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1 LIBOR and LIBOR based instruments

LIBOR (= London Interbank Offered Rate) is the interest rate at which banks bor-
row large amounts of money from each other. It is a widely used benchmark for
short term (overnight to 1 year) interest rates. Daily fixings of LIBOR are pub-
lished by the British Banking Association on each London business day at 11 a.m.
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2 Interest Rate & Credit Models

London time. These fixings are calculated from quotes provided by a number of
participating banks. LIBOR is not a risk free rate, but it is close to it: the partici-
pating banks have high credit ratings.

LIBOR is offered in ten major currencies: GBP, USD, EUR, JPY, CHF, CAD,
AUD, DKK, SED, and NZD. Throughout this course we shall assume a single
currency, namely the USD.

In the USD, LIBOR applies to deposits that begin two business days from the
current date (this is called the spot date) and whose maturity is on an anniversary
date (say, 3 months) of that settlement date. Determining the anniversary date
follows two rules:

(a) If the anniversary date is not a business day, move forward to the next busi-
ness day, except if this takes you over a calendar month end, in which case
you move back to the last business day. This rule is known as modified fol-
lowing business day convention.

(b) If the settlement date is the last business day of a calendar month, all an-
niversary dates are last business days of their calendar months.

In addition to spot transactions, there are a variety of vanilla LIBOR based in-
struments actively trading both on exchanges and over the counter: LIBOR futures,
forward rate agreements. The markets for LIBOR based instruments are among the
world’s largest financial markets. The significance of these instruments is that:

(a) They allow portfolio managers and other financial professionals effectively
hedge their interest rates exposure.

(b) One can use them to synthetically create desired future cash flows and thus
effectively manage assets versus liabilities.

(c) They allow market participants easily express their views on future levels of
interest rates.

1.1 Forward rate agreements

Forward rate agreements (FRAs) are over the counter (OTC) instruments. In a
FRA transaction, one of the counterparties (A) agrees to pay the other counter-
party (B) LIBOR settling t years from now applied to a certain notional amount
(say, $100mm. In exchange, counterparty B pays counterparty A a pre-agreed in-
terest rate (say, 3.05%) applied to the same notional. The contract matures on an
anniversary T (say, 3 months) of the settlement date, and interest is computed on
an act/360 day count basis. Anniversary dates generally follow the same modified
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following business day convention as the LIBOR. FRAs are quoted in terms of the
annualized forward interest rate applied to the accrual period of the transaction.

1.2 LIBOR futures

LIBOR futures (known also as the Eurodollar futures) are exchange traded futures
contracts (they trade on the Chicago Mercantile Exchange) on the 3 month LIBOR
rate. They are similar to FRAs, except that their terms (such as maturity dates) are
regulated by the exchange. Each of the contracts assumes the notional principal of
$1,000,00. Interest on these contracts is computed on an act/360 day count basis.
Eurodollar futures are structured so that a single contract pays $25 for each 1 basis
point movement in LIBOR. The market convention is to quote the rates R on the
Eurodollar futures in terms of the “price” defined as

100× (1−R) .

Consequently, Eurodollar futures quotes are linear in interest rates, unlike LIBOR
deposits, FRAs, and swaps (described below) which are non-linear (“convex”) in
interest rates. We shall return to this point in Lecture 3.

At any time, 44 Eurodollar contracts are listed:

• 40 quarterly contracts maturing on the third Wednesday of the months March,
June, September, and December over the next 10 years. Of these contracts,
only the first 20 are liquid, the open interest in the remaining 20 being min-
imal. Their maturity dates are the 3 month anniversary dates of these value
dates. As it happens, the third Wednesday of a month has the convenient
characteristic that it is never a New York or London holiday and its anniver-
sary dates are always good business days.

• 4 serial contracts maturing on the third Wednesday of the nearest four months
not covered by the above quarterly contracts. Of these 4 contracts, typically
the first two are liquid.

1.3 Swaps

A (fixed for floating) swap is an OTC transaction in which two counterparties agree
to exchange periodic interest payments on a prespecified notional amount. One
counterparty (the fixed payer) agrees to pay periodically the other counterparty (the
fixed receiver) a fixed coupon (say, 5.35% per annum) in exchange for receiving
periodic LIBOR applied to the same notional.

Spot starting swaps based on LIBOR begin on a start date 2 business days
from the current date and mature and pay interest on anniversary dates that use the
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same modified following business day conventions as the LIBOR index. Interest
is usually computed on an act/360 day basis on the floating side of the swap and
on 30/360 day basis in the fixed side of the pay. Typically, fixed payment dates
(“coupon dates”) are semiannual (every 6 months), and floating payment dates are
quarterly (every 3 months) to correspond to a 3 month LIBOR. In addition to spot
starting swaps, forward starting swaps are routinely traded. In a forward starting
swap, the first accrual period can be any business day beyond spot. Swaps (spot
and forward starting) are quoted in terms of the fixed coupon.

2 Valuation of LIBOR based instruments

In this lecture we are concerned with valuation and risk management of non-
contingent (but not necessarily known) future cash flows. The building blocks
required are:

(a) Discount factors, which allow one to calculate present value of money re-
ceived in the future.

(b) Forward rates, which allow one to make assumptions as to the future levels
of rates.

2.1 Zero coupon bonds

A zero coupon bond (or discount bond) for maturity T is an instrument which
pays $1 T years from now. We denote its market value by P (0, T ) > 0. It is
thus the present value (abbreviated PV) of $1 guaranteed to be paid at time T . The
market does not contain enough information in order to determine the prices of zero
coupon bonds for all values of T , and arbitrary choices have to be made. Later in
this lecture we will discuss how to do this in ways that are consistent with all the
available information. In the meantime, we will be using these prices in order to
calculate present values of future cash flows (both guaranteed and contingent), and
refer to P (0, T ) as the discount factor for time T .

Consider a forward contract on a zero coupon bond: at some future time t < T ,
we deliver to the counterparty $1 of a zero coupon bond of final maturity T . What
is the fair price P (t, T ) paid at delivery? We calculate it using the following no
arbitrage argument which provides a risk-free replication of the forward trade in
terms of spot trades.

1. We buy $1 of a zero coupon bond of maturity T today for the price of
P (0, T ).
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2. We finance this purchase by short selling a zero coupon bond of maturity t
and notional P (0, T ) /P (0, t) for overall zero initial cost.

3. In order to make the trade self-financing, we need to charge this amount at
delivery. Thus,

P (t, T ) =
P (0, T )
P (0, t)

. (1)

The forward price P (t, T ) is also called the (forward) discount factor for maturity
T and value date t.

Two important facts about discount factors are1:

(a)
P (t, T ) < 1, (2)

i.e. the value of a dollar in the future is less than the its value now.

(b)
∂P (t, T )

∂T
< 0, (3)

which means that the future value of a dollar decreases as the payment date
gets pushed further away.

2.2 Valuation of FRAs and forward rates

Discount factors can be expressed in terms of interest rates. A convenient, albeit
purely theoretical concept is that of the continuously compounded instantaneous
forward rate f (t). In terms of f (t),

P (t, T ) = exp
(
−

∫ T

t
f (s) ds

)
. (4)

This equation is merely the definition of f (t), and expresses the discount factor as
the result of continuous discounting of the value of a dollar between the value and
maturity dates.

Conversely, the instantaneous forward rate can be computed from the discount
factor:

f (t) = − 1
P (t, T )

∂P (t, T )
∂T

∣∣
T=t

= − ∂

∂T
log P (t, T )

∣∣
T=t

.

(5)

1In some markets, these properties are known to have been violated.
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The forward rate F (t, T ) for the time t and maturity T is defined as the (an-
nual) interest rate on a FRA starting at t and ending at T . This is the pre-agreed
fixed interest rate on a FRA contract. In order to compute it, let δ denote the day
count factor for the period spanned by the FRA. Then,

P (t, T ) =
1

1 + δF (t, T )
,

and thus

F (t, T ) =
1
δ

(
1

P (t, T )
− 1

)

=
1
δ

(
exp

∫ T

t
f (s) ds− 1

)
.

(6)

Econometric studies of historical rates data show that forward rates are poor
predictors of future interest rates. Rather, they reflect the evolving current consen-
sus market sentiment about the future levels of rates. Their true economic signif-
icance lies in the fact that a variety of instruments whose values derive from the
levels of forward rates (such as swaps) can be liquidly traded and used to hedge
against adverse future levels of rates.

2.3 Valuation of swaps and swap rates

We first consider a spot starting swap. Let T1 < . . . < Tnfixed denote the coupon
dates of the swap, and let T0 = 0. The PV of the interest payments on the fixed leg
of a swap is calculated by adding up the PVs of all future cash flows:

PVfixed =
nfixed∑

j=1

αjCP (0, Tj) , (7)

where C is the coupon rate, P (0, Tj) are the discount factors, and αj are the day
count fractions applying to each semi-annual period (the number of days based on
a 30/360 day count divided by 360). It is useful to write this formula as

PVfixed = CL, (8)

where

L =
nfixed∑

j=1

αjP (0, Tj) , (9)

is called the level (or the DVO1) of the swap.
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For the floating leg, the valuation formula reads:

PVfloating =
nfloat∑

j=1

δjLjP (0, Tj) , (10)

where

Lj = F (Tj−1, Tj)

=
1
δj

(
1

P (Tj−1, Tj)
− 1

)
(11)

is the 3 month LIBOR forward rate for settlement at Tj−1, P (0, Tj) (here T0 = 0)
is the discount factor and δj is the day count fraction applying to each quarterly
period (the number of days based on a act/360 day count divided by 360).

An important fact about swap valuation is that

PVfloating = 1− P (0, Tmat) , (12)

where Tmat denotes the maturity of the swap. This equation, stated as

PVfloating + P (0, Tmat) = 1,

expresses the fact that a spot settled floating rate bond, paying LIBOR and repaying
the principal at maturity, is always valued at par2. The proof of (12) is straightfor-
ward:

PVfloating =
nfloat∑

j=1

δjLjP (0, Tj)

=
nfloat∑

j=1

(
1

P (Tj−1, Tj)
− 1

)
P (0, Tj)

=
nfloat∑

j=1

(P (0, Tj−1)− P (0, Tj))

= 1− P (0, Tnfloat) .

The PV of a swap is the difference between the PVs of the fixed and floating
legs (in this order!):

PVswap = PVfixed − PVfloating.

2This is not strictly true once LIBOR has been fixed, as in a seasoned swap.
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A break-even (or mid-market) swap has zero PV:

PVfixed = PVfloating.

That uniquely determines the coupon on a mid-market swap:

S (Tmat) =
1− P (0, Tmat)

L
, (13)

called the (mid-market) swap rate.

2.4 Valuation of forward starting swaps

Valuation of forward starting swaps is similar to the valuation of spot starting
swaps. Let T1 < . . . < Tnfixed denote the coupon dates of the swap, and let
T0 = Tstart > 0 denote the settlement date of the swap. The basic property of
the floating leg of a swap reads now:

PVfloating = P (0, Tstart)− P (0, Tmat) . (14)

The coupon on a break-even swap is now

S (Tstart, Tmat) =
P (0, Tstart)− P (0, Tmat)

L
, (15)

where the level function of the forward starting swap is again given by (9).
It is instructive to rewrite this equation as

S (Tstart, Tmat) =
1− P (Tstart, Tmat)

L (Tstart)
, (16)

where the forward level function is now given by

L (Tstart) =
nfixed∑

j=1

αjP (Tstart, Tj) . (17)

It means that the forward swap rate is given by the same expression as the spot
swap rate with the discount factors replaced by the forward discount factors!

3 Building a LIBOR forward curve

So far we have been assuming that all discount factors P (t, T ), or equivalently, all
forward rates F (t, T ) are known. Now we will discuss the methods of calculating
these quantities from the available market information. The result can be presented
in the various equivalent forms:
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(a) As a function t → F (t, T ) with fixed tenor T − t (say, T − t = 3 months).
This is called the forward curve.

(b) As a function T → P (0, T ). This is called the discount curve (or zero
coupon curve).

(c) As a collection of spot starting swap rates for all tenors. This is called the
par swap curve.

The curve construction should be based on the prices of liquidly traded bench-
mark securities. As this set of securities is incomplete, we need a robust and
efficient method involving interpolation and, if necessary, extrapolation. These
benchmark instruments include deposit rates, Eurodollar futures and a number of
benchmark swaps. Benchmark swaps are typically spot starting, and have maturi-
ties from 1 year to 40 years and share the same set of coupon dates. For example,
one could use the following set of instruments:

(a) Overnight, 1 week, 2 week, 1 month, 2 month, and 3 month deposit rates.

(b) The first 8 Eurodollar contracts.

(c) Spot starting swaps with maturities 2, 3, 4, 5, 7, 10, 12, 15, 20, 25, and 30
years.

3.1 Bootstrapping techniques

The standard (and oldest) method for building a LIBOR forward curve uses boot-
strapping, and consists in the following. Suppose that we know the discount factors

P (0, Tj) , j = 1, . . . , N, (18)

for all “standard” maturities Tj spaced (say) every 3 months. It is important to
choose these maturities so that they include the coupon dates of the benchmark
swaps. Then,

P (Tj−1, Tj) =
P (0, Tj)

P (0, Tj−1)
,

and so we we can calculate the forward rates for all standard maturities:

F (Tj−1, Tj) =
1
δj

(
1

P (Tj−1, Tj)
− 1

)
.

That does not really solve the problem yet, because we are now faced with the issue
of computing the forward rates for non-standard settlements T (say, a 3 month
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forward settling 4 months from now). We compute these forwards by means of
interpolation. There is no standard for interpolation and various schemes have
been proposed. Here is a partial list:

(a) Linear interpolation of the discount factors:

P (0, T ) =
Tj − T

Tj − Tj−1
P (0, Tj−1) +

T − Tj−1

Tj − Tj−1
P (0, Tj) ,

for Tj−1 ≤ T ≤ Tj .

(b) Linear interpolation of the log discount factors:

log P (0, T ) =
Tj − T

Tj − Tj−1
log P (0, Tj−1) +

T − Tj−1

Tj − Tj−1
log P (0, Tj) ,

for Tj−1 ≤ T ≤ Tj .

(c) Constant instantaneous forward rate. We assume that f (t) = fj = const,
i.e.

P (Tj−1, Tj) = exp (−fj × (Tj − Tj−1)) .

This implies that

fj = − 1
Tj − Tj−1

log P (Tj−1, Tj) ,

for all j, and we can now easily carry out the integration
∫ T
t f (s) ds in the

definition of P (t, T ) with arbitrary t and T .

(d) Linear instantaneous forward rate. Instantaneous forward rates are assumed
linear between the benchmark maturities and continuous throughout. This is
a refinement of scheme (c) which requires matching the values of the instan-
taneous rate at the benchmark maturities.

(e) Quadratic instantaneous forward rate. Instantaneous forward rates are as-
sumed quadratic between the benchmark maturities and continuously once
differentiable throughout. This is a further refinement of scheme (c) which
requires matching the values and the first derivatives of the instantaneous
rate at the benchmark maturities.

How do we determine the discount factors (18) for the standard maturities?
This usually proceeds in three steps:
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(a) Build the short end (approximately, the first 3 months) of the curve using
LIBOR deposit rates and, possibly, some Eurodollar futures3. This step will
involve some interpolation.

(b) Build the intermediate (somewhere between 3 months and 5 years) part of
the curve using the (convexity-adjusted) Eurodollar futures. The starting
date for the first future has its discount rate set by interpolation from the
already built short end of the curve. With the addition of each consecutive
future contract to the curve the discount factor for its starting date is either
(a) interpolated from the existing curve if it starts earlier than the end date of
the last contract, or (b) extrapolated from the end date of the previous future.
Any of the interpolation schemes described above can be used.

(c) Build the long end of the curve using swap rates as par coupon rates. Observe
first that for a swap of maturity Tmat we can calculate the discount factor
P (0, Tmat) in terms of the discount factors to the earlier coupon dates:

P (0, Tmat) =
1− S (Tmat)

∑n−1
j=1 αjP (0, Tj)

1 + αnS (Tmat)
.

We begin by interpolating the discount factors for coupon dates that fall
within the previously built segment of the curve, and continue by inductively
applying the above formula. The problem is, of course, that we do not have
market data for swaps with maturities falling on all standard dates (bench-
mark swaps have typically maturities 2 years, 3 years, 4 years, 5 years,...)
and interpolation is again necessary to deal with the intermediate dates.

With regard to step (c) above we should mention that it is not a good idea to linearly
interpolate par swap rates of different maturities (say, interpolate the 10 year rate
and the 30 year rate in order to compute the 19 year rate). A better approach is to
use one of the instantaneous forward rate interpolation schemes.

3.2 Smoothing B-splines fitting

In this approach, we work directly with the instantaneous forward rate f (t) which
we represent as a cubic B-spline (see the Appendix for the definition and properties
of B-splines). We assume that the curve starts at T0 = 0 and ends at Tmax (say, 30
years), and choose K knot points t−3, . . . , tN+4, with

t−3 < . . . < t0 = 0 < t1 < . . . < tN = Tmax < . . . < tN+4,

3This will certainly be true, if the front contract is close to expiration, and if one decides to include
the serial contracts into the benchmark instruments.
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and let Bk(t) ≡ B
(3)
k (t), k = −3,−2, . . . , be the k-the basis function correspond-

ing to these knot points. We represent f (t) as a linear combination of the basis
functions:

f(t) =
N+4∑

k=−3

fkBk (t) . (19)

Note that, in this representation, the discount factors are simple functions of the
fk’s:

P (t, T ) = exp

(
−

N+4∑

k=−3

γk (t, T ) fk

)
, (20)

where the coefficients

γk (t, T ) =
∫ T

t
Bk (t) dt (21)

can be easily computed using the algorithm presented in the Appendix.
Our goal is to choose the coefficients fk in (19) consistently with the market

data. This will be achieved by minimizing a suitable objective function. Suppose
now that we are given a number of benchmark rates:

(a) Deposit rates D1 = F (0, T1) , . . . , Fm = F (0, Tm), whose current market
values are D1, . . . Dm.

(b) Forward rates F1 = F (t1, T1) , . . . , Fn = F (tn, Tn), whose current market
values are F 1, . . . Fn. The tenors of the different rates (tj , Tj) may overlap
with each other and the tenors of the deposit and swap rates.

(c) Swap rates S1, . . . , Sp, whose current market values are S1, . . . Sp.

As a consequence of (20), all these rates are simple and explicit functions of the
fk’s. For example, a forward rate is written as

F (t, T ) =
1
δ

(
exp

(
N+4∑

k=−3

γk (t, T ) fk

)
− 1

)
.

Denote the benchmark rates by R1, . . . , Rm+n+p, and consider the following
objective function:

Q(f−3, . . . , fN+4) =
1
2

m+n+p∑

j=1

(Rj −Rj)2 +
1
2

λ

∫ Tmax

T0

f ′′ (t)2 dt, (22)

where λ is a non-negative constant. The second term on the right hand side of
(3.2) is a Tikhonov regularizer, and its purpose is to penalize the “wiggliness” of
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f (t) at the expense of the accuracy of the fit. Its magnitude is determined by the
magnitude of λ: the bigger the value of λ, the smoother the instantaneous forward
rate at the expense of the fit. One may choose to refine the Tikhonov regularizer by
replacing it with ∫ Tmax

T0

λ (t) f ′′ (t)2 dt,

where λ (t) is a non-negative (usually, piecewise constant) function. Experience
shows that it is a good idea to choose λ (t) smaller in the short end and larger in
the back end of the curve.

The minimum of (3.2) can be found by means of standard Newton-type op-
timization algorithms such as the Levenberg-Marquardt algorithm (see e.g. [4]).
The Levenberg-Marquardt algorithm applies to an objective function which can be
written as a sum of squares of “residuals”. This algorithm requires explicit formu-
las for the partial derivatives of the residuals with respect to the parameters of the
problem. In our case, these derivatives can be readily computed.

3.3 Pros and cons of the two methods

Both methods explained above have their advantages and disadvantages. For the
bootstrapping method, the list of pros and cons includes:

(a) Simplicity, bootstrapping does not require using optimization algorithms, all
calculations are essentially done in closed form.

(b) Calculated swap rates fit exactly the benchmark swap rates.

(c) It is difficult to fit the short end of the curve where many instruments with
overlapping tenors exist.

(d) Some of the interpolation schemes lead to saw-toothed shaped forwards
which may lead to unstable pricing.

(e) The forward curve tends to be wiggly.

The list of pros and cons for the smoothing B-splines fitting method includes:

(a) The method requires optimization, and thus is slightly slower.

(b) Calculated swap rates are very close, but typically not equal, to the bench-
mark swap rates.

(c) There is no issue with overlapping tenors on instruments in the short end.
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(d) The forward curve is smooth.

Other considerations, such as suitability for risk management, will be discussed
later.

4 Curve sensitivities and position hedging

A common problem faced by portfolio managers and traders is to hedge the inter-
est rate exposure of a portfolio of fixed income securities such as bonds, swaps,
options, etc. The key issue is to quantify this exposure and offset it (if desired)
by taking positions in liquid vanilla instruments. We let Π denote this portfolio,
whose details are not important to us right now.

4.1 Input perturbation sensitivities

In this approach we compute the sensitivities of the portfolio to the benchmark
instruments used in the curve construction, and replicate the risk of the portfolio
by means of a portfolio consisting of the suitably weighted benchmark instruments.

(a) Compute the partial DVO1s of the portfolio Π to each of the benchmark in-
struments Bi: We shift each of the benchmark rates down 1 bp and calculate
the corresponding changes δiΠ in the PV.

(b) Compute the DVO1s δiBi of the PVs of the benchmark instruments under
these shifts.

(c) The hedge ratios ∆i of the portfolio to the benchmarks are given by:

∆i =
δiΠ
δiBi

.

This way of computing portfolio risk works well together with the bootstrap-
ping method of building the curve.

4.2 Regression based sensitivities

An alternative and more robust approach consists in computing the sensitivities of
the portfolio to a number of virtual scenarios, and expressing these sensitivities in
terms of the sensitivities of a suitably selected hedging portfolio. We proceed as
follows.

First, we select the hedging portfolio and the scenarios. This should be done
judiciously, based on the understanding of the risks of the portfolio and liquidity
of instruments intended as hedges.
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(a) Choose a “hedging portfolio” consisting of vanilla instruments such as (spot
or forward starting) swaps, Eurodollar futures, forward rate agreements, etc:

Πhedge = {B1, . . . , Bn} .

(b) Let C0 denote the current forward curve (the “base scenario”). Choose a
number of new micro scenarios

C1, . . . , Cp

by perturbing a segment of C0. For example, C1 could result from C0 by
shifting the first 3 month segment down by 1 bp.

We then compute the sensitivities of the portfolio and the hedging portfolio under
these curve shifts:

(a) The vector δΠ of portfolio’s sensitivities under these scenarios is

δiΠ = Π (Ci)−Π(C0) , i = 1, . . . , p,

where by Π(Ci) we denote the value of the portfolio given the shifted for-
ward curve Ci.

(b) The matrix δB of sensitivities of the hedging instruments to these scenarios
is

δiBj = Bj (Ci)−Bj (C0) .

To avoid accidental colinearities between its rows or columns, one should
always use more scenario than hedging instruments.

Finally, we translate the risk of the portfolio to the vector of hedge ratios with
respect to the instruments in the hedging portfolio.

• The vector ∆ of hedge ratios is calculated by minimizing

L (∆) =
1
2
‖δB ∆− δΠ‖2 +

1
2
λ‖Q∆‖2.

Here, λ is an appropriately chosen small smoothness parameter (similar to
the Tikhonov regularizer!), and Q is the smoothing operator (say, the identity
matrix). Explicitly,

∆ =
(
(δB)t δB + λQt Q

)−1
(δB)t δΠ,

where the superscript t denotes matrix transposition.

One can think of the component ∆j as the sensitivity of the portfolio to the hedging
instrument Bj . This method of calculating portfolio sensitivities is called the ridge
regression method. It is very robust, and allows one to view the portfolio risk in a
flexible way. One can use it together with both curve building techniques described
above.
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A B-splines and smoothing B-splines

We collect here a number of basic facts about B-splines. For a complete presenta-
tion, see [1].

A spline of degree d is a function f (t) such that:

(a) f (t) is piecewise polynomial of degree d. That means that one can parti-
tion the real line into non-overlapping intervals such that, on each of these
intervals, f (t) is a polynomial of degree d.

(b) f (t) has d − 1 continuous derivatives. That means that the polynomials
mentioned above are glued together in a maximally smooth way.

Splines of low degree (such as d = 3, in which case they are called cubic splines)
provide a convenient and robust framework for data interpolation.

A particular type of splines are B-splines. A B-spline of degree d ≥ 0 is a
function f (t) of the form

f (t) =
∞∑

k=−∞
fkB

(d)
k (t) , (23)

where
{

B
(d)
k (t)

}
is a family of basis functions defined as follows. We choose a

sequence of knot points:

. . . < t−1 < t0 < t1 < . . . < tk < . . . , (24)

and set

B
(0)
k (t) =

{
1, if tk ≤ t < tk+1.

0, otherwise.
(25)

We then define recursively:

B
(d)
k (t) =

t− tk
tk+d − tk

B
(d−1)
k (t) +

tk+d+1 − t

tk+d+1 − tk+1
B

(d−1)
k+1 (t) . (26)

Clearly, each B
(d)
k (t) is a spline of degree d.

Here are some key properties of the basis functions:

B
(d)
k (t) ≥ 0, (27)

and
B

(d)
k (t) = 0, (28)
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if t lies outside of the interval [tk, tk+d+1]. Furthermore,

∞∑

k=−∞
B

(d)
k (t) = 1. (29)

One summarizes these three properties by saying that the basis functions
{

B
(d)
k (t)

}

form a partition of unity.
Remarkably, differentiating and integrating of B-splines can be carried out in a

recursive way as well. For the derivative we have the following recursion:

d

dt
B

(d)
k (t) =

d

tk+d − tk
B

(d−1)
k (t)− d

tk+d+1 − tk+1
B

(d−1)
k+1 (t) . (30)

The integral from −∞ to t can be expressed in terms of a (finite!) sum as follows:

∫ t

−∞
B

(d)
k (τ) dτ =

∞∑

i=k

tk+d+1 − tk
d + 1

B
(d+1)
i (t) , (31)

and thus
∫ b

a
B

(d)
k (τ) dτ =

∫ b

−∞
B

(d)
k (τ) dτ −

∫ a

−∞
B

(d)
k (τ) dτ. (32)

Owing to these recursive properties, B-splines can be easily and robustly imple-
mented in computer code.
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