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Computing maximally smooth forward rate curves for
coupon bonds

An iterative piecewise quartic polynomial interpolation
method
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Abstract We present a simple and fast iterative, linear algorithm for simulta-
neously stripping the coupon payments from and smoothing the yield curve of
the term structure of interest rates. The method minimizes pricing errors, con-
strains initial and terminal conditions of the curves and produces maximally
smooth forward rate curves.
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1 Introduction

In this paper we present an algorithm to construct maximally smooth forward
rate and discount curves from the term structure of on-the-run U.S. Treasury
bills and bonds. The maximum smoothness criterion produces more accurate
prices for derivatives such as swaps (Adams 2001) and ensures that no artificial
arbitrages will be introduced when using the constructed forward curve for
pricing securities beyond those used to construct the curves.

Our method uses a piecewise, quartic polynomial interpolation of the for-
ward curve based upon Adams and van Deventer (1994) as corrected by Lim
and Xiao (2002). Their method, however, works only for zero coupon bonds so
we extend the method to work for coupon bonds by simultaneously stripping
the coupons and interpolating the spot curve. It is critical that these steps be
done simultaneously in order to maintain consistency (Hagan and West 2006).
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The interpolation step alone can be accomplished with a linear algorithm but
the inclusion of simultaneous stripping leads to a highly nonlinear problem.
Our approach relies on an iterated linear algorithm that is simple to imple-
ment and very fast to compute while maintaining minimal pricing errors and
maximum smoothness of the interpolated curves. We also correct some minor
problems in Lim and Xiao (2002) related to the terminal conditions of spot
and forward rate curves.

Our method computes the smoothest possible forward curve among the
class of polynomials which is shown to be a, fourth-order polynomial con-
strained to have continuous second derivatives at all node points. Additional
constraints fix the initial value f(0) and impose the terminal slope of the for-
ward curve to be zero. It is also possible to include other constraints such as
non-negativity of the forward rates if necessary. The coefficients of the polyno-
mials are chosen so as to minimize the pricing errors on the observed securities.
The spot curve and discount functions are derived from the forward curve as
described in Section 2. Details of the algorithm are discussed in Section 3.

The primary complication, and what makes modeling the term structure
an interesting problem, is that we only observe prices and yields-to-maturity
of a finite set of securities from several different markets including on-the-run
and off-the-run treasuries, corporate bonds, LIBORs, SWAP rates, and various
derivatives such as TIGR strips. Each of these markets has its own liquidity
and risk characteristics that must be accounted for when constructing the
discount function. Our choice is to use on-the-run treasuries because they are
the most liquid and they have very low and uniform credit risk.

In the U.S. Treasury market we observe zero-coupon Treasury bills of ma-
turities one, three, six and twelve months and semi-annual coupon paying
Treasury bonds of maturities two, three, five, ten and thirty years. Generally
this list of securities is supplemented with the Federal Funds rate or REPO
rates of various maturities such as one day and one week in order to observe
yields closer to zero maturity. We add the one-week LIBOR and then use this
and the one month T-Bill rate to interpolate backward to the implied zero
maturity rate yt(0). This approach provides us with a good estimate of the
very short end of the spot curve without having to deal with the high daily
volatility in overnight REPO rates.

Table 1 presents the yield curve data for July 10, 2008 for the on-the-run
U.S. Treasuries. The first column of gives the maturity date of the bill or bond
in decimals; the second column gives the annualized coupon rate (paid semi-
annually) and is zero for the pure discount bills; the third column gives the
quoted prices1; column four gives the yield-to-maturity using the appropriate
day count conventions; and the final column reports the Macaulay duration of

1 The quoted prices are dirty prices which is the actual cost of the bond and includes the
accrued interest due to the current bond holder. Some sources quote the clean prices which
do not include the accrued interest since the previous coupon payment.
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Table 1 Observed yield curve data for on-the-run U.S. Treasuries on 7/10/2008: maturity
date, Coupon rate, quoted price, yield-to-maturity, and Macaulay duration. The second row
is the one week LIBOR and the first row is the y(0) spot rate implied by backward linear
interpolation.

Maturity Coupon Price Yield Duration

7/10/2008 0 100.00 1.426 0
7/17/2008 0 99.97 1.435 0.0192
8/7/2008 0 99.89 1.462 0.0767

10/9/2008 0 99.59 1.670 0.2492
1/8/2009 0 99.01 2.007 0.4983
7/2/2009 0 97.90 2.194 0.9774

6/30/2010 2.875 100.88 2.418 1.9315
6/30/2013 3.375 101.30 3.091 4.6271
5/15/2018 3.875 100.52 3.811 8.3114
2/15/2038 4.375 99.28 4.4186 17.0089

each security computed as

D =
1
P

(
n∑
i=1

ti C/2
(1 + ytm)ti

+
tn 100

(1 + ytm)tn

)
(1)

where P is the bond price, C/2 is one half of the semi-annually paid coupon,
ytm is the yield-to-maturity of the bond, and there are n coupon payments
plus a face value of 100 paid at maturities ti, i = 1, . . . , n.

From these ten observations we need to compute continuous discount, spot
and forward rate functions. The first six securities are zero-coupons so their
yield-to-maturities are already the appropriate spot rates and only interpola-
tion between these points is required. The last four securities are coupon bonds
so the coupon payments need to be stripped from the cash flows to compute
the appropriate spot rates.

Figure 1 displays the spot curve and instantaneous forward rate curves
computed by our algorithm for the the data given in Table 1. The spot curve
is the solid black line, the instantaneous forward rate curve is the dashed line,
and the observed yields are indicated by the small circles. The top figure shows
all maturities and the bottom figure zooms in on the short maturities of the
curves.

The figure reveals several important properties of the curves. First, it is
clear that the forward curve is much more volatile than the spot curve. This is
the reason that we focus on modeling the forward curve rather than the spot
or discount curves. If we can produce a smooth forward curve then we are
assured of producing smooth spot and discount curves. The particular term
structure produces a maximum spot rate at about the twenty year maturity so
our forward curve intersects the spot curve at that point. Note that the spot
and forward curves begin at the same point at the zero maturity date and both
curves are very stable at long maturities. This latter property is non-trivial
and often not observed in polynomial interpolation methods.
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Fig. 1 Computed spot and forward rate curves for data in Table 1. Circles indicate the
observed yields. The bottom figure shows the curves for short maturities.

2 Background

Before describing our algorithm it will be useful to first review some of the
analytics of the term structure of interest rates so that we can establish no-
tation and better understand the constraints that we need to impose on our
curve stripping and interpolation problem.

Let Pt(T ) be the period t price of a bond that matures at time t+T with a
face value of $1 and pays a coupon of C at dates ti, t ≤ t1 < · · · < tn ≤ t+ T .
The continuous compounding yield-to-maturity of this bond is the rate ytm
which solves

Pt(T ) = 1 · exp(−ytmT ) +
n∑
i=1

Ci exp(−ytm ti). (2)
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The coupon payments, since they may come relatively soon, have a large im-
pact on the bond price and the computed yield-to-maturity.

In the special case where the bond is a pure discount bond which pays no
coupons and $1 at time t+ T , we use the notation

δt(T ) = exp(−yt(T )T ) (3)

or alternatively,

yt(T ) = − 1
T

ln(δt(T )),∀T ≥ 0, (4)

where δt(T ) ∈ (0, 1] is the discount rate at time t for a $1 payoff at time
t+ T , and yt(T ) is the time t spot rate for maturity date t+ T . In this case,
since there are no coupon payments before maturity, the yield-to-maturity
is identical to the spot rate and the discount rate is the price of the zero-
coupon bond. In contrast, the yield-to-maturity of a coupon paying bond is
not necessarily equal to the spot rate yt(T ) and the bond price will not equal
the discount rate for maturity T . Thus, as we see in Figure 1 for the ten-year
bond, for example, the spot curve may not go through the yield-to-maturity’s
of the bonds.

Define Ft(n, T ) to be the time t price of a forward contract to deliver a
T − n maturity pure discount bond at date t+ n that matures at date t+ T .
To avoid arbitrage, it must be the case that

Ft(n, T ) =
δt(T )
δt(n)

. (5)

Let ft(n, T ) be the continuously compounded yield to maturity of this forward
contract where

Ft(n, T ) = exp (−ft(n, T )(T − n)) . (6)

Usng (3), (4) and (5) implies

ft(n, T ) =
1

T − n
(yt(T )T − yt(n)n) . (7)

In the limit, as n −→ T , we get the instantaneous forward rate at time t for
maturity T as

ft(T ) =
d

d T
(yt(T )T ) = yt(T ) + T

d

dT
yt(T ). (8)

The forward curve is above the spot curve when spot rates are increasing
with maturity (the normal yield curve) and below the spot curve when spot
rates are decreasing with maturity (an inverted yield curve). Note that the
forward curve intersects the spot curve at any maxima or minima of the spot
curve. If the yield curve is flat then the forward rate equals the spot rate for
all maturities. Also, note that ft(0) = yt(0) so that the spot curve and the
instantaneous forward curve start at the same point.
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The spot rate yt(T ) is essentially an average of the forward rates up to
maturity T . To see this note that∫ T

0

ft(τ) dτ =
∫ T

0

d (τ yt(τ)) = T yt(T ) (9)

or

yt(T ) =
1
T

∫ T

0

ft(τ) dτ. (10)

Thus, the forward curve is more volatile than the spot curve, which is evident
in our computed curves in Figure 1.

Our task is to find the discount function δt(T ), the spot function yt(T )
and the instantaneous forward function ft(T ) for all T ≥ 0 such that they are
consistent with observed market data and satisfy the relationships

δt(T ) = exp(−yt(T )T ) = exp

(
−
∫ T

0

ft(τ) dτ

)
(11a)

ft(T ) = yt(T ) + T
d

dT
yt(T ) = −

d
dT δt(T )
δt(T )

(11b)

yt(T ) =
1
T

∫ T

0

ft(τ) dτ = − 1
T

ln δt(T ) (11c)

yt(0) = ft(0). (11d)

It is also reasonable to expect that the spot and forward curves should
be well-behaved as maturities increase beyond that of the longest observed
security. This is particularly important if we need to price, say, a forward
contract on a thirty-year bond five or ten years hence. Thus, we assume that
the spot rate, and therefore the forward rate, approaches a positive asymptote:

lim
T→∞

yt(T ) = lim
T→∞

ft(T ) = y∞t . (12)

Again, this property is evident in our curves in Figure 1.
Finally, when we model the term structure we assume that current prices

should not permit any arbitrage opportunities among the securities. The no-
arbitrage condition implies that the discount function must be monotonically
decreasing which, in turn, implies that the forward curve must be everywhere
positive. We see from Figure 1 that our forward curves satisfy the no-arbitrage
condition.

3 Iterative Piecewise Quartic Polynomial Interpolation Algorithm

Our goal is a simple and fast algorithm to compute the forward, spot and dis-
count rates associated with the current on-the-run Treasury yield curve. The
method of Adams and van Deventer (1994) and Lim and Xiao (2002) is linear
in the unknown coefficients but only when all securities are zero coupon bonds.
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As we will see, when coupon bonds are introduced the algorithm becomes non-
linear. Our approach is to modify the Lim and Xiao (2002) algorithm and deal
with the nonlinearity by iterating over a sequence of linear problems. Com-
pared to other nonlinear algorithms, such as Manzano and Blomvall (2004)
and Hagan and West (2006), our approach is simple to code, fast and very
stable.

To make the description of the algorithm as concrete as possible we will
refer to the specific data from Table 1 where there are nine observed securities
in the yield curve plus the initial condition on the settlement date. The first
five securities are zero coupon bonds with maturities from seven days to about
one year. The last four securities are the coupon paying bonds with maturities
between two and thirty years.

We will denote the maturities of the securities as Ti, i = 1, . . . ,m and
the price of the bond with maturity Ti as P (Ti). The yield-to-maturities are
computed according to the appropriate day count conventions for the specific
bills and bonds. To simplify our presentation we will use yields based upon
continuous compounding with actual day counts.

A bond is just a sequence of cash flows on specific days. In our example
there are 10,812 days between the settlement date of July 10, 2008 and the
maturity of the thirty year bond on February 15, 2038. Let Z(Ti) denote the
10,812 element cash flow vector for the bond maturing at date Ti. For our first
five securities, the zero coupons, Z(Ti) will contain all zeros except for the value
of $100 at day Ti. For example, Z(T3) contains $100 in the 91st element—the
days to maturity of the three month T-Bill maturing on October 9, 2008.
The cash flow vector for bonds includes the semi-annual coupon payments as
well as the final face value payment. For example, the two year 2.875 coupon
bond maturing on June 30, 2010 has cash flows of $2.875/2 = $1.4375 on days
{174, 355, 539} and a cash flow of $101.4375 on maturity day 720.

Using the notation from Section 2, let δ, y and f be the discount rate, spot
rate and instantaneous forward rate functions to be computed. Our method
computes the forward curve as a , piecewise, quartic polynomial function and
then derives the spot curve and discount function from it. Given estimates of
these functions, we could compute the price for each security as

P̂ (Ti) = δ̂′ Z(Ti), i = 1, . . . ,m, (13)

where δ̂ is the 10,812 element vector of discount rates computed from the
forward function f̂ .

The smoothest function is the one that has the minimum acceleration or
smallest absolute second derivatives over its range. A straight line is very
smooth but would not be a good choice for the forward curve because it would
create large pricing errors. The optimization problem is

min
f

∫ Tm

0

(f ′′(t))2 dt (14)

subject to the pricing constraints P (Ti) = P̂ (Ti), i = 1, . . . ,m, the initial
condition f(0) = y(0) (= 1.426 in our example) and the terminal condition
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f ′(Tm) = 0. The last condition ensures that the forward and spot curves are
well-behaved beyond the maximum observed maturity.

Adams and van Deventer (1994) use variational calculus to show that the
solution to this optimization problem is a quartic polynomial of the form

f(t) = at4 + bt+ c (15)

where the coefficients on the cubic and quadratic terms are constrained to be
zero. However, Lim and Xiao (2002) point out that the derivation of Adams
and van Deventer (1994) neglected to take into account that the pricing con-
straint also involves the forward function f . With this correction, they find
the solution to be an unconstrained quartic function

f(t) = at4 + bt3 + ct2 + dt+ e. (16)

The implications of this error are substantial because there are now two
additional parameters to estimate for each piecewise quartic polynomial. The
exact identification of parameters that Adams and van Deventer (1994) used
will no longer be possible so we may not be able to exactly price all bonds on
our yield curve.

Lim and Xiao (2002) introduce a minor error into their algorithm with an
incorrectly constrained terminal condition of the forward curve. Assume that
there are m bonds in our yield curve with maturities {T1, . . . , Tm}. We impose
the constraint f ′(∞) = 0 by adding an (m+1)st spline so that f(t) = constant
for all t > Tm. We may think of the the maturity of this additional segment as
being Tm+1 =∞. We can see how this terminal constraint works by examining
the top graph in Figure 1. In this example, at the maturity of thirty years,
the longest maturity bond in our sample, the spot rate has a slightly negative
slope and the forward rate has smoothly approached a constant value of 3.93
percent. From the identity yt(T ) = ft(T ) + T y′t(T ), the spot curve will now
fall monotonically toward the constant forward curve for T > Tm.

Since we are using piecewise polynomials, it is useful to define the indicator
function

I[Ti,Ti−1](t) =

{
1 if Ti−1 ≤ t ≤ Ti
0 otherwise

(17)

so that we may write the forward curve polynomial as

f(t) =
m+1∑
i=1

I[Ti,Ti−1](t) fi(t) (18)

where fi(t) = ait
4 + bit

3 + cit
2 +dit+ei. In our algorithm, if we have m bonds

and m + 1 quartic polynomial splines, there will be 5(m + 1) coefficients to
estimate.

Since fi(t) is linear in the coefficients,
∫
f ′′(t) dt will be quadratic in the

coefficients so the objective function (14) may be written as a quadratic form
X ′HX where X is a 5(m + 1) vector of coefficients and H is an 5(m + 1) ×
5(m+ 1) known matrix that is specified in Appendix A. Thus, the first-order
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conditions with respect to the coefficient vector X will be linear in the un-
knowns.

To ensure maximum smoothness of the forward curve, (14) is optimized
subject to 4m+ 5 constraints:

(i) m pricing constraints

P (Ti) = P̂ (Ti) = δ̂′ Z(Ti), i = 1, . . . ,m

(ii) m continuity conditions at the nodes

fi+1(Ti) = fi(Ti), i = 1, . . . ,m;

(iii) m differentiability conditions at the nodes

f ′i+1(Ti) = f ′i(Ti), i = 1, . . . ,m;

(iv) m twice differentiability conditions at the nodes

f ′′i+1(Ti) = f ′′i (Ti), i = 1, . . . ,m,

(v) an initial boundary condition f(0) = y0; and
(vi) four restrictions on the terminal polynomial so that f ′(∞) = 0.

Since there are 5(m + 1) coefficients to estimate, we will have m more coeffi-
cients than constraints.

Recall that Adams and van Deventer (1994) incorrectly have two addi-
tional restrictions per polynomial so they have only 3(m + 1) coefficients to
estimate. They drop the twice-differentiability condition (iv) and there are
only two terminal polynomial restrictions for them so that they have 3m + 3
restrictions and their model is exactly identified. This explains how they are
able to produce zero pricing errors on all of their m zero coupon bonds. Note,
however, that their incorrectly restricted polynomials will produce a forward
curve that does not have the maximum smoothness property that they desire.

Introducing coupon bonds into the Adams and van Deventer (1994) algo-
rithm also introduces a nonlinearity into the algorithm. To see this consider
the pricing constraints (i). From (13) we see that the coupon paying bond price
is linear in the discount function δ but from (11a) δ is nonlinear in the for-
ward function f and therefore in the coefficients of the polynomials. For zero
coupon bonds we observe the spot rate and the discount rate at that maturity
so we can avoid this nonlinearity by using the observed values. When we add
coupon bonds, however, the spot and discount rates are no longer observed so
we cannot avoid this nonlinearity. As it turns out, this nonlinearity is nontriv-
ial and often leads to unstable algorithms. One solution is to strip the coupons
from the coupon bonds in a prior step and then apply a linear algorithm to
the stripped securities. Although simple, we will demonstrate below that this
approach leads to inconsistent spot and forward curves.

Our approach is to interpolate and to strip simultaneously but to maintain
stability by using an iterative linear algorithm. A critical step involves approx-
imating the spot rate y(Ti) for the bond maturing at Ti, stripping the value of
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the coupon payments from the bond and then pricing the bond face value using
the zero-coupon bond price given by (11a) so that the log of the zero coupon
bond price is linear in the polynomial coefficients. We may then solve our
nonlinear optimization problem using a sequence of linear steps. The details
of the linear steps of the piecewise quartic polynomial interpolation (PQPI)
algorithm are similar to those of Lim and Xiao (2002) and are described in
the Appendix A along with our corrections for the terminal conditions. In the
next section we describe the iterative algorithm.

3.1 The Iterative Algorithm

Pseudocode for the main iterative algorithm is shown in Figure 3.1. After
reading the yield curve data from Table 1 and storing the vector of node
points, we first compute the forward curve over the observed zero coupon
bills. In our example this includes the first five securities up to maturity July
2, 2009. Since these are all zero coupon bills we can do this with a slightly
modified version of the linear Lim and Xiao (2002) PQPI algorithm.

Next we add the first coupon bond, the sixth security or the two year 2.875
coupon bond maturing on June 30, 2010, to our list of securities. The yield
of 2.418% for this bond includes the coupon payments so we must strip the
coupons and compute the spot rate, ỹ(T6) at this maturity date T6. We do
this by first getting an initial estimate of ỹ(T6) using a simple linear bootstrap
method. Using this estimated value, we use PQPI to compute an estimate
of the forward curve f̃ up through maturity T6. Using f̃ we compute the
estimated price P̃ (T6) of the two year bond. This method will not produce an
estimate that is consistent with the interpolation up to Ti−1 from the previous
step since some of the coupon payments of the two year bond will occur before
Ti−1, T5, in our example.

To determine which direction to adjust ỹ(T6) we perturbe ỹ(T6) up and
down by ỹ(T6)/100 to get ỹu and ỹd. From these perturbations we com-
pute f̃u and f̃d and then P̃u and P̃d. We then approximate the derivative
dP̃ (T6)/dỹ(T6) using the centered difference method

dP̃ (T6)
dỹ(T6)

≈ P̃u − P̃d
ỹu − ỹd

=
P̃u − P̃d
ỹ(T6)/50

. (19)

We now update our estimate of the spot rate at T6 using

˜̃y(T6) = ỹ(T6) +
dỹ(T6)
dP̃ (T6)

(
P (T6)− P̃ (T6)

)
. (20)

We repeat this gradient updating of ỹ(T6) until the estimated spot rate changes
by less than 10−9.

At the conclusion of this iterative process we have updated our forward
curve through the maturity of the first coupon bond. We now add the next
coupon bond and repeat this process until we have computed the forward curve
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Algorithm 3.1: IPQPI(datafile)

comment: Input data from Table 1.8>><>>:
{P, T,C, . . . } ← input(datafile)
Prices, Maturities, Coupons, etc.
There are mz zero coupon bills and mc

coupon bonds for m total securities.
comment: Construct nodes.8<:The polynomial nodes are at the

security maturity dates:
{T1, . . . , Tmz , Tmz+1, . . . , Tm}

comment: Compute f for bills.8<:Compute forward curve over the mz

zero coupon bills.
f ← PQPI

`
y(T1), . . . , y(Tmz )

´
comment: Loop over coupon bonds.

for i← mz + 1 to m

do

8>>>>>>>>><>>>>>>>>>:

ỹ(Ti)← bootstrap(f, Ti)
Add ỹ(Ti) to list of zero yields
repeat8>><>>:

Perturb ỹ(Ti) and recompute f
f ← PQPI

`
y(T1), . . . , ỹ(Ti)

´
Compute price sensitivity dP/dỹ
Adjust ỹ(Ti)

until f correctly prices bonds 1 to i
comment: Compute final curves.8>><>>:
f ← PQPI

`
y(T1), . . . , y(Tmz ),

ỹ(Tmz+1), . . . , ỹ(Tm)
´

y(T )← 1
T

R T
0 f(t) dt

δ(T )← exp(−y(T )T )
comment: Compute final pricing errors.

errori ← (Pi − δ′ CashFlowsi), i = 1, . . . ,m.

Fig. 2 Pseudocode for the Iterated Piecewise Quartic Polynomial Interpolation Algorithm

over all securities in our sample. After the final forward curve is computed
we calculate the pricing errors and other statistics useful for evaluating the
estimated curves.

It is important to note that, although the forward curve is computed many
times, each computation is the solution of a linear system of equations as
detailed in the PQPI step in Appendix A.

4 Results

The results of our algorithm applied to the yield curve data of Table 1 are show
in Figure 1 and Table 2. As expected, the greatest volatility in the forward
curve is at the short maturities. Although there are several zero coupon bonds
at the shorter maturities, the longer bonds have coupon payments during the
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Table 2 Actual and estimated bond prices for the yield curve on date 7/10/2008.

Maturity Actual Price Est. Price

7/10/2008 100.0000 100.0000
7/17/2008 99.9725 99.9725
8/7/2008 99.8880 99.8880

10/9/2008 99.5854 99.5854
1/8/2009 99.0092 99.0092
7/2/2009 97.8992 97.8992

6/30/2010 100.8800 100.8805
6/30/2013 101.3000 100.3037
5/15/2018 100.5200 100.5484
2/15/2038 99.2800 99.2800

first year that influence the shape of the forward curve in this region. The
bottom graph in Figure 1 shows the forward and spot curves for maturities up
to five years. As required by theory, the forward and spot curves start at the
same point and the movement of the forward curve reflects the subtle variations
required in the spot curve in order to capture the influence of the intervening
coupon payments. Most critically, the computed forward curve never goes
negative so no false arbitrage signals are produced by the algorithm.

As shown inTable 2, the computed forward curve prices the observed bonds
quite accurately. There are zero pricing errors for the zero coupon bonds. While
one might expect this since the spot rates for these bonds are directly observed,
recall that the forward curve is also influenced by the coupon payments from
longer maturity coupon bonds intermingled amongst these bills. Thus, it is a
nontrivial result to produce zero pricing errors for the bills when bonds are
included in the set of securities. The largest error is 2.84 cents on the ten
year bond which amounts to a 0.0285% error. In this particular example, the
ten year bond is the most difficult to price because the spot curve becomes
inverted between the ten year and thirty year bonds.

5 Evaluation and Comparison

Adams (2001) aptly observes, “Most practitioners judge the quality of a zero
curve not by the quality of the underlying mathematics, but by the quality
of the curve itself” (p. 19). Evaluating the forward curve, however, is some-
what subjective because there is no unique solution to the curve stripping
and interpolation problem. We have chosen to impose maximum smoothness
and a terminal zero slope condition on our forward curve because from our
experience we believe these to be important criteria in our applications.

There are many other approaches to this problem. To aid in the comparison
of our algorithm to others we give a very brief overview of the most critical of
these alternative algorithms below. For a more detailed discussion see Fisher
(2004) and Jordan and Mansi (2003).
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5.1 Alternative Algorithms

Early approaches (McCulloch 1971, 1975; Vasicek and Fong 1982) used polyno-
mial or exponential splines to fit the discount function directly. One advantage
of these approachs is that the polynomials offer enough degrees of freedom so
that the security prices can be fit with minimal error. The problems are two-
fold. First, you must already know the discount rate for long maturity bonds
and these are not directly observed. Second, as can be seen from (11b), even
a very smooth appearing discount function may create erratic forward rate
curves. In the extreme case, if the splines in the discount function are not dif-
ferentiable at the nodes then the forward rate curve will have discontinuities
at those points implying arbitrage opportunities for derivative securities that
are, in fact, merely an artifact of the interpolation algorithm.

Probably the most widely used yield curve model at present is that of
Nelson and Siegel (1987) along with the extension of Svensson (1995). Jordan
and Mansi (2003) conclude that these are the best models and Gimeno and
Nave (2006) report that nine out of the thirteen central banks that report their
estimation methods to the Bank of International Settlements, use the Svensson
augmented version of the Nelson-Siegel model. Consequently, we will review
these methods in detail and use them as benchmarks against which we can
compare our model.

Nelson and Siegel (1987) observe that the yield curve generally follows
rather simple monotone increasing concave or occasionally humped or even
S-shapes curves. To match this fact they propose a global approach that fits
a specific functional form for the forward rate curve

ft(T ) = β0 + β1 exp
(
−T
τ

)
+ β2

[
T

τ
exp

(
−T
τ

)]
(21)

which, using (11c) gives the spot curve

yt(T ) =β0 + β1

[
1− exp

(
−Tτ

)
T
τ

]

+ β2

([
1− exp

(
−Tτ

)
T
τ

]
− exp

(
−T
τ

))
.

(22)

The first term, the constant β0, is interpreted as the long run level of interest
rates, the second term is interpreted as a short-term component that deter-
mines the slope of the spot curve for short maturities, and the third term is
interpreted as a medium term component that can capture a hump or dip in
the spot curve. The coefficients are estimated by minimizing the pricing errors
for the observed securities and we expect β0 > 0, β0 + β1 > 0 and τ > 0.

The Nelson-Siegel functional form has been widely adopted because it has
several appealing features. The spot and forward curves are always smooth
and continuously differentiable. As the maturity increases we get

lim
T→∞

yt(T ) = lim
T→∞

ft(T ) = β0 (23)
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so that the curves are well-behaved in the limit—a property not always ob-
served in polynomial models of the term structure. Note that, in the limit, the
spot curve becomes a flat function so the forward curve will asymptotically
approach the fixed limiting spot rate.

At the short-end of the term structure we get

lim
T→0

yt(T ) = lim
T→0

ft(T ) = β0 + β1 (24)

so the constraint that the forward and spot curves begin at the same point is
satisfied. For a normal yield curve that is an upward sloping concave function
we would expect to find β1 < 0.

One short-coming of the Nelson-Siegel model is that, with only four free
parameters, the model cannot be calibrated to fit all current security prices
and in some cases the pricing errors can be substantial. To improve this aspect
of the model, Svensson (1995) added an additional term to the forward curve
to get

ft(T ) = β0 + β1 exp
(
− T
τ1

)
+ β2

[
T

τ1
exp

(
−T
τ1

)]
+ β3

[
T

τ2
exp

(
−T
τ2

)] (25)

which yields the spot curve

yt(T ) =β0 + β1

1− exp
(
− T
τ1

)
T
τ1


+ β2

1− exp
(
− T
τ1

)
T
τ1

− exp
(
− T
τ1

)
+ β3

1− exp
(
− T
τ2

)
T
τ2

− exp
(
− T
τ2

) .

(26)

The additional term allows more flexibility in the shapes of the forward and
spot curves and the model is easier to calibrate to securities prices since it has
six free parameters.

There are many variations of the Nelson and Siegel (1987) model, including
Diebold and Li (2006) who make a natural and powerful extension by allowing
the parameters to vary over time. The additional degrees of freedom improve
the calibration properties of their model at the cost of additional complexity
in modeling the factors that drive the coefficient movements.

Other sophisticated nonlinear approaches include the monotone convex
spline method of Hagan and West (2006) and the nonlinear dynamic program-
ming method of Manzano and Blomvall (2004). These methods, while very
promising, are highly nonlinear and difficult to implement. Our goal is to pro-
vide an easily implemented algorithm that is superior to the most commonly
used algorithms in practice.
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5.2 Comparison of Algorithms

We will compare our IPQPI method to four alternative methods:

LBLI A simple linear bootstrap and linear interpolation method applied
to the spot curve.

LBPQPI A linear bootstrap method on the spot rates of the coupons with a
piecewise quartic polynomial interpolation through these rates.

NS The Nelson-Siegel method described in 5.1.
SV The Svensson extension of Nelson-Siegel described in 5.1.

The linear bootstrap with linear interpolation (LBLI) method is simply a
piecewise linear interpolation of the spot curve using a bootstrap method to
compute the spot rates at each node. This is straightforward for zero coupon
bonds when the the spot rates at those maturities are directly observed. For
bonds, we add one bond at a time and adjust the estimated spot rate up
or down until that bond is correctly priced. Note that the linear segments
determined in prior steps are not adjusted during this process. The resulting
spot curve will be continuous but not differentiable at the node points. This
method is admittedly a “straw man” but it is useful for illustrating some
important features of the IPQPI method.

The LBPQPI method computes the spot rates at the maturities of the
bonds in the same way as LBLI except, in the final step, we use a piecewise
quartic polynomial interpolation of the computed spot rates to estimate the
forward curve. This approach separates the interpolation and stripping steps
and is the most straightforward extension of the various methods, including
the Lim and Xiao (2002) method, applied to coupon bonds but that require
spot rates as inputs.

The Nelson-Siegel (NS) and Svensson (SV) methods are described in 5.1
and, due to their widespread use, are the most serious contenders for our
IPQPI method.

Table 3 reports the pricing errors of the five algorithms for each of secu-
rities as well as some summary statistics to evaluate the methods. The first
two columns give the maturities and actual prices of the on-the-run treasuries
for the yield curve on July 10, 2008. The first six securities (including the
settlement date in the first row) are zero coupon bills and the last four secu-
rities are the coupon bonds. Columns three through seven in the top portion
of the table report the pricing error in cents

[
100 ∗

(
P (Ti)− P̂ (Ti)

)]
of each

security for each method.
The bottom portion of the table reports three useful summary statistics.

“MDwError” is the root mean square Macaulay duration weighted percentage
pricing errors

MDwError =

√√√√ m∑
i=1

1
MDi

(
100

P (Ti)− P̂ (Ti)
P (Ti)

)2

. (27)
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The Macaulay durations are defined in equation (1) and reported in Table 1.
The idea underlying this measure is to give increased weight to the short-term
securities because it is more difficult to fit the short end of the yield curve
than the long end. The seven day spot yield can move considerably without
effecting bond prices by much but even a small movement in the thirty year
rate has a large impact on other bond prices.

The “Ave Abs Error” row reports the average of the absolute pricing errors
in cents:

Ave Abs Error =
1
m

m∑
i=1

∣∣∣100
(
P (Ti)− P̂ (Ti)

)∣∣∣ . (28)

“Smoothness’ reports the smoothness of the instantaneous forward curve
as measured by the integral of the squared second derivatives

Smoothness =

√∫ Tm

0

(f ′′(t))2 dt

−1

(29)

≈


√√√√Tm−1∑

t=2

(f(t+ 1)− 2f(t) + f(t− 1))2
−1

(30)

where the second equation is the discrete approximation. The smoothness
values in Table 3 are computed with f measured in percentages rather than
decimals. Taking the square root of the integral converts the units back to
percents for easier interpretation. Taking the inverse of the measure means
that the less “jerk” there is in the forward curve, the larger the Smoothness
value will be. A straight line would have a smoothness score of infinity.

Figures 3 through 6 compare the discount functions, spot curves and in-
stantaneous forward curves generated by each of these methods. Note that the
discount functions in Figure 3 and spot curves in Figure 5 for all the methods
look “reasonably” similar and it would be difficult to choose among them on
the basis of these curves alone. The changes in the discount function shown
in Figure 4 and the forward curves shown in Figure 6, however, differ dra-
matically. This is a visual indication of why modeling the forward rate curve
directly is critical in fitting the yield curve.

Table 3 and the associated Figures 3 through 6 below illustrate the key
features of the various methods and what we believe are the advantages of the
IPQPI method. Note first that the LBLI method produces zero pricing errors
for both the zero coupon bills and the coupon bearing bonds. This is precisely
what the LBLI algorithm is designed to do. The spot yields at each node
are chosen to exactly price the security maturing at that node. Since there is
no feedback from one node to previous nodes during the computations, zero
pricing errors is an easy criteria to satisfy. The problem with this method is
that, because the spot curve is piecewise linear, it produces discontinuities in
the spot and forward curves at the nodes. The reason for the discontinuities
is clear from equations (11a) and (11b). The very low smoothness statistic
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Table 3 Pricing errors and summary statistics of the five algorithms for the yield curve on
7/10/2008. The first column gives the maturity dates of the securities. The first six securities
with maturities through 7/2/2009 are zero coupon bills. The pricing errors are reported in
cents so an error of 2.0814 means that the bond was underpriced by $0.020814. MDwError is
the root mean square Macaulay duration weighted percentage pricing error. Ave Abs Error
is the average absolute pricing error in cents. Smoothness is the inverse of the square root
of the integral of the squared second derivative of the instantaneous forward curve.

Maturity Actual Price LBLI LBPQPI NS SV IPQPI

7/10/2008 100.0000 0.0000 0.0000 0.0000 0.0000 0.0000
7/17/2008 99.9725 0.0000 0.0000 0.2365 -0.0704 0.0000
8/7/2008 99.8880 0.0000 0.0000 0.9745 0.2143 0.0000

10/9/2008 99.5854 0.0000 0.0000 0.2747 1.1759 0.0000
1/8/2009 99.0092 0.0000 0.0000 -9.6634 -2.7669 0.0000
7/2/2009 97.8992 0.0000 0.0000 -14.1885 1.8282 0.0000

6/30/2010 100.8800 0.0000 -0.1384 -5.4618 -0.8438 -0.0480
6/30/2013 101.3000 0.0000 2.0716 60.1537 4.8588 -0.3701
5/15/2018 100.5200 0.0000 -0.3559 4.1946 -11.1614 -2.8419
2/15/2038 99.2800 0.0000 223.8056 -60.1885 10.1220 0.0000

MDwError 0.0000 0.5467 0.3764 0.0721 0.0100
Ave Abs Error 0.0000 22.6372 15.5336 3.3042 0.3260

Smoothness 0.5046 644.24 16625.22 16.54 644.08

of 0.5046 reflects these discontinuities in the forward curve that are clearly
visible in Figure 6 and in the changes in the discount rates shown in Figure
4. Even though all of the securities used to construct the curves are priced
exactly, the discontinuities in the discount and forward curves would create
large pricing errors in derivatives and other out-of-sample securities priced
from these curves.

The LBPQPI method applies a PQPI to the spot rates {y(T1), . . . , y(Tm)}
computed by LBLI rather than using the linear segments between the nodes
of the spot curve in the LBLI method. As expected, this produces a very
smooth forward curve. This process maintains the zero pricing errors for the
zero coupon bills but introduces pricing errors for the coupon bonds. The
thirty year bond has a very large $2.24 pricing error. This occurs because
the linear segment between the ten year and thirty year node points used
to compute the thirty year spot rate y(T30) contains forty coupon payments
for the thirty year bond. When PQPI is used to smooth the forward curve
the value of these coupon payments can change dramatically and create large
pricing errors. This method clearly illustrates the importance of simultaneously
stripping the coupon bonds and interpolating the forward curve. Doing these
steps sequentially introduces inconsistencies between the spot rates and the
intervening forward and spot curves.

The very high smoothness score of the Nelson-Siegel method illustrates
why this approach remains so popular. The primary disadvantage of the NS
method is that the possible shapes of the spot and forward curves are quite
limited and may produce substantial pricing errors. The average pricing error
of fifteen cents with maximum errors of sixty cents are unacceptably large
for most applications. The Svensson extension of NS allows for more flexible



18

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Maturity

Pe
rc

en
t

 

 
LBLI
LBPQPI
NS
SV
IPQPI

Fig. 3 Discount functions of the five algorithms.

curves and more accurate pricing with the average pricing error dropping to
just over three cents with a maximum error of eleven cents. The cost of this
increased pricing accuracy is a less smooth forward curve. The additional term
in the SV method introduces a dip in the forward curve around maturities of
one year that does not occur in the NS forward curve. These two methods
nicely illustrate the trade-off between smoothness of the forward curve and
accuracy in pricing.

The IPQPI method has low pricing errors while maintaining the smoothest
possible forward curve among the class of piecewise polynomials. The largest
pricing error is 2.84 cents on the ten year bond. We often find our largest
pricing errors for the ten year bond and this is likely due to the special role
that the ten year plays as a hedging instrument in mortgage backed securities.

5.3 Discussion

In this paper we have described our Iterated Piecewise Quartic Polynomial
Interpolation algorithm for simultaneously interpolating and stripping a yield
curve consisting of coupon paying bonds. Our algorithm is accurate, flexible
and relies only upon the solution of linear systems of equations and produces
maximally smooth forward curves.

Overall, our IPQPI method performs very well. Although the Nelson-
Siegel algorithm produces smoother forward curves it does so at the cost of
much larger pricing errors. IPQPI produces pricing errors an order of magni-
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Fig. 4 Changes in the discount functions of the five algorithms. Note the discontinuities in
the LBLI algorithm.
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Fig. 6 Forward functions of the five algorithms. Note the discontinuities in the LBLI algo-
rithm.

tude smaller than the Svensson algorithm while at the same time producing
smoother forward curves. Computationally, IPQPI is very stable and an or-
der of magnitude faster than the highly nonlinear Svensson approach. The
method is also easy to modify by adding additional constraints for specific
pricing applications.

As noted, we usually observe our largest pricing error for the ten year
bond and we speculate that this is because the ten year is heavily used for
hedging mortgage-backed securities. Consequently, the price of the on-the-run
ten year bond is often on “special” depending upon the current books of bond
brokers. It is possible to add an additional constraint to IPQPI to reflect these
“specials” and to reduce the pricing error at the ten year. We do not go into
this extension here because it is often a case-by-case issue.

No doubt our method is not the final word on yield curve stripping and
interpolation algorithms. As Hagan and West (2006) point out, quartic-based
methods such as ours can be sensitive to perturbations in bond prices in the
sense that a small change in the bond price at a specific maturity can have
substantial influence on the forward curve several nodes away. Our simulation
experiments have confirmed this. One implication of this is that hedging port-
folios based upon quartic methods can be relatively expensive to maintain.
Of course, it depends upon what you are hedging and how, but one poten-
tial way to deal with this in IPQPI would be to add an additional constraint
with increasing penalties for movements away from an initial forward curve
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at a specific maturity. Our method is flexible enough to easily add such con-
straints.

Another issue worth exploring is the dependency of IPQPI on polynomials.
One of the reasons that the Nelson and Siegel and the Svensson methods work
so well is that they use exponential functions that are essentially infinite order
polynomials with highly constrained coefficients. It is likely that a more general
class of basis functions would produce better results albeit at a much higher
computational cost.

A Appendix: Piecewise Quartic Polynomial Interpolation (PQPI)

The procedure for interpolating the zero coupon portion of the yield curve is similar to
that described in Lim and Xiao (2002) except that we handle the terminal condition on
the forward curve differently. Our approach adds one additional segment to the piecewise
spline function with some additional coefficient restrictions on the terminal spline. Since the
matrix sizes differ to reflect these changes, we provide the details of this step here.

In the first subsection of the appendix we show how to construct the objective function
as a quadratic expression. In the second subsection we construct the constraints as linear
equations and in the final subsection we show how to solve the PQPI system.

A.1 Specifying the Objective Function

Noting that the objective function is piecewise with nodes at the maturity of each security.
Let fi(t) = ait

4 + bit
3 + cit

2 + dit + ei denote the quartic polynomial between node Ti−1

to node Ti so that f ′′i (t) = 12ait
3 + 6bit

2 + 2ci. Then the objective function (14) may be
written as Z Tm+1

0

`
f ′′(t)

´2
dt

=

m+1X
i=1

Z Ti

Ti−1

f ′′i (t) dt

=

m+1X
i=1

Z Ti

Ti−1

`
12ait

2 + 6bit+ 2ci
´2
dt

=

m+1X
i=1

„
144

5
∆5

i a
2
i + 36∆4

i aibi + 12∆3
i b

2
i

+ 16∆3
i aici + 12∆2

i bici + 4∆ic
2
i

«

=

m+1X
i=1

x′ihixi

= X′HX

(A.1)

where ∆n
i = Tn

i − Tn
i−1,

xi =

0BBB@
ai

bi
ci
di

ei

1CCCA , hi =

0BBBB@
144
5
∆5

i 18∆4
i 8∆3

i 0 0
18∆4

i 12∆3
i 6∆2

i 0 0
8∆3

i 6∆2
i 4∆i 0 0

0 0 0 0 0
0 0 0 0 0

1CCCCA , (A.2)
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X =

0B@ x1

...
xm+1

1CA
5(m+1)×1

, (A.3)

H =

0BBB@
h1 0 0 · · · 0
0 h2 0 · · · 0
...

. . .
...

0 0 0 · · · hm+1

1CCCA
5(m+1)×5(m+1)

, (A.4)

and each of the 0’s as well as hm+1 is a 5× 5 matrix of zeros.

Recall that we have m securities with maturities T1, . . . , Tm where m is the number of
securities. We do not consider the settlement date in this list so T1 is the maturity of the
first real security—the one-week LIBOR in our example. We define T0 = 0. Note that we
have added an m + 1 node in (A.1). The reason for this additional node is to impose the
terminal condition on the forward curve which is incorrectly handled inLim and Xiao (2002).
This turns out to be more complicated than expected and we will discuss this correction in
more detail below.

The important observation to make is that the objective function is quadratic so that
the gradient is linear in the coefficients. We will now show that the constraint functions are
also linear functions of the coefficients.

A.2 Specifying the Constraint Functions

The zero-coupon bond price given by (11a) may be written as

− lnδ(Tj) =

Z Tj

0
f(t) dt

=
iX

j=1

Z Ti

Ti−1

fj(t) dt

=

iX
j=1

Z Tj

Tj−1

`
ajt

4 + bjt
3 + cjt

2 + djt+ ej

´
dt

=

iX
j=1

„
1

5
ajT

5
j +

1

4
bjT

4
j +

1

3
cjT

3
j

+
1

2
djT

2
j + ejTj

«

(A.5)

so that the log of the zero-coupon bond price is linear in the coefficients x.

Recalling our previous notation ∆n
j = Tn

j − Tn
j−1, we can write the difference of the log

prices of two consecutive zero coupon bonds as

− ln

„
δ(Tj)

δ(Tj−1)

«
=

1

5
∆5

jaj +
1

4
∆4

j bj +
1

3
∆3

jcj

+
1

2
∆2

jdj +∆jej .

(A.6)

The full set of pricing constraints for all m bonds may then be written in matrix form
as

A1X = B1 (A.7)
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where

A1 =

0BBB@
DT1 01×5 · · · 01×5

01×5 DT2 · · · 01×5

...
...

. . .
...

01×5 01×5 · · · DTm

1CCCA
m×5(m+1)

, (A.8)

DTj =
“

1
5
∆5

j ,
1
4
∆4

j ,
1
3
∆3

j ,
1
2
∆2

j , ∆j

”
1×5

, (A.9)

and

B1 =

0BBB@
ln
`
δ(T1)/δ(T0)

´
ln
`
δ(T2)/δ(T1)

´
...

ln
`
δ(Tm)/δ(Tm−1)

´
1CCCA

m×1

. (A.10)

Next we impose constraints to ensure that the forward curve remains smooth as it tran-
sitions through node points in the piecewise polynomial approximation. To ensure continuity
at the node points we require that the forward rate at node Ti has the same value whether
computed using the left-side polynomial or the right-side polynomial. Thus, we impose

fi+1(Ti) = fi(Ti), i = 1, . . . ,m, (A.11)

or

(ai+1 − ai)T
4
i + (bi+1 − bi)T 3

i + (ci+1 − ci)T 2
i

+ (di+1 − di)Ti + (ei+1 − ei) = 0, i = 1, . . . ,m. (A.12)

Define T4i = (T 4
i , T

3
i , T

2
i , Ti, 1)1×5 and write all m of these constraints in matrix form as

A2x = B2 (A.13)

where

A2 =

0BBB@
−T41 T41 01×5 01×5 · · · 01×5 01×5

01×5 −T42 T42 01×5 · · · 01×5 01×5

...
...

...
...

. . .
...

...
01×5 01×5 01×5 01×5 · · · −T4m T4m

1CCCA (A.14)

is an m× 5(m+ 1) matrix and B2 is a m× 1 vector of zeros.
To impose differentiability at the nodes we require

f ′i+1(Ti) = f ′i(Ti), i = 1, . . . ,m (A.15)

or

4(ai+1 − ai)T
3
i + 3(bi+1 − bi)T 2

i + 2(ci+1 − ci)Ti

+ (di+1 − di) = 0, i = 1, . . . ,m. (A.16)

Define T3i = (4T 3
i , 3T

2
i , 2Ti, 1, 0)1×5 and write all m of these constraints in matrix form as

A3X = B30m×1 (A.17)

where

A3 =

0BBB@
−T31 T31 01×5 01×5 · · · 01×5 01×5

01×5 −T32 T32 01×5 · · · 01×5 01×5

...
...

...
...

. . .
...

...
01×5 01×5 01×5 01×5 · · · −T3m T3m

1CCCA (A.18)

is an m× 5(m+ 1) matrix and B3 is a m× 1 vector of zeros.
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To ensure that the first derivatives of the forward curve are smooth at the nodes we
impose

f ′′i+1(Ti) = f ′′i (Ti), i = 1, . . . ,m, (A.19)

or

12(ai+1 − ai)T
2
i + 6(bi+1 − bi)Ti

+ 2(ci+1 − ci) = 0, i = 1, . . . ,m. (A.20)

Define T2i = (12T 2
i , 6Ti, 2, 1, 0, 0)1×5 and write all m of these constraints in matrix form as

A4X = B4 (A.21)

where

A4 =

0BBB@
−T21 T21 01×5 01×5 · · · 01×5 01×5

01×5 −T22 T22 01×5 · · · 01×5 01×5

...
...

...
...

. . .
...

...
01×5 01×5 01×5 01×5 · · · −T2m T2m

1CCCA (A.22)

is an m× 5(m+ 1) matrix and B4 is a m× 1 vector of zeros.

To ensure the boundary condition f(0) = y0, we simply impose e1 = y0. The terminal
boundary condition f ′(Tm) = 0 is more difficult to impose. Lim and Xiao (2002) use the
condition d1 = 0 which is clearly incorrect. We impose the terminal condition by adding an
additional (m + 1)st segment to the piecewise polynomial with the coefficient restrictions
am+1 = bm+1 = cm+1 = dm+1 = 0 so that f(t) = em+1 for all t > Tm. The terminal height
of the forward function is left unconstrained and the continuity and smoothness constraints
described above will ensure a smooth transition to the zero slope of the forward curve at
node Tm.

These five boundary conditions may be written in matrix notation as

A5X = B5 (A.23)

where

A5 =

0BBB@
0 0 0 0 1 0 · · · 0 0 0 0 0
0 0 0 0 0 0 · · · 1 0 0 0 0
0 0 0 0 0 0 · · · 0 1 0 0 0
0 0 0 0 0 0 · · · 0 0 1 0 0
0 0 0 0 0 0 · · · 0 0 0 1 0

1CCCA
5×5(m+1)

(A.24)

and

B5 =

0BBB@
y0
0
0
0
0

1CCCA . (A.25)

Stacking all of these linear constraints gives

AX = B (A.26)

where

A =

0BBB@
A1

A2

A3

A4

A5

1CCCA
(4m+5)×5(m+1)

and

0BBB@
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B2

B3
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1CCCA
(4m+5)×1

. (A.27)
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A.3 Solving the PQPI System

The constrained optimization problem may now be written in matrix notation as

min
X,λ

Z(X,λ) = X′HX + λ′(AX−B) (A.28)

where λ is the 4m+ 5 vector of Lagrange multipliers corresponding to the constraints.
The first-order conditions are

∂

∂X
Z(X,λ) = 2HX + A′λ = 0 (A.29)

and
∂

∂λ
Z(X,λ) = AHX−B = 0, (A.30)

or „
2H A′

A 0

«„
X
λ

«
=

„
0
B

«
(A.31)

from which we find the explicit solution„
X∗

λ∗

«
=

„
2H A′

A 0

«−1 „
0
B

«
. (A.32)
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