**BANCA IMI** 

#### **EONIA** curve: pillars and market quotes

| Rate Helpers Selected  | Rate    | Earliest Date    | Latest Date      | 1.000000000 |
|------------------------|---------|------------------|------------------|-------------|
| EUR_YCONRH_OND         | 0.3300% | Wed, 25-Nov-2009 | Thu, 26-Nov-2009 | 0.999990833 |
| EUR_YCONRH_TND         | 0.3300% | Thu, 26-Nov-2009 | Fri, 27-Nov-2009 | 0.999981667 |
| EUR_YCONRH_EONSW       | 0.3610% | Fri, 27-Nov-2009 | Fri, 4-Dec-2009  | 0.999911479 |
| EUR_YCONRH_EON2W       | 0.3830% | Fri, 27-Nov-2009 | Fri, 11-Dec-2009 | 0.999832747 |
| EUR_YCONRH_EON3W       | 0.4200% | Fri, 27-Nov-2009 | Fri, 18-Dec-2009 | 0.999736731 |
| EUR_YCONRH_EON1M       | 0.4170% | Fri, 27-Nov-2009 | Mon, 28-Dec-2009 | 0.999622719 |
| EUR_YCONRH_ECBOISDEC09 | 0.4410% | Tue, 8-Dec-2009  | Wed, 20-Jan-2010 | 0.999342242 |
| EUR_YCONRH_EON2M       | 0.4300% | Fri, 27-Nov-2009 | Wed, 27-Jan-2010 | 0.999253600 |
| EUR_YCONRH_ECBOISJAN10 | 0.4390% | Wed, 20-Jan-2010 | Wed, 10-Feb-2010 | 0.999086392 |
| EUR_YCONRH_EON3M       | 0.4430% | Fri, 27-Nov-2009 | Mon, 1-Mar-2010  | 0.998826302 |
| EUR_YCONRH_ECBOISFEB10 | 0.4960% | Wed, 10-Feb-2010 | Wed, 10-Mar-2010 | 0.998701115 |
| EUR_YCONRH_EON4M       | 0.4680% | Fri, 27-Nov-2009 | Mon, 29-Mar-2010 | 0.998398207 |
| EUR_YCONRH_ECBOISMAR10 | 0.5720% | Wed, 10-Mar-2010 | Wed, 14-Apr-2010 | 0.998146035 |
| EUR_YCONRH_EON5M       | 0.4940% | Fri, 27-Nov-2009 | Tue, 27-Apr-2010 | 0.997913934 |
| EUR_YCONRH_ECBOISAPR10 | 0.6360% | Wed, 14-Apr-2010 | Wed, 12-May-2010 | 0.997652530 |
| EUR_YCONRH_EON6M       | 0.5230% | Fri, 27-Nov-2009 | Thu, 27-May-2010 | 0.997359084 |
| EUR_YCONRH_ECBOISMAY10 | 0.7030% | Wed, 12-May-2010 | Wed, 16-Jun-2010 | 0.996971128 |
| EUR_YCONRH_EON7M       | 0.5540% | Fri, 27-Nov-2009 | Mon, 28-Jun-2010 | 0.996714603 |
| EUR_YCONRH_EON8M       | 0.6000% | Fri, 27-Nov-2009 | Tue, 27-Jul-2010 | 0.995964610 |
| EUR_YCONRH_EON9M       | 0.6440% | Fri, 27-Nov-2009 | Fri, 27-Aug-2010 | 0.995121824 |
| EUR_YCONRH_EON10M      | 0.6870% | Fri, 27-Nov-2009 | Mon, 27-Sep-2010 | 0.994213901 |
| EUR_YCONRH_EON11M      | 0.7270% | Fri, 27-Nov-2009 | Wed, 27-Oct-2010 | 0.993282035 |
| EUR_YCONRH_EON1Y       | 0.7710% | Fri, 27-Nov-2009 | Mon, 29-Nov-2010 | 0.992183190 |
| EUR_YCONRH_EON15M      | 0.9020% | Fri, 27-Nov-2009 | Mon, 28-Feb-2011 | 0.988690125 |
| EUR_YCONRH_EON18M      | 1.0260% | Fri, 27-Nov-2009 | Fri, 27-May-2011 | 0.984671516 |
| EUR_YCONRH_EON21M      | 1.1560% | Fri, 27-Nov-2009 | Mon, 29-Aug-2011 | 0.979788993 |
| EUR_YCONRH_EON2Y       | 1.2740% | Fri, 27-Nov-2009 | Mon, 28-Nov-2011 | 0.974618037 |
| EUR_YCONRH_EON3Y       | 1.6800% | Fri, 27-Nov-2009 | Tue, 27-Nov-2012 | 0.950323041 |
| EUR_YCONRH_EON4Y       | 2.0040% | Fri, 27-Nov-2009 | Wed, 27-Nov-2013 | 0.921997491 |
| EUR_YCONRH_EON5Y       | 2.2630% | Fri, 27-Nov-2009 | Thu, 27-Nov-2014 | 0.891454784 |
| EUR_YCONRH_EON6Y       | 2.4810% | Fri, 27-Nov-2009 | Fri, 27-Nov-2015 | 0.859375379 |
| EUR_YCONRH_EON7Y       | 2.6640% | Fri, 27-Nov-2009 | Mon, 28-Nov-2016 | 0.826550941 |
| EUR_YCONRH_EON8Y       | 2.8110% | Fri, 27-Nov-2009 | Mon, 27-Nov-2017 | 0.794398043 |
| EUR_YCONRH_EON9Y       | 2.9360% | Fri, 27-Nov-2009 | Tue, 27-Nov-2018 | 0.762553129 |
| EUR_YCONRH_EON10Y      | 3.0470% | Fri, 27-Nov-2009 | Wed, 27-Nov-2019 | 0.730991169 |
| EUR_YCONRH_EON11Y      | 3.1500% | Fri, 27-Nov-2009 | Fri, 27-Nov-2020 | 0.699494335 |
| EUR_YCONRH_EON12Y      | 3.2450% | Fri, 27-Nov-2009 | Mon, 29-Nov-2021 | 0.668320955 |
| EUR_YCONRH_EON15Y      | 3.4590% | Fri, 27-Nov-2009 | Wed, 27-Nov-2024 | 0.582319099 |
| EUR_YCONRH_EON20Y      | 3.6000% | Fri, 27-Nov-2009 | Tue, 27-Nov-2029 | 0.471690237 |
| EUR_YCONRH_EON25Y      | 3.5790% | Fri, 27-Nov-2009 | Mon, 27-Nov-2034 | 0.397634242 |
| EUR_YCONRH_EON30Y      | 3.5080% | Fri, 27-Nov-2009 | Mon, 28-Nov-2039 | 0.344642390 |

**BANCA IMI** 

57/94

Forward Euribor estimation and CSA-discounting January 18th 2011 - Ferdinando M. Ametrano

# **6M Euribor curve**

First key point: <u>select homogeneous instruments</u>:

- FRA 0x6 (over today and/or over tomorrow), 6x12, 12x18, (18x24)
- 6M Euribor swaps: (2Y), 3Y-10Y, 12Y, 15Y, 20Y, 25Y, 30Y, ...

#### Do not use deposits:

- ON, TN, SN, SW, 1M, 2M, 3M are not homogeneous
- 6M deposit is not in line with Euribor 6M fixing: it's not an Euribor indexed product and it is not collateralized [more on this later]



# **Overlapping instruments**

1x7, 2x8, 3x9 are overlapping with 0x6 and 6x12 in the sense that do not fix a full 6M segment: their naïve introduction leads to oscillation
 Classic 1x7 FRA pricing:

FRA1x7 = 
$$\frac{\frac{D(1M)}{D(7M)} - 1}{6M}$$
;  $\frac{D(1M)}{D(7M)} = \exp\left(\int_{1M}^{7M} f(\tau) d\tau\right)$ 

The 6M Euribor market does not provide direct information about

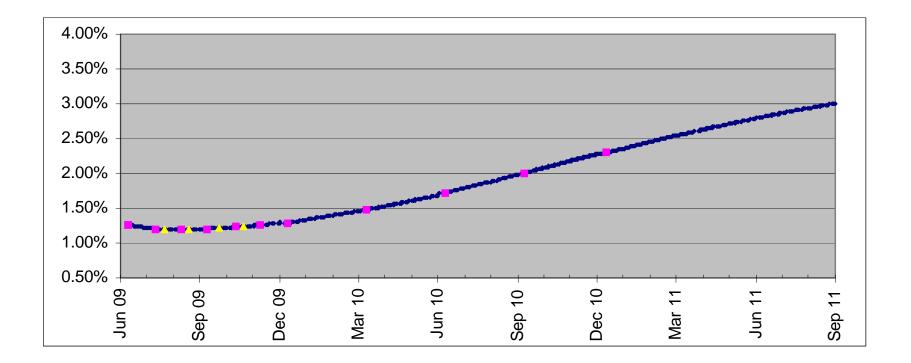
$$D(1M) = \exp\left(-\int_0^{1M} f(\tau)d\tau\right)$$



# Synthetic deposits

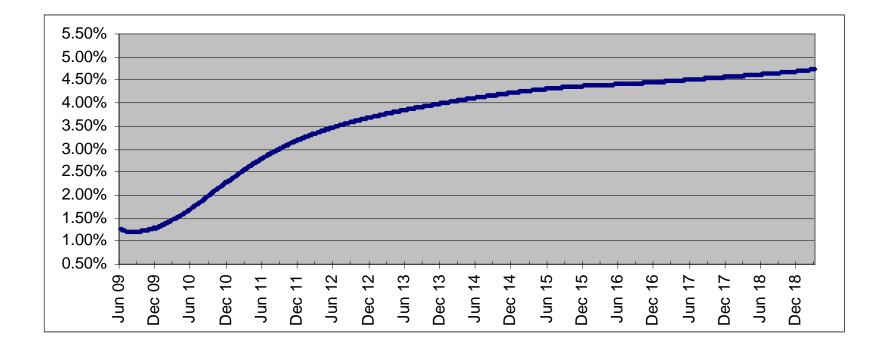
- In order to add overlapping instruments we need additional discount factors in the 0-6M region, i.e. "synthetic deposits".
- E.g. the 3M as seen on the 6M Euribor curve
- First order:
  - 6M Euribor synthetic deposits can be estimated using a parallel shift of the first 6M of the EONIA curve. The shift must match the observed basis between 0x6 and 6M EONIA OIS
- Second order:
  - Instead of a parallel shift of the first 6M of the EONIA curve allocate the overall shift in a sloped way that fits the 6M-EONIA basis term structure slope




#### 6M Euribor: pillars, market quotes, discount factors

|                       | -       |         |                  | -                |             |
|-----------------------|---------|---------|------------------|------------------|-------------|
| Rate Helpers Selected | Rate    |         | Earliest Date    | Latest Date      | 1.000000000 |
| EUR_YC6MRH_1MD        | 1.4161% |         | Wed, 8-Jul-2009  | Mon, 10-Aug-2009 | 0.998703612 |
| EUR_YC6MRH_2MD        | 1.3538% |         | Wed, 8-Jul-2009  | Tue, 8-Sep-2009  | 0.997673949 |
| EUR_YC6MRH_3MD        | 1.2983% |         | Wed, 8-Jul-2009  | Thu, 8-Oct-2009  | 0.996693143 |
| EUR_YC6MRH_4MD        | 1.2620% |         | Wed, 8-Jul-2009  | Mon, 9-Nov-2009  | 0.995671775 |
| EUR_YC6MRH_5MD        | 1.2508% |         | Wed, 8-Jul-2009  | Tue, 8-Dec-2009  | 0.994712280 |
| EUR_YC6MRH_TOM6F1     | 1.2580% |         | Thu, 9-Jul-2009  | Mon, 11-Jan-2010 | 0.993627070 |
| EUR_YC6MRH_1x7F       | 1.2050% |         | Mon, 10-Aug-2009 | Wed, 10-Feb-2010 | 0.992714931 |
| EUR_YC6MRH_2x8F       | 1.1950% |         | Tue, 8-Sep-2009  | Mon, 8-Mar-2010  | 0.991839993 |
| EUR_YC6MRH_3x9F       | 1.2060% |         | Thu, 8-Oct-2009  | Thu, 8-Apr-2010  | 0.990777460 |
| EUR_YC6MRH_4x10F      | 1.2320% |         | Mon, 9-Nov-2009  | Mon, 10-May-2010 | 0.989632861 |
| EUR_YC6MRH_5x11F      | 1.2580% |         | Tue, 8-Dec-2009  | Tue, 8-Jun-2010  | 0.988550051 |
| EUR_YC6MRH_6x12F      | 1.2850% |         | Fri, 8-Jan-2010  | Thu, 8-Jul-2010  | 0.987339955 |
| EUR_YC6MRH_9x15F      | 1.4760% |         | Thu, 8-Apr-2010  | Fri, 8-Oct-2010  | 0.983399000 |
| EUR_YC6MRH_12x18F     | 1.7260% |         | Thu, 8-Jul-2010  | Mon, 10-Jan-2011 | 0.978688288 |
| EUR_YC6MRH_15x21F     | 2.0084% |         | Fri, 8-Oct-2010  | Fri, 8-Apr-2011  | 0.973589102 |
| EUR_YC6MRH_18x24F     | 2.2970% |         | Mon, 10-Jan-2011 | Mon, 11-Jul-2011 | 0.967453625 |
| EUR_YC6MRH_AB6E3Y     | 2.1260% | 0.0000% | Wed, 8-Jul-2009  | Mon, 9-Jul-2012  | 0.938659728 |
| EUR_YC6MRH_AB6E4Y     | 2.4920% | 0.0000% | Wed, 8-Jul-2009  | Mon, 8-Jul-2013  | 0.905555359 |
| EUR_YC6MRH_AB6E5Y     | 2.7760% | 0.0000% | Wed, 8-Jul-2009  | Tue, 8-Jul-2014  | 0.870597330 |
| EUR_YC6MRH_AB6E6Y     | 3.0030% | 0.0000% | Wed, 8-Jul-2009  | Wed, 8-Jul-2015  | 0.834923717 |
| EUR_YC6MRH_AB6E7Y     | 3.1880% | 0.0000% | Wed, 8-Jul-2009  | Fri, 8-Jul-2016  | 0.799259260 |
| EUR_YC6MRH_AB6E8Y     | 3.3350% | 0.0000% | Wed, 8-Jul-2009  | Mon, 10-Jul-2017 | 0.764359144 |
| EUR_YC6MRH_AB6E9Y     | 3.4580% | 0.0000% | Wed, 8-Jul-2009  | Mon, 9-Jul-2018  | 0.730470147 |
| EUR_YC6MRH_AB6E10Y    | 3.5660% | 0.0000% | Wed, 8-Jul-2009  | Mon, 8-Jul-2019  | 0.697249973 |
| EUR_YC6MRH_AB6E12Y    | 3.7550% | 0.0000% | Wed, 8-Jul-2009  | Thu, 8-Jul-2021  | 0.632493436 |
| EUR_YC6MRH_AB6E15Y    | 3.9570% | 0.0000% | Wed, 8-Jul-2009  | Mon, 8-Jul-2024  | 0.544688772 |
| EUR_YC6MRH_AB6E20Y    | 4.1010% | 0.0000% | Wed, 8-Jul-2009  | Mon, 9-Jul-2029  | 0.431063815 |
| EUR_YC6MRH_AB6E25Y    | 4.0760% | 0.0000% | Wed, 8-Jul-2009  | Mon, 10-Jul-2034 | 0.356242899 |
| EUR_YC6MRH_AB6E30Y    | 4.0190% | 0.0000% | Wed, 8-Jul-2009  | Fri, 8-Jul-2039  | 0.300678089 |
| EUR_YC6MRH_AB6E35Y    | 3.9450% | 0.0000% | Wed, 8-Jul-2009  | Fri, 8-Jul-2044  | 0.259339397 |
| EUR_YC6MRH_AB6E40Y    | 3.8710% | 0.0000% | Wed, 8-Jul-2009  | Thu, 8-Jul-2049  | 0.226876136 |
| EUR_YC6MRH_AB6E50Y    | 3.7940% | 0.0000% | Wed, 8-Jul-2009  | Tue, 8-Jul-2059  | 0.168728506 |
| EUR_YC6MRH_AB6E60Y    | 3.7350% | 0.0000% | Wed, 8-Jul-2009  | Mon, 8-Jul-2069  | 0.127557323 |
|                       |         |         |                  | _                |             |

**BANCA IMI** 


61/94

#### **6M Euribor curve**



**BANCA IMI** 

## 6M Euribor curve (2)



**BANCA IMI** 

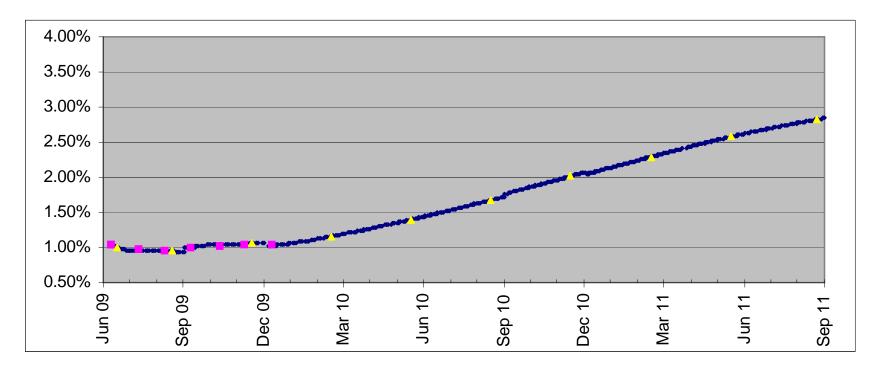
# **3M Euribor curve**

Homogeneous instrument selection:

- 0x3 FRA (other FRAs are less liquid than futures)
- Futures strip (usually 8 contracts + optional first serial)
- 3M Euribor swaps (from basis) 3Y-10Y, 12Y, 15Y, 20Y, 25Y, 30Y, ...
- Second key point: 3M Euribor swap rates are obtained from the same maturity 6M Euribor swap rates minus same maturity 3M/6M basis swaps
- Again
  - Do no use deposits
  - Use synthetic deposits (0x3 is always overlapping with futures)

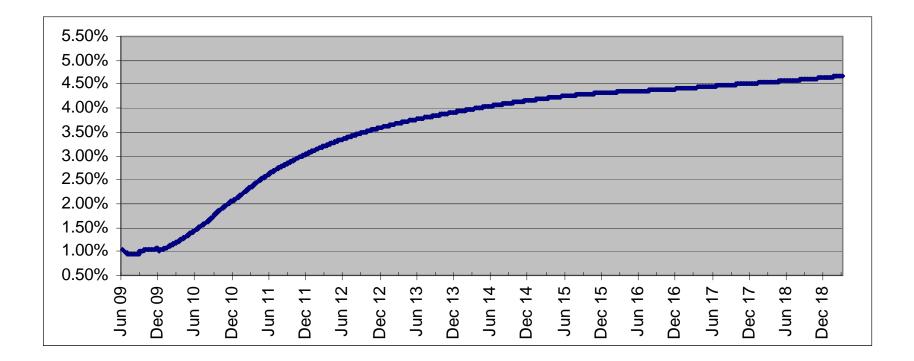


## 3M Euribor: pillars, market quotes, discount factors


|                         |         | -       | -                | -                |             |
|-------------------------|---------|---------|------------------|------------------|-------------|
| Rate Helpers Selected   | Rate    |         | Earliest Date    | Latest Date      | 1.000000000 |
| EUR_YC3MRH_2WD          | 1.2183% |         | Wed, 8-Jul-2009  | Wed, 22-Jul-2009 | 0.999526446 |
| EUR_YC3MRH_1MD          | 1.1196% |         | Wed, 8-Jul-2009  | Mon, 10-Aug-2009 | 0.998974782 |
| EUR_YC3MRH_2MD          | 1.0607% |         | Wed, 8-Jul-2009  | Tue, 8-Sep-2009  | 0.998176561 |
| EUR_YC3MRH_TOM3F1       | 1.0370% |         | Thu, 9-Jul-2009  | Fri, 9-Oct-2009  | 0.997322184 |
| EUR_YC3MRH_FUT3MN9      | 1.0075% | 0.0000% | Wed, 15-Jul-2009 | Thu, 15-Oct-2009 | 0.997190693 |
| EUR_YC3MRH_FUT3MU9      | 0.9471% | 0.0004% | Wed, 16-Sep-2009 | Wed, 16-Dec-2009 | 0.995560088 |
| EUR_YC3MRH_FUT3MZ9      | 1.0562% | 0.0013% | Wed, 16-Dec-2009 | Tue, 16-Mar-2010 | 0.993062730 |
| EUR_YC3MRH_FUT3MH0      | 1.1600% | 0.0025% | Wed, 17-Mar-2010 | Thu, 17-Jun-2010 | 0.990098576 |
| EUR_YC3MRH_FUT3MM0      | 1.3985% | 0.0040% | Wed, 16-Jun-2010 | Thu, 16-Sep-2010 | 0.986607501 |
| EUR_YC3MRH_FUT3MU0      | 1.6766% | 0.0059% | Wed, 15-Sep-2010 | Wed, 15-Dec-2010 | 0.982485576 |
| EUR_YC3MRH_FUT3MZ0      | 2.0144% | 0.0081% | Wed, 15-Dec-2010 | Tue, 15-Mar-2011 | 0.977637808 |
| EUR_YC3MRH_FUT3MH1      | 2.2918% | 0.0107% | Wed, 16-Mar-2011 | Thu, 16-Jun-2011 | 0.971887801 |
| EUR_YC3MRH_FUT3MM1      | 2.5764% | 0.0136% | Wed, 15-Jun-2011 | Thu, 15-Sep-2011 | 0.965595905 |
| EUR_YC3MRH_AB3E3Y       | 2.0100% | 0.0000% | Wed, 8-Jul-2009  | Mon, 9-Jul-2012  | 0.941842233 |
| EUR_YC3MRH_AB3E4Y       | 2.3960% | 0.0000% | Wed, 8-Jul-2009  | Mon, 8-Jul-2013  | 0.908914516 |
| EUR_YC3MRH_AB3E5Y       | 2.6940% | 0.0000% | Wed, 8-Jul-2009  | Tue, 8-Jul-2014  | 0.874012742 |
| EUR_YC3MRH_AB3E6Y       | 2.9310% | 0.0000% | Wed, 8-Jul-2009  | Wed, 8-Jul-2015  | 0.838338290 |
| EUR_YC3MRH_AB3E7Y       | 3.1230% | 0.0000% | Wed, 8-Jul-2009  | Fri, 8-Jul-2016  | 0.802666759 |
| EUR_YC3MRH_AB3E8Y       | 3.2760% | 0.0000% | Wed, 8-Jul-2009  | Mon, 10-Jul-2017 | 0.767698882 |
| EUR_YC3MRH_AB3E9Y       | 3.4040% | 0.0000% | Wed, 8-Jul-2009  | Mon, 9-Jul-2018  | 0.733707818 |
| EUR_YC3MRH_AB3E10Y      | 3.5160% | 0.0000% | Wed, 8-Jul-2009  | Mon, 8-Jul-2019  | 0.700381926 |
| EUR_YC3MRH_AB3E12Y      | 3.7120% | 0.0000% | Wed, 8-Jul-2009  | Thu, 8-Jul-2021  | 0.635311790 |
| EUR_YC3MRH_AB3E15Y      | 3.9200% | 0.0000% | Wed, 8-Jul-2009  | Mon, 8-Jul-2024  | 0.547174480 |
| EUR_YC3MRH_AB3E20Y      | 4.0700% | 0.0000% | Wed, 8-Jul-2009  | Mon, 9-Jul-2029  | 0.433077252 |
| EUR_YC3MRH_AB3E25Y      | 4.0490% | 0.0000% | Wed, 8-Jul-2009  | Mon, 10-Jul-2034 | 0.357872488 |
| EUR_YC3MRH_AB3E30Y      | 3.9940% | 0.0000% | Wed, 8-Jul-2009  | Fri, 8-Jul-2039  | 0.302130119 |
| EUR_YC3MRH_AB3EBASIS35Y | 3.9200% | 0.0000% | Wed, 8-Jul-2009  | Fri, 8-Jul-2044  | 0.260893433 |
| EUR_YC3MRH_AB3EBASIS40Y | 3.8460% | 0.0000% | Wed, 8-Jul-2009  | Thu, 8-Jul-2049  | 0.228482302 |
| EUR_YC3MRH_AB3EBASIS50Y | 3.7690% | 0.0000% | Wed, 8-Jul-2009  | Tue, 8-Jul-2059  | 0.170286910 |
| EUR_YC3MRH_AB3EBASIS60Y | 3.7100% | 0.0000% | Wed, 8-Jul-2009  | Mon, 8-Jul-2069  | 0.128986064 |



65/94


Forward Euribor estimation and CSA-discounting January 18th 2011 - Ferdinando M. Ametrano

#### **3M Euribor curve**





## 3M Euribor curve (2)





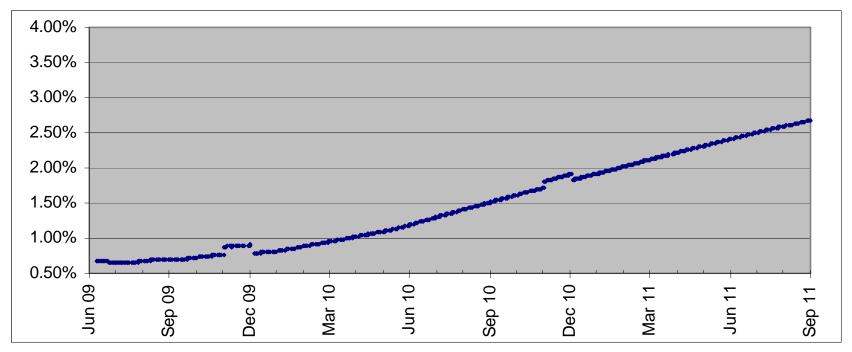
# **1M Euribor curve**

Homogeneous instrument selection:

- Money market monthly swaps (maturities ranging in 2M-12M, fixed rate vs 1M Euribor)
- 1M Euribor Swap (from basis) 2Y-10Y, 12Y, 15Y, 20Y, 25Y, 30Y, ...
- There is not the 0x1 FRA on the market... use the fixing and/or play with the basis term structure
- No overlapping instruments -> no need for synthetic deposits, but it's possible to use them for greater curve granularity

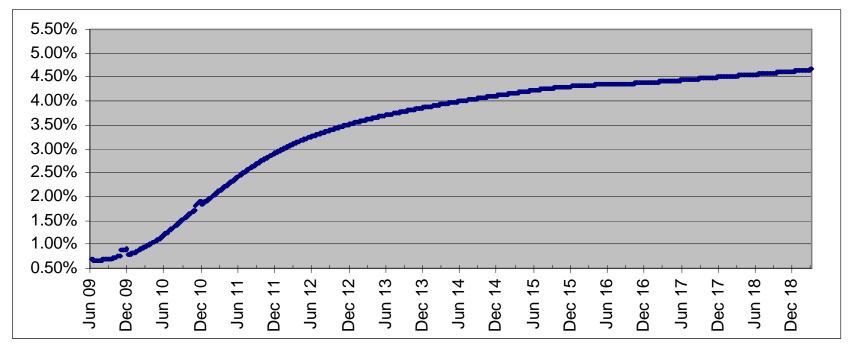


## 1M Euribor: pillars, market quotes, discount factors


| Rate Helpers Selected   | Rate    |         | Earliest Date   | Latest Date      | 1.000000000 |
|-------------------------|---------|---------|-----------------|------------------|-------------|
| EUR_YC1MRH_1MD          | 0.6840% |         | Wed, 8-Jul-2009 | Mon, 10-Aug-2009 | 0.999373393 |
| EUR_YC1MRH_2X1S         | 0.6650% | 0.0000% | Wed, 8-Jul-2009 | Tue, 8-Sep-2009  | 0.998856032 |
| EUR_YC1MRH_3X1S         | 0.6720% | 0.0000% | Wed, 8-Jul-2009 | Thu, 8-Oct-2009  | 0.998285611 |
| EUR_YC1MRH_4X1S         | 0.6780% | 0.0000% | Wed, 8-Jul-2009 | Mon, 9-Nov-2009  | 0.997670108 |
| EUR_YC1MRH_5X1S         | 0.6900% | 0.0000% | Wed, 8-Jul-2009 | Tue, 8-Dec-2009  | 0.997076074 |
| EUR_YC1MRH_6X1S         | 0.7230% | 0.0000% | Wed, 8-Jul-2009 | Fri, 8-Jan-2010  | 0.996417113 |
| EUR_YC1MRH_7X1S         | 0.7330% | 0.0000% | Wed, 8-Jul-2009 | Mon, 8-Feb-2010  | 0.995740215 |
| EUR_YC1MRH_8X1S         | 0.7450% | 0.0000% | Wed, 8-Jul-2009 | Mon, 8-Mar-2010  | 0.995095122 |
| EUR_YC1MRH_9X1S         | 0.7630% | 0.0000% | Wed, 8-Jul-2009 | Thu, 8-Apr-2010  | 0.994324886 |
| EUR_YC1MRH_10X1S        | 0.7850% | 0.0000% | Wed, 8-Jul-2009 | Mon, 10-May-2010 | 0.993470276 |
| EUR_YC1MRH_11X1S        | 0.8080% | 0.0000% | Wed, 8-Jul-2009 | Tue, 8-Jun-2010  | 0.992635689 |
| EUR_YC1MRH_12X1S        | 0.8340% | 0.0000% | Wed, 8-Jul-2009 | Thu, 8-Jul-2010  | 0.991713443 |
| EUR_YC1MRH_AB1EBASIS2Y  | 1.3350% | 0.0000% | Wed, 8-Jul-2009 | Fri, 8-Jul-2011  | 0.973933729 |
| EUR_YC1MRH_AB1EBASIS3Y  | 1.8610% | 0.0000% | Wed, 8-Jul-2009 | Mon, 9-Jul-2012  | 0.945941159 |
| EUR_YC1MRH_AB1EBASIS4Y  | 2.2740% | 0.0000% | Wed, 8-Jul-2009 | Mon, 8-Jul-2013  | 0.913196722 |
| EUR_YC1MRH_AB1EBASIS5Y  | 2.5910% | 0.0000% | Wed, 8-Jul-2009 | Tue, 8-Jul-2014  | 0.878314495 |
| EUR_YC1MRH_AB1EBASIS6Y  | 2.8420% | 0.0000% | Wed, 8-Jul-2009 | Wed, 8-Jul-2015  | 0.842563637 |
| EUR_YC1MRH_AB1EBASIS7Y  | 3.0470% | 0.0000% | Wed, 8-Jul-2009 | Fri, 8-Jul-2016  | 0.806617062 |
| EUR_YC1MRH_AB1EBASIS8Y  | 3.2090% | 0.0000% | Wed, 8-Jul-2009 | Mon, 10-Jul-2017 | 0.771433274 |
| EUR_YC1MRH_AB1EBASIS9Y  | 3.3440% | 0.0000% | Wed, 8-Jul-2009 | Mon, 9-Jul-2018  | 0.737225896 |
| EUR_YC1MRH_AB1EBASIS10Y | 3.4620% | 0.0000% | Wed, 8-Jul-2009 | Mon, 8-Jul-2019  | 0.703654305 |
| EUR_YC1MRH_AB1EBASIS12Y | 3.6660% | 0.0000% | Wed, 8-Jul-2009 | Thu, 8-Jul-2021  | 0.638206538 |
| EUR_YC1MRH_AB1EBASIS15Y | 3.8820% | 0.0000% | Wed, 8-Jul-2009 | Mon, 8-Jul-2024  | 0.549549084 |
| EUR_YC1MRH_AB1EBASIS20Y | 4.0400% | 0.0000% | Wed, 8-Jul-2009 | Mon, 9-Jul-2029  | 0.434767426 |
| EUR_YC1MRH_AB1EBASIS25Y | 4.0240% | 0.0000% | Wed, 8-Jul-2009 | Mon, 10-Jul-2034 | 0.359078175 |
| EUR_YC1MRH_AB1EBASIS30Y | 3.9720% | 0.0000% | Wed, 8-Jul-2009 | Fri, 8-Jul-2039  | 0.303051598 |
| EUR_YC1MRH_AB1EBASIS35Y | 3.8980% | 0.0000% | Wed, 8-Jul-2009 | Fri, 8-Jul-2044  | 0.261976994 |
| EUR_YC1MRH_AB1EBASIS40Y | 3.8240% | 0.0000% | Wed, 8-Jul-2009 | Thu, 8-Jul-2049  | 0.229667741 |
| EUR_YC1MRH_AB1EBASIS50Y | 3.7470% | 0.0000% | Wed, 8-Jul-2009 | Tue, 8-Jul-2059  | 0.171510047 |
| EUR_YC1MRH_AB1EBASIS60Y | 3.6880% | 0.0000% | Wed, 8-Jul-2009 | Mon, 8-Jul-2069  | 0.130147207 |

**BANCA IMI** 

69/94


Forward Euribor estimation and CSA-discounting January 18th 2011 - Ferdinando M. Ametrano

# **1M Euribor curve**





# 1M Euribor curve (2)



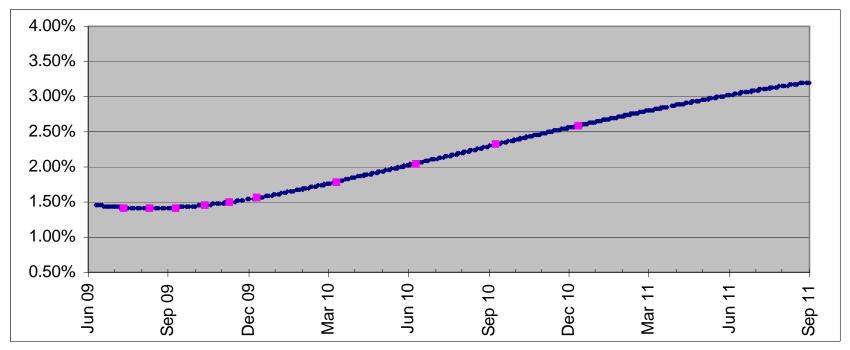


# **1Y Euribor curve**

Homogeneous instrument selection:

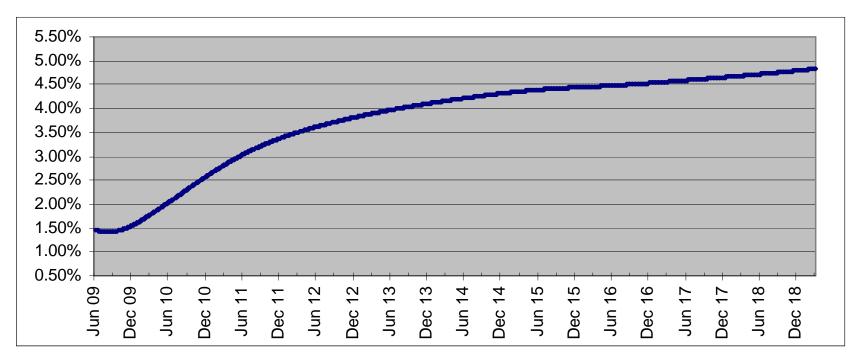
- 12x24 FRA
- 1Y Euribor swap (from basis) 3Y-10Y, 12Y, 15Y, 20Y, 25Y, 30Y, ...
- There is not the 0x12 FRA on the market... use the fixing and/or play with the basis term structure
- Using only 0x12, 12x24 is too loose for market makers and results in unreliable intermediate 6x18
- Use 1Y/6M basis term structure to interpolate 3x15, 6x18, 9x21 (and 1x13, 2x14, etc)




## 1Y Euribor: pillars, market quotes, discount factors

| Rate Helpers Selected    | Rate            | Earliest Date    | Latest Date      | 1.000000000 |
|--------------------------|-----------------|------------------|------------------|-------------|
| EUR_YC1YRH_1MD           | 1.9789%         | Wed, 8-Jul-2009  | Mon, 10-Aug-2009 | 0.998189307 |
| EUR_YC1YRH_2MD           | 1.8867%         | Wed, 8-Jul-2009  | Tue, 8-Sep-2009  | 0.996761196 |
| EUR_YC1YRH_3MD           | 1.7666%         | Wed, 8-Jul-2009  | Thu, 8-Oct-2009  | 0.995505563 |
| EUR_YC1YRH_6MD           | 1.5686%         | Wed, 8-Jul-2009  | Fri, 8-Jan-2010  | 0.992046407 |
| EUR_YC1YRH_9MD           | 1.4660%         | Wed, 8-Jul-2009  | Thu, 8-Apr-2010  | 0.988965224 |
| EUR_YC1YRH_1YD           | 1.4560%         | Wed, 8-Jul-2009  | Thu, 8-Jul-2010  | 0.985452531 |
| EUR_YC1YRH_1x13F         | 1.4204%         | Mon, 10-Aug-2009 | Tue, 10-Aug-2010 | 0.984018529 |
| EUR_YC1YRH_2x14F         | 1.4084%         | Tue, 8-Sep-2009  | Wed, 8-Sep-2010  | 0.982728122 |
| EUR_YC1YRH_3x15F         | 1.4228%         | Thu, 8-Oct-2009  | Fri, 8-Oct-2010  | 0.981348597 |
| EUR_YC1YRH_6x18F         | 1.5599%         | Fri, 8-Jan-2010  | Mon, 10-Jan-2011 | 0.976517569 |
| EUR_YC1YRH_9x21F         | 1.7888%         | Thu, 8-Apr-2010  | Fri, 8-Apr-2011  | 0.971348075 |
| EUR_YC1YRH_12x24F        | 2.0470%         | Thu, 8-Jul-2010  | Fri, 8-Jul-2011  | 0.965415992 |
| EUR_YC1YRH_15x27F        | 2.3231%         | Fri, 8-Oct-2010  | Mon, 10-Oct-2011 | 0.958645347 |
| EUR_YC1YRH_18x30F        | 2.5891%         | Mon, 10-Jan-2011 | Tue, 10-Jan-2012 | 0.951538706 |
| EUR_YC1YRH_AB12EBASIS3Y  | 2.2010% 0.0000% | Wed, 8-Jul-2009  | Mon, 9-Jul-2012  | 0.936394100 |
| EUR_YC1YRH_AB12EBASIS4Y  | 2.5510% 0.0000% | Wed, 8-Jul-2009  | Mon, 8-Jul-2013  | 0.903300392 |
| EUR_YC1YRH_AB12EBASIS5Y  | 2.8260% 0.0000% | Wed, 8-Jul-2009  | Tue, 8-Jul-2014  | 0.868336891 |
| EUR_YC1YRH_AB12EBASIS6Y  | 3.0460% 0.0000% | Wed, 8-Jul-2009  | Wed, 8-Jul-2015  | 0.832722385 |
| EUR_YC1YRH_AB12EBASIS7Y  | 3.2260% 0.0000% | Wed, 8-Jul-2009  | Fri, 8-Jul-2016  | 0.797122139 |
| EUR_YC1YRH_AB12EBASIS8Y  | 3.3690% 0.0000% | Wed, 8-Jul-2009  | Mon, 10-Jul-2017 | 0.762304390 |
| EUR_YC1YRH_AB12EBASIS9Y  | 3.4890% 0.0000% | Wed, 8-Jul-2009  | Mon, 9-Jul-2018  | 0.728491475 |
| EUR_YC1YRH_AB12EBASIS10Y | 3.5950% 0.0000% | Wed, 8-Jul-2009  | Mon, 8-Jul-2019  | 0.695315561 |
| EUR_YC1YRH_AB12EBASIS12Y | 3.7800% 0.0000% | Wed, 8-Jul-2009  | Thu, 8-Jul-2021  | 0.630749929 |
| EUR_YC1YRH_AB12EBASIS15Y | 3.9780% 0.0000% | Wed, 8-Jul-2009  | Mon, 8-Jul-2024  | 0.543211294 |
| EUR_YC1YRH_AB12EBASIS20Y | 4.1190% 0.0000% | Wed, 8-Jul-2009  | Mon, 9-Jul-2029  | 0.429818737 |
| EUR_YC1YRH_AB12EBASIS25Y | 4.0930% 0.0000% | Wed, 8-Jul-2009  | Mon, 10-Jul-2034 | 0.355049339 |
| EUR_YC1YRH_AB12EBASIS30Y | 4.0350% 0.0000% | Wed, 8-Jul-2009  | Fri, 8-Jul-2039  | 0.299587957 |
| EUR_YC1YRH_AB12EBASIS35Y | 3.9610% 0.0000% | Wed, 8-Jul-2009  | Fri, 8-Jul-2044  | 0.258213019 |
| EUR_YC1YRH_AB12EBASIS40Y | 3.8870% 0.0000% | Wed, 8-Jul-2009  | Thu, 8-Jul-2049  | 0.225739564 |
| EUR_YC1YRH_AB12EBASIS50Y | 3.8100% 0.0000% | Wed, 8-Jul-2009  | Tue, 8-Jul-2059  | 0.167657933 |
| EUR_YC1YRH_AB12EBASIS60Y | 3.7510% 0.0000% | Wed, 8-Jul-2009  | Mon, 8-Jul-2069  | 0.126593622 |
|                          |                 |                  |                  |             |

**BANCA IMI** 


73/94

# **1Y Euribor curve**





# 1Y Euribor curve (2)





# **Curve comparison: FRA and futures**

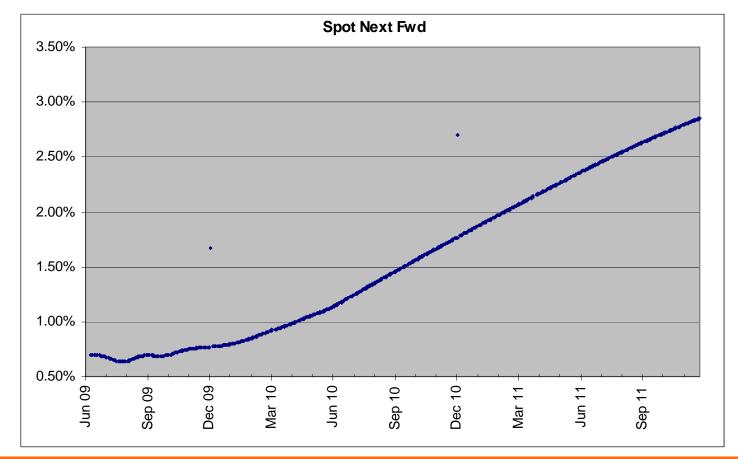
| ſ.        | Euribor 1M | Euribor 3M | Euribor 6M | Euribor 1Y |
|-----------|------------|------------|------------|------------|
| U9        | 99.2970    | 99.0429    | 98.7930    |            |
| Z9        | 99.1277    | 98.9237    |            |            |
| HO        | 99.0490    | 98.8150    |            |            |
| MO        | 98.8264    | 98.5765    |            |            |
| U0        |            | 98.3034    |            |            |
| Z0        |            | 97.9656    |            |            |
| H1        |            | 97.6932    |            |            |
| M1        |            | 97.4111    |            |            |
| FRA TODAY |            | 1.0366%    | 1.2512%    |            |
| FRA TOM   |            | 1.0300%    | 1.2500%    |            |
| FRA1x     |            | 0.9619%    | 1.2140%    | 1.4198%    |
| FRA3x     |            | 1.0229%    | 1.2220%    | 1.4359%    |
| FRA6x     |            | 1.0540%    | 1.3080%    | 1.5834%    |
| FRA9x     |            |            | 1.4963%    | 1.8085%    |
| FRA12x    |            |            | 1.7510%    | 2.0730%    |
| FRA15x    |            |            | 2.0434%    | 2.3503%    |
| FRA18x    |            |            | 2.3260%    | 2.6223%    |



## **Curve comparison: swaps**

|     | Euribor 1M | Euribor 3M | Euribor 6M | Euribor 1Y |  |  |
|-----|------------|------------|------------|------------|--|--|
| 3Y  | 1.8870%    | 2.0360%    | 2.1510%    | 2.2200%    |  |  |
| 4Y  | 2.2930%    | 2.4150%    | 2.5100%    | 2.5650%    |  |  |
| 5Y  | 2.6030%    | 2.7070%    | 2.7880%    | 2.8340%    |  |  |
| 6Y  | 2.8540%    | 2.9420%    | 3.0140%    | 3.0540%    |  |  |
| 7Y  | 3.0580%    | 3.1350%    | 3.1990%    | 3.2340%    |  |  |
| 8Y  | 3.2210%    | 3.2890%    | 3.3470%    | 3.3790%    |  |  |
| 9Y  | 3.3560%    | 3.4160%    | 3.4700%    | 3.4990%    |  |  |
| 10Y | 3.4730%    | 3.5280%    | 3.5770%    | 3.6040%    |  |  |
| 12Y | 3.6770%    | 3.7230%    | 3.7660%    | 3.7890%    |  |  |
| 15Y | 3.8930%    | 3.9310%    | 3.9680%    | 3.9880%    |  |  |
| 20Y | 4.0500%    | 4.0800%    | 4.1110%    | 4.1280%    |  |  |
| 25Y | 4.0340%    | 4.0590%    | 4.0860%    | 4.1020%    |  |  |
| 30Y | 3.9820%    | 4.0040%    | 4.0290%    | 4.0440%    |  |  |
| 40Y | 3.8340%    | 3.8560%    | 3.8810%    | 3.8960%    |  |  |
| 50Y | 3.7570%    | 3.7790%    | 3.8040%    | 3.8190%    |  |  |
| 60Y | 3.6980%    | 3.7200%    | 3.7450%    | 3.7600%    |  |  |




## **Focus lens**

- We have plotted (simple compounding) FRA rates since this is what traders are interested in
- What about instantaneous (continuous compounding) forward rates?
- On the one day scale continuous compounding forward rates and simple compounding (i.e. ON) rates are equivalent



### ON rates as seen on the 1M Euribor curve

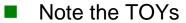
#### Note the TOYs

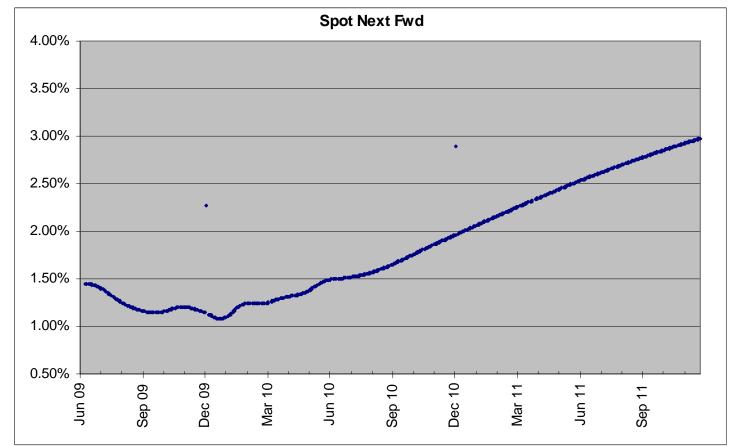


**BANCA IMI** 

79/94

### ON rates as seen on the 3M Euribor curve

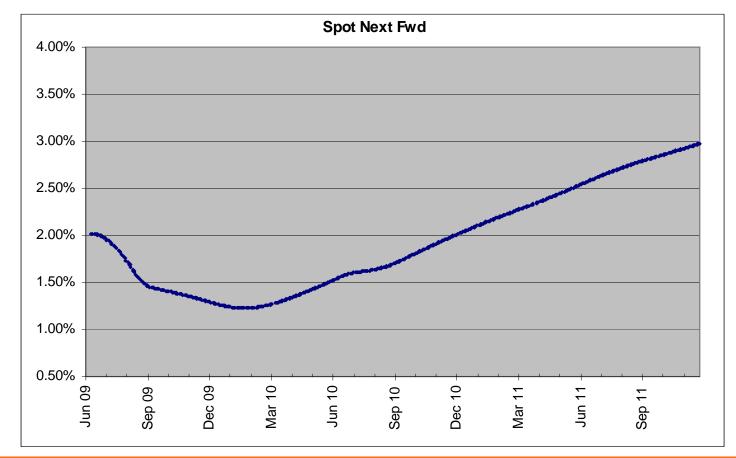

#### Note the TOYs




**BANCA IMI** 

80/94

### ON rates as seen on the 6M Euribor curve






**BANCA IMI** 

### ON rates as seen on the 1Y Euribor curve

#### No TOYs here



**BANCA IMI** 

82/94



# Rate curves for forward Euribor estimation and CSA-discounting

7. Discounting Rate Curve



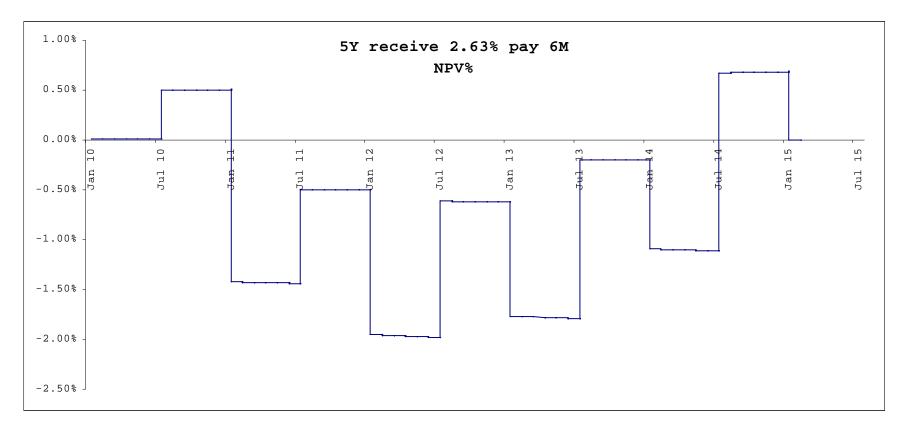
## **Discounting curve? What do you mean/want?**

- Two identical future cashflows must have the same present value: we need an unique discounting curve.
- We have bootstrapped each forwarding curve using the forwarding curve itself also for discounting swap cashflows. Something is flawed here, at least when swaps are bootstrapped
- The discounting curve should represent the funding level implicit in whatever hedging strategy. What is the funding level?



# **Discounting and collateralization**

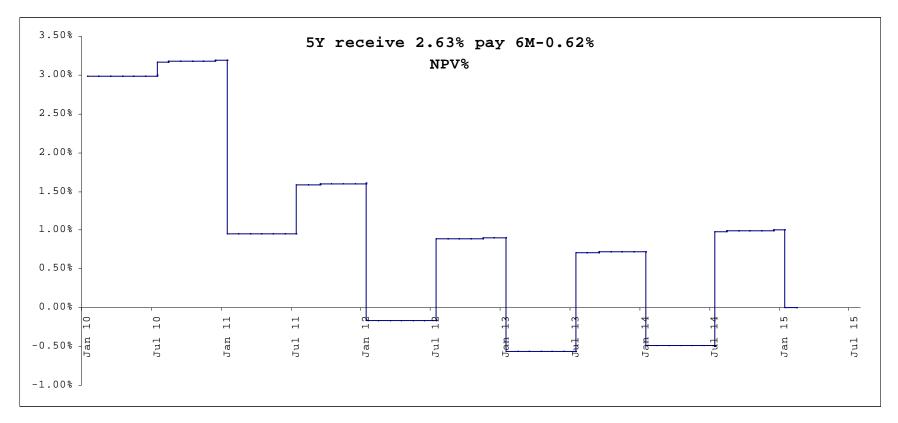
- What are swap rates? They are rates tradable between collateralized counterparties.
- Capital market collateralization between two counterparties is the bilateral obligation to secure by liquid assets (such as cash or securities) the outstanding NPV of the overall trading book. This assets are called margin. The margin pledged by the borrower are legally in the lender possession or subject to seizure in the event of default
- The collateral margin earns the overnight rate: the overnight curve is the discounting curve for collateralized transactions
- Using the the same rationale: uncollateralized transactions should be discounted by each financial institution using its own capital market funding rates




## What about counterparty credit risk?

- Collateralized transactions have negligible residual credit risk. After all that's what collateralization was created for!
- Uncollateralized transactions have credit risk which <u>must</u> be accounted for, but this has little to do with the liquidity/funding issue.




#### 5Y Receiver Swap 2.63% 6M flat NPV evolution (Deterministic Curve)



Average NPV -0.64%, positive cash balance: borrowing

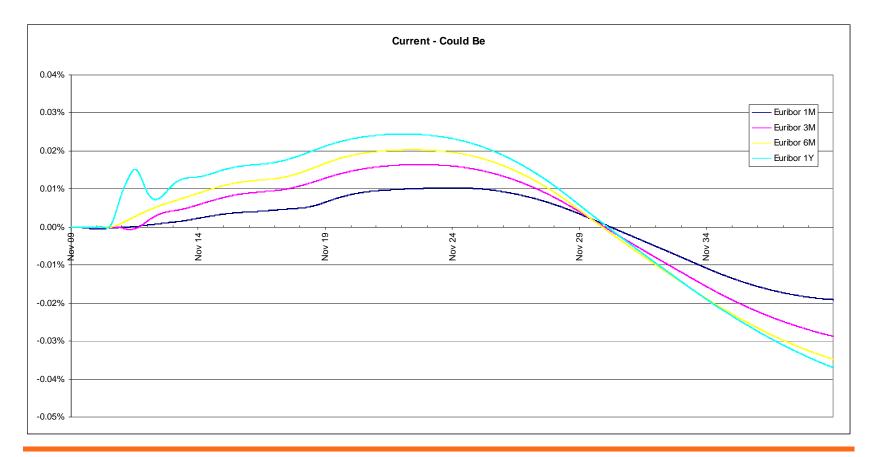


#### Asset Swap 5Y bond 2.63% 103.00 NPV evolution (Deterministic Curve)



Average NPV 1.02%, negative cash balance: lending

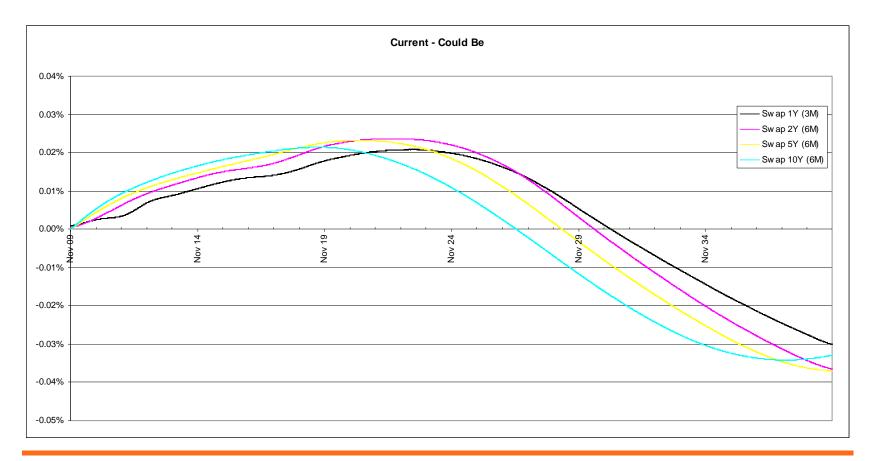



## Forwarding and discounting rate curves: a recipe

- 1. build the EONIA curve using your preferred procedure; this is the EONIA forwarding curve and the discount curve for collateralized transactions
- 2. select different sets of collateralized vanilla interest rate instruments traded on the market, each set homogeneous in the underlying Euribor rate
- 3. build separated forwarding curves using the selected instruments in the bootstrapping algorithm; use the EONIA curve to exogenously discount any cashflow



# The impact of exogenous EONIA discounting


#### forward Euribor



**BANCA IMI** 

# The impact of exogenous EONIA discounting (2)

#### forward Swap



**BANCA IMI** 



# Rate curves for forward Euribor estimation and CSA-discounting

8. Bibliography



# Bibliography

- Ametrano, Ferdinando and Bianchetti, Marco. Bootstrapping the illiquidity: Multiple Yield Curves Construction for market coherent forward rates estimation. In "Modelling Interest Rates" Risk Books 2009.
- Henrard, Marc. The Irony in the Derivatives Discounting. Wilmott Magazine, July 2007
- Mercurio, Fabio, Interest Rates and The Credit Crunch: New Formulas and Market Models (February 5, 2009). Bloomberg Portfolio Research Paper No. 2010-01-FRONTIERS. Available at SSRN: <u>http://ssrn.com/abstract=1332205</u>
- Morini, Massimo. Solving the Puzzle in the Interest Rate Market (October 12, 2009). Available at SSRN: <u>http://ssrn.com/abstract=1506046</u>
- Piterbarg, Vladimir. Funding beyond discounting: collateral agreements and derivatives pricing. Risk Magazine February 2010
- Whittall, Christopher. The price is wrong. Risk Magazine March 2010

# Bibliography

- Luigi Ballabio. "Implementing QuantLib". <u>http://sites.google.com/site/luigiballabio/qlbook</u>
- George Kirikos and David Novak. Convexity conundrums. Risk Magazine March 1997
- Burghardt, Galen. The Eurodollar futures and options handbook; Irwin library of investment and finance; New York: McGraw-Hill, 2003.
- Burghardt, Galen and Kirshner, Susan. "One Good Turn," CME Interest Rate Products Advanced Topics. Chicago: Chicago Mercatile Exchange, 2002.
- Burghardt, Galen and Hoskins, William. "The Convexity Bias in Eurodollar Futures: Part 1 & 2." Derivatives Quarterly, 1995.
- James M. Hyman. Accurate monotonicity preserving cubic interpolation. SIAM Journal on Scientic and Statistical Computing, 1983.

