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1 Introduction

In current days most of contracts dealt in the interbank OTC derivatives are collateralized.
A collateral agreements is characterized by the following features, amongst others:

• Collateral, or Initial Margin: is the amount of money (or other liquid assets)
of that a counterparty has to post to the other when the derivatives contract has a
negative NPV to the former.

• Variation Margin: is the variation of the collateral subsequent to a variation in
the NPV of the derivatives contract.

• Maintenance Margin: is the level of the collateral below which it is not possible
to drop after the variation margins are posted. If the balance drops below the level,
the initial margin has to be restored.

The CSA is a contract whereby a percentage (typically 100%) of the negative NPV
fully collateralized by the relevant counterparty, and a daily variation margin, equal to
100% of the daily variation of the NPV, is posted by the party which the variation was
negative to. Under such an agreement, maintenance margin is redundant. The total
collateral amount (initial + variations) is remunerated at a specified rate.

It should be noted also that CSA agreements usually operates on an aggregated base:
the NPVs of all contracts (also for different types of underlying) included in a netting set
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Rick Boesch for a fruitful discussion that significantly improved the paper. Comments are welcome.
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are summed algebraically and the net amount is posted as collateral by the counterparty
who has a negative total NPV. Also minimum transfer amount and threshold clauses
applies. We will not dwell on the netting, minimum transfer amounts and thresholds in
what follows.

Futures contracts have features similar to CSA agreements, but: the initial margin
(collateral) is a determined as a small percent of the value of the future delivery (futures
price times the notional of the contract). Variation margins occur daily but differently
from the CSA, they can be withdrawn if positive to a counterparty, provided that the
maintenance margin has not be eroded. In the end they are not real variations margins,
but a daily liquidation of the variation of the terminal value of the contract. There is
remuneration for the initial margin, no remuneration for the variation margins.

In what follows we try and analyse the pricing of derivatives under a CSA agreement,
without considering netting, minimum transfer amounts and thresholds. So we will in-
vestigate the pricing of a contract on a “stand-alone” basis, although we are aware that
“incremental” pricing, when netting is considered, may alter significantly the result and
then it should not be overlooked if one wants to apply a more refined methodology.

Fujii and Takahashi [6] is a work closely relating to the analysis below: they study
the effects of imperfect collateralization and they introduce a decomposition of the total
contract’s value which resembles the one we offer below, including also the bilateral CVA.
On the other hand, we extend their analysis to include effects that funding costs have
on the final contract’s value, disregarding the residual counterparty credit risk due to
imperfect collateralization.

Another recent work related to our analysis is in Pallavicini et al. [10]: they study
the effects of partial collateralization on bilateral credit risk, taking into account also the
costs due to different rates paid and received on the collateral account. Although their
pricing fomulae somehow encompass also ours below, we think that we offer a different
and intuitive approach to include funding costs, with the same remark as before that we
do not consider credit risk. We also have to stress the fact that Pallavicini et al. [10]
focus on deriving a general formula to calculate the price of the contract,1 whereas we
try and derive which is the value of the contract to a counterparty.

1.1 A Brief Digression on Price and Value

The difference between price and value has been investigated in economic theory, but
economists (whether classical, or neoclassical, or Marxist) typically refer those terms to
commodities. When a financial contract is not executed by simply (almost) immediately
delivering an asset (in which case it can be assimilated to the purchase/sale of a commod-
ity), but on the contrary it implies a given performance by possibly both parties for an
extended duration, then price and value should be defined in a slightly more refined way.

We define price (from one of the parties’ perspective) of a derivative contract the
terms that both parties agree upon when closing the deal. These take into account the
present value of expected profits and losses, considering all the costs and the losses due

1In fact they take into account the bilateral counterparty credit risk, and the cost of funding borne
by each of the counterparties involved.
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to counterparty credit risk, funding and liquidity premiums, for both parties. When both
parties have an even bargaining power, they have to acknowledge the other party all the
risks and the costs it bears, so that the final price includes the total (net) risks and costs
borne by both parties.

On the other hand, we define production costs (to one of the parties) of a derivative
contract the present value of the costs paid to attain the intermediate and final pay-off
until the expiry, considering also the costs and the losses due to counterparty credit risk,
funding and liquidity premiums, related to that specific party. The total of the production
costs, assuming no other margin is charged, is also how much the contract is worth to the
party, or alternatively said they are the value of the contract.

For a counterparty the value of a contract can be exactly the price if it has enough
bargaining power to completely transfer production costs (still excluding other extra-
profit margins) to the counterparty, without recognizing in the setting of the contract’s
terms the costs and risks born by the other party. When the bargaining process involves
counterparties with even bargaining power, then the value of the contract to each of them
will be lower than the price as they are both yielding a share of the value to cover each
other’s risks and costs. The price and the value of a contract are the same also when both
parties operate in a prefect and frictionless market, where there are no transaction costs
and counterparty risks. In fact in this case they will agree on a production cost of the
contract that is the same for both.

There are profound implications for the investment banking business from the defini-
tion above: when financial institutions of even bargaining power trade derivative contracts,
they (both) are destroying their franchise since they are not able to fully transfer the total
costs to the counterparty, being forced to accept a worsening of the terms of the contracts
to acknowledge other party’s costs. That means that they have to make up for the losses
due to the difference between price and value with other counterparties that have less
bargaining power, so as to restore to eroded franchise. So, weaker counterparties not only
cannot heap on the stronger parties the remuneration for the risks and the costs born,
but they will have also to pay for the costs charged by third parties to the party they are
dealing with.

2 Pricing in a Simple Discrete Setting

Assume underlying asset S at time 0, and it can go up to Su = Su or down to Sd = Sd,
with d < 1, u > 1 and u × d = 1 in next period. Let V C be the price of a contingent
claim at time 0 (the “C” at the exponent stands for “collateralized”), and V C

u and V C
d

its value when the underlying jumps to, respectively, to Su and Sd. C is the value of
the collateral to be posted to the counterparty holding position in the contingent claim
when the NPV is positive to it; the collateral account earns the collateral rate c. We
will assume that a percent γ of the contract’s NPV is continuously collateralized, so that
at any time C = γV .2 B is the value at of a bank account earning at each period the

2When γ < 100%, that is there is not a full collateralization, then a residual counterparty credit
risk should be priced into the contract. To isolate the effect of the collateral, we do not consider in
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risk-free rate r. In this framework, following the classical binomial approach by Cox and
Rubinstein [4], we try and build a portfolio of underlying asset S and bank account B
perfectly replicating the value of the contingent claim in each state of the world, jointly
with the value of the collateral account. The collateral account is the sum of the collateral
plus the interests it produces according to the collateral agreement. In other words, we
want to replicate a long position in the collateralized contingent claim.

To do so, we have to set the following equalities in each of the two state of the world
(i.e.: possible outcomes of the underlying asset’s price):

V C
u − C(1 + c) = αSu+ βB(1 + r) (1)

and
V C
d − C(1 + c) = αSd+ βB(1 + r) (2)

Equation (1) states that the value of the contingent claim V C
u , when the underlying jumps

to Su from the starting value S, minus the value of the collateral account, must be equal
to the value of the replicating portfolio, comprised of α units of the underlying and β units
of the bank account. The collateral account at the end of the period will be equal to the
initial value of the collateral C at time 0, plus the interest rate accrued c. The replicating
portfolio has to be revalued at the prices prevailing at the end of the period, that is Su for
the underlying asset and the initial value B plus accrued interest r for the bank account.
In a very similar way, equation (2) states that the value of the contingent claim, minus
the value of the collateral account, must be equal to the value of the replicating portfolio
when the underlying jumps to Sd.

Equations (1) and (2) are a system that can be easily solved for quantities α and β,
yielding:

α = ∆ =
V C
u − V C

d

(u− d)S
(3)

and

β =
uV C

d − dV C
u − (1 + c)C(u− d)

(u− d)B(1 + r)
(4)

We have indicated α = ∆ because it is easily seen in (3) that it is the numerical first
derivative of the price of the contingent claim with respect to the underlying asset, usually
indicated so in the Option Pricing Theory.

If the replicating portfolio is able to mimic the pay-off of the collateralized contingent
claim, then its value at time 0 is also the arbitrage-free price of the collateralized contingent
claim:

V C − C = ∆S + βB =
V C
u − V C

d

(u− d)
+

uV C
d − dV C

u − (1 + c)C(u− d)

(u− d)(1 + r)
(5)

this work the counterparty credit risk still present in case of a imperfect collateralization. The inclusion
of the counterparty credit risk in the pricing of derivative contracts, considering also the funding costs
due to the collateral management, has been studied in Pallavicini et al. [10], where probably the most
comprehensive pricing formula is presented.
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It is possible to express (5) in terms of discounted expected value under the risk neutral
measure and, recalling that C = γV C and rearranging, we get:

V C [(1 + r)(1− γ) + (1 + c)γ]

1 + r
=

1

1 + r
[pV C

u + (1− p)V C
d ] (6)

with p = (1+r)−d

u−d
. The value of the collateralized contingent claim V C is trivially:

V C =
1

[(1 + r)(1− γ) + (1 + c)γ]
[pV C

u + (1− p)V C
d ] (7)

that is the expected risk neutral value multiplied by the factor [(1+r)(1−γ)+(1+c)γ]
1+r

, which
makes the final formula look like the expected value discounted with a rate which is a
weighted average of the risk free and collateral rate, in stead of the risk-free rate only,
albeit we still are in a risk-neutral world.

The right-hand side of the equation (6) is also equal to the expression one would get
when trying to replicate a contingent claim without any collateral agreement.3 Let V NC

be the value of such claim, then we have:

V C [(1 + r)(1− γ) + (1 + c)γ]

1 + r
= V C − γ

r − c

1 + r
V C = V NC (8)

Equation (8) states that the non collateralized contingent claim is equal to an otherwise
identical collateralized claim, minus a quantity that we name Liquidity Value Adjustment
(LVA) and precisely define as follows:

Definition 2.1. The LVA is the discounted value of the difference between the risk-
free rate and the collateral rate paid (or received) on the collateral, and it is the gain
(or loss) produced by the liquidation of the NPV of the derivative contract due to the
collateralization agreement.

The fact that we are still working in a risk-neutral world is confirmed by the expected
return on the underlying asset:

pSu + (1− p)Sd = (1 + r)S

that is equal to the risk-free rate.
It is worth mentioning the fact that by extending the binomial approach to a multi-

period setting, thus introducing a dynamical replicating strategy whereby the contingent
claim is replicated by dynamically re-balancing the underlying asset and bond portfolio,
the final result of the replica is not the terminal pay-off of the contingent claim, but it
includes both the latter and the terminal value of the cumulated losses/gains arising from
the LVA. This has some very important implications at a dealing room level that we will
try and examine in section 7.

The practical example below will clarify how the replication argument works under
collateral and the pay-off attained at the expiry.

3This can be easily verified by setting γ = 0 in equation (6).
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Example 2.1. Assume4 we want to price a call option fully collateralized (γ = 100%)
written on an underlying asset whose staring value is 80, which is also the strike price.
The risk free rate for one period is r = 0.10, whereas the collateral rate for each period is
c = 0.06. The option expiries in three periods; at the end of each period the underlying
asset can jump upward of downward by a factor, respectively, u = 1.5 and d = 0.5, so that
the probability to have a jump up is p = 0.6. In the table 1 we show the evolution of the
underlying asset price and the associated probability below each possible outcome.

270
180 ր 0.216

120 ր 0.36 ց
ր 0.6 ց 90

80 60 ր 0.432

ց 40 ր 0.48 ց
0.4 ց 30

20 ր 0.288

0.16 ց
10

0.064

Table 1: Evolution of the underlying asset and associated probabilities below each possible
outcome (in italics).

The value of the option can be computed via (7), by working out the backward recursion
starting from the known terminal pay-off. The value of the option at each point of the
binomial grid is also the value of the collateral account (with the reverse sign). Table 2
shows the result and we can read that the value of the collateralized option at time 0 is
V C = 38.0851.

ր 190
ր 111.3208

ր 65.1477 ց
38.0851 ց ր 10

ց ր 5.6604
3.2039

ց ր 0
0

ց
0

Table 2: Value of the call option at each point of the grid, and of the collateral account
(same with reverse sign).

4This example is the same as in the classical work by Cox, Ross and Rubinstein [4], with the inclusion
of the collateral agreement not present there.
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The replicating portfolio can be built be computing the ∆ for the underlying asset and
the quantity β of bank account needed to finance the purchase. In table 3 the ∆ is shown
for each node of the binomial tree along a predefined path of the underlying asset (it is
arbitrary and for illustration purposes only); below each ∆, we indicate also the quantity
to trade in the bank account, plus the interests paid on the amount of bank account traded
in the previous period. At the end of the last period we consider both types of jumps, so as
to examine what happens when the option terminates in the money or out of the money.

0.8805 1.0000
0.7743 ր -38.9892 ց -75.0638

-23.8586 0.1667 ր
-0.0580 ց

0.0000
4.9362

Table 3: Amount of underlying asset to trade at each point of the predefined path. Below
each ∆, the amount of bank account plus accrued interests from the previous period, are
shown (in italics).

At time 0 the quantity of underlying to hold in the portfolio, to replicate one call option,
is 0.7743. To finance this purchase, we have to borrow money by selling a bank account
for an amount of −23.8586. The difference is the amount of money we have to invest to
start up the replication strategy, and it is exactly the value of the option at time 0.

At time 1, ∆ = 0.8805 so that we have to buy more asset and we have to increase the
selling of bank account to borrow more money, besides paying the accrued interest on the
initial borrowing of 23.8586, that we still have. The value of the bank account account is
then −38.9892. When we arrive at the last period either with one asset in the portfolio,
and a bank account value of −75.0638, when the options expiries in the money; otherwise
we end up with no asset and a bank account value of 4.9362 when the option expiries out
of the money.

There is an additional amount of money to be borrowed when replicating the collateral-
ized option, and this is the amount needed to finance the collateral account value. Hence,
a long position in a collateralized option entails a short position in the collateral account,
since we have a cash amount of money equal to the value of the contingent claim. The
total cost to replicate the collateral account is given by the difference between the risk-free
and collateral rate, times the amount of the collateral account at the previous period. In
table 4 we show the cost associated to each point of the predefined path we have chosen for
the underlying asset; the cost is nil a time 0 and has to be financed for the other periods.

Let us investigate now which is the replicated value of the call option. This is shown in
table 5, where we re-valuate at each point of the predefined path the replicating portfolio as
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1.5234 0.2264
ր ց ր

0 2.6059
ց

0.2264

Table 4: Cost to replicate the collateral account at each point of the predefined underlying
asset’s path.

far as the quantity of underlying asset and the bank account needed to finance its purchase
are concerned. As it can be easily seen, the replicating portfolio is not exactly mimicking
the value of the call, and actually at the expiry the two possible pay-offs (i.e.: 10 when the
call terminates in the money and 0 otherwise) are not matched in both cases.

66.6711 ց ր 14.9362
38.0851 ր 9.9420

ց
4.9362

Table 5: Replica of the call option with the underlying asset and bank account portfolio.

The error in the replica is exactly equal to the cost to finance the collateral account.
Actually, when adding the sum of values from table 4, and we compound them at each
period with the risk-free rate, we get the total result in table 6, that shows that the at
each period, including at the expiry, the call option value is exactly replicated. At the first
period, the total replica is 66.6711 plus the cost of the collateral account 1.5234, for a total
of 65.14774, which is exactly the call value in table 2. At the end of the second period, we
need to compound 1.5234 at the risk-free rate (0.10), and sum it to the cot for the second
period (2.6059). By adding this total cost to the replicated value of the option (9.9420) we
finally get the total replication value of 5.6604, once again the same as in table 2. By the
same token we can derive also the total replication value at the expiry for the two cases
of moneyness.

65.1477 ց 10
5.6604 ր

ց
0.0000

Table 6: Call replica including the cost to finance the collateral account.
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3 Replicating Portfolio in Continuous Time

Now we extend the binomial approach we sketched above in a continuous and more general
setting. Assume the underlying asset follows a dynamics of the type:

dSt = (µt − yt)Stdt+ σtStdZt (9)

The underlying has a continuous yield of yt and a volatility σt.
The contingent claim dynamics is derived via the Ito’s lemma:

dVt = Lµ−yVt + σtSt

∂Vt

∂St

dZt (10)

where we used the operator La· defined as:

La· = ∂·
∂t

+ atSt

∂·
∂St

+
1

2
σ2
tS

2
t

∂2·
∂S2

t

(11)

Besides, we will set also ∆t =
∂Vt

∂St
in what follows. The cash collateral account dynamics

is defined as
dCt = γdVt + ctCtdt (12)

where the first part on the left-hand side is the variation of the collateral dCt = γdVt,
equal to a fraction γ of the variation of the NPV of the contract (the initial value of
the collateral account is equal to the collateral C0 = C = γV0); the second part on the
left-hand side is the amount of interests produced by the collateral during the period dt,
given the collateral rate ct. We denote with rt is the funding/investment rate and The
collateral account can be seen as a bank account (actually, it is a bank account), so that
receiving cash collateral means being short the collateral account (as when one shorts a
bond and receives cash). At the end the collateral account (i.e.: collateral plus interests)
is returned to the transferor (at the same time the final pay-off of the contingent claim is
received by the transferee).

Remark 3.1. It is worth stressing the difference between “collateral” and “collateral ac-
count”. The collateral is posted by the party for whom the contract has a negative value,
to protect the other party against the risk of default. The collateral account is the sum
of the collateral received by the party for whom the contract has positive value, plus the
interests it generates and that the receiving party has to pay to the other one.

We denote with rt is the funding/investment rate. The bank cash account evolution
is deterministic and equal to:

dBt = rtBtdt (13)

Also in this case, as above for the cash collateral account, being short B means receiving
cash.

At time 0, the replication portfolio in a long position in the derivatives V , cash-
collateralized, is set up. It comprises a given quantity of the underlying asset and of
bank account such that their value equals the starting value of the contract and of the
collateral:

V0 − C0 = α0S0 + β0B0 (14)

We have to find a trading strategy {αt, βt}, such that it satisfies the following well-known
conditions:
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1. Self financing condition, that is: no other investment is required in operating the
strategy besides the initial one:

αtSt + βtBt =α0S0 + β0B0

+

∫ t

0

αu(µu − yu)Sudu+

∫ t

0

αuσuSudZu +

∫ t

0

βudBu +

∫ t

0

αuyuSudu

(15)

2. Replicating condition, that is: at any time t the replicating portfolio’s value equals
the value of the contract and of the collateral:

Vt − Ct = αtSt + βtBt (16)

for t ∈ [0, T ].

We can write the evolution of the replicating portfolio as:

αtdSt + βtdBt = αt(µt − yt)Stdt+ αtσtStdZt + βtrtBtdt+ αtytStdt (17)

On the other hand:

dVt − dCt − ctCtdt = Lµ−yVtdt+ σtSt∆udZt − γdVt − ctCtdt (18)

Remark 3.2. Although the evolution of the collateral is equal to a fraction γ of the
variation of the value of the contract Vt, i.e.: dCt = γdVt, the collateral account Ct
generates also an additional cash-flow equal to the the collateral rate ct times the collateral
amount Ct, i.e.: ctCtdt. We added these interests when computing the variation of the
contract value and of the collateral on the left-hand side of (18). We are interested in the
variation of the collateral account, not simply of the collateral, since the strategy needs to
replicate the former and not just the latter.

Equating (17) and (18) and imposing the self-financing and replicating conditions, we
get:

Lµ−yVtdt+ σtSt∆udZt − γdVt − ctCtdt =

αt(µu − yt)Stdt+ αtσtStdZt + βtrtBtdt+ αtytStdt
(19)

We can determine the α and β such that the stochastic part in (19) is cancelled out:

αt = ∆t (20)

βt =
Vt − Ct −∆tSt

Bt

(21)

Substituting in (19):

Lr−yVtdt = rtVtdt+ γdVt − (rt − ct)Ctdt (22)

Let us split (22) in two parts. The first is the standard PDE under the risk neutral
argument:

L(r−y)Vt = rtVt (23)
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The second part is more unusual:

γ
(
LµVtdt+ σuSu∆udZu

)
+ ctCtdt = rtCtdt (24)

and it is the evolution of the collateral account, in the real world measure, equating the
cost of the bank account used to finance it.

Equation (22) has a solution that can be found by means of the Feynman-Kac theorem:

V C
0 = −C0 + EQ

[
e−

∫ T

0
ruduVT +

∫ T

0

e−
∫ u

0
rvdv(ru − cu)Cudu−

∫ T

0

e−
∫ u

0
rvdvγdVu

]
(25)

Considering again the fact that the collateral at expiry will be paid back to the counter-
party who posted it, CT = 0, we have:

EQ

[ ∫ T

0

e−
∫ u

0
rvdvγdVu

]
= EQ

[ ∫ T−

0

e−
∫ u

0
rvdvγdVu − e−

∫ T

0
rvdvγVT

]
= −γV0 = −C0

so that equation (25) can be written as:

V C
0 = EQ

[
e−

∫ T

0
ruduVT

]
+ EQ

[ ∫ T

0

e−
∫ u

0
rvdv(ru − cu)Cudu

]
(26)

Equation (28) states the same result we have derived in a binomial setting above, that is:
a collateralized claim is equal to value of an otherwise identical non-collateralized claim,
plus the present value of the cost incurred to finance the collateral, or the LVA:

V C
0 = V NC

0 + LVA

It is worth mentioning the fact that we still have not introduced any credit risk until
now, so that the LVA cannot be confused with any adjustment due to the risk of default.
On the other hand, it is still possible to derive an arbitrage free price when risk-free rate
and collateral rate are different, something counterintuitive at first sight.

Recalling that Ct = γVt, equation (22) can be equivalently decomposed as:

L(r−y)Vtdt = [rt(1− γ) + ctγ]Vtdt+ γdVt (27)

The solution to (27) applying the Feynman-Kac theorem is:

V C
0 = EQ

[
e−

∫ T

0
[ru(1−γ)+cuγ]duVT

]
− C0 − EQ

[ ∫ T

0

e−
∫ u

0
[ru(1−γ)+cuγ]dvdVu

]
(28)

The second part on right-hand side is nil, since as before:

EQ

[ ∫ T

0

e−
∫ u

0
[ru(1−γ)+cuγ]dvγdVu

]
= EQ

[ ∫ T−

0

e−
∫ u

0
[ru(1−γ)+cuγ]dvγdVu − e−

∫ T

0
[ru(1−γ)+cuγ]dvγVT

]

= −γV0 = −C0

So:

V C
0 = EQ

[
e−

∫ T

0
[ru(1−γ)+cuγ]duVT (S

r−y)

]
(29)
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We have added the dependency of the value of the claim on the underlying price, whose
drift is indicated in the superscript. Thus we have a perfect analogy with the discrete
case we examined above.

When the deal is fully collateralized (i.e.: γ = 100%), the discount rate in Equation
(29) collapses to the collateral rate ct, and this is a a well known result (see, amongst
others, Fujii et al. [5], Mercurio [7] and Piterbarg [11]). We think that equation (28) offers
more insight. Actually, discounting with the collateral rate is a way to use an effective
rate producing the effects of the risk-free discounting and of the LVA. Nevertheless, if
one wishes to disentangle the effects then she should resort to (29). As an example, in a
dealing room the correct evaluation of the LVA allows to correctly allocate the liquidity
costs related to the collateralization on the relevant desks. If a collateral desk exists, the
LVA can be the compensation it receives to manage a given deal, whereas the trading
desk closing the deal will be left with just the risk-free value of the contract that has to
be managed.

4 Pricing with Funding Rate Different from Invest-

ment Rate

Assume that the operator of the replication strategy is a bank. The difference between
the investment and funding rate is due mainly to credit factors (barring the trivial bid/ask
factor and liquidity premiums), so that when considering rates actually paid or received
by the bank, we should model also the default event. Nevertheless this is not necessary
since we are assuming that the pricing is operated from the bank’s perspective.

Actually, the funding rate rF that a bank has to pay, when financing its activity,
should be considered just a cost from its perspective, on the base of the on-going concern
principle. On the other hand, from the lender perspective, the spread over the risk-free
rate paid by the bank, is the remuneration for bearing the risk of default of the borrowing
bank (see Castagna [2] for a detailed discussion on this. For an alternative view, see
Morini and Prampolini [9]).

When the bank sells a bank account, then it will pay the interest rF on the received
funds until the maturity; conversely, when buying a bank account, we assume there is a
risk-free borrower which pays the risk-free rate r. The evolution of the bank account in
(13) becomes:

dBt = r̃tBtdt (30)

where r̃t = rt1{β>0} + rFt 1{β<0} and 1{} is the indicator function equal to 1 when the
condition at the subscript is verified. If the quantity β of the bank account is negative
(i.e.: the bank borrows money) then the bank account grows at the funding rate rFt ; when
the quantity β is positive (i.e.: the bank lends money) than the bank account grows at
the risk-free rate rt. If a risk-free borrower does not exist, so that we actually have to buy
bank accounts issued by other defaultable banks, then we can invest at a rate rB > r, and
the difference between the two rates is the remuneration for the credit risk. The expected
return earned on the investment will be in any case the risk-free rate r. The default of the
counterparty, whom the bank lends money to, will anyway affect the performance of the
replication strategy of the contingent claim, so that the counterparty credit risk should be
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eliminated or mitigated whenever this is possible. We will come back on this issue later
on.

Assuming that the funding rate is the risk-free rate plus a spread sFt , we can write the
rate at which bank account’s interests accrues as:

r̃t = rt + sFt 1{β<0} (31)

Replacing the risk-free rate rt with r̃t in equation (22), one gets:

Lr̃−yVtdt = r̃tVtdt+ γdVt − (r̃t − ct)Ctdt (32)

From (32) we can easily derive the two ways to express the contingent claim’s value at
time 0 equivalent to formulae (28) and (29), respectively as:

V C
0 = EQ

[
e−

∫ T

0
r̃uduVT

]
+ EQ

[ ∫ T

0

e−
∫ u

0
r̃vdv(r̃u − cu)Cudu

]
(33)

and

V C
0 = EQ

[
e−

∫ T

0
[r̃u(1−γ)+cuγ]duVT

]
(34)

Equation (33) offers the decomposition of the collateralized contract value as the sum of
the otherwise identical non-collateralized deal and of the LVA.

To get even more insight and to allow for a further decomposition that can be useful
to allocate revenues and costs within a dealing room, we rewrite equation (32) as:

Lr−yVtdt = rtVtdt+ γdVt − (rt − ct)Ctdt+ sFt 1{β<0}(Vt − Ct −∆tSt)dt (35)

The solution to (35) is:
V C
0 = V NC + LVA+ FVA (36)

where V NC is the price of the non-collateralized contract assuming no funding spread, the
LVA is the liquidity value adjustment originated by the difference between the collateral
and risk-free rate:

LVA = EQ

[ ∫ T

0

e−
∫ u

0
rvdv(ru − cu)Cudu

]
(37)

and finally FVA is the funding value adjustment due to the funding spread and paid to
replicate the contract and the collateral account:

FVA = EQ

[
−

∫ T

0

e−
∫ u

0
rvdvsFu 1{β<0}(Vu − Cu −∆uSu)du

]
(38)

where β has been defined above. The FVA is the correction to the risk-free value of the
non-collateralized contract that has to be (algebraically) added to the LVA correction.
We define it as:

Definition 4.1. The FVA is the discounted value of the spread paid by the bank over the
risk-free interest to finance the net amount of cash needed for the collateral account and
the underlying asset position in the dynamic replication strategy.
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It is interesting to untangle the total FVA in its components: this decomposition is
not essential as far as the pricing is concerned, but it is very useful within a dealing room
to charge the desks involved in the trading (we will dwell more on this later on). We then
isolate a first part of the total FVA due to the funding cost of the premium’s and the
collateral’s replication strategy:

FVAP = EQ

[
−
∫ T

0

e−
∫ u

0
rvdvsFu 1{β<0}(Vu − Cu)du

]
(39)

and a second part referring to the funding cost born to carry the position in the underlying
asset in the replication strategy:

FVAU = EQ

[ ∫ T

0

e−
∫ u

0
rvdvsFu 1{β<0}∆uSudu

]
(40)

Hence the total funding value adjustment is FVA = FVAP + FVAU. Since in both
components the indicator function 1{β<0} appears, the FVA of the single components
takes into account that, at the financial institution’s level, the net funding need is consid-
ered, thus single trading desks enjoy also a funding benefit at an aggregated level. As an
example, consider the FVA for the cost born to fund the underlying asset’s position: the
derivatives desk should pay the funding costs when it has a positive position, but this cost
is paid only if the net bank account’s amount is negative (β < 0). When the underlying
asset’s position is positive but the net amount in the bank account is positive (β > 0),
the derivatives desk will not be charged by any funding cost, although it actually requires
funds to buy the asset.

We can now analyse five different cases:

1. Assume one has to replicate a contingent claim with a constant positive sign NPV
(e.g.: a long European call option) with a constant positive sign ∆t. Since Vt−Ct−
∆St is always negative (implying borrowing), the total amount of the bank account
β is always negative, implying that at any time we have to borrow money in the
replica at the rate rF . The pricing equation (35) reads then:

Lr−yVtdt = rtVtdt+ γdVt − (rt − ct)Ctdt+ sFt (Vt − Ct −∆tSt)dt (41)

Although the decomposition in (36) still applies, the pricing can be performed very
simply by means of an effective discount rate:

V C
0 = EQ

[
e−

∫ T

0
[rFu (1−γ)+cuγ]duVT (S

rF−y)

]
(42)

So we can simply replace the risk-free rate with the funding rate paid by the bank
and perform the same pricing as in the case when lending and borrowing rates are
the equal.

Equation (42) is a very convenient way to compute the price in 0 of the contracts,
but it does not help allocating its components to the different desks of the bank.

2. When the same contingent claim (constant positive NPV and ∆) as in the point
above is sold, the underlying asset has to be sold as well in the replication strategy,
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which implies that β > 0 and that the bank has to invest at the risk-free rate at
any time. The pricing formula will the same as in formula (28) (with reversed signs
since we are selling the contract). In this case the FVA will be nil. An example of
this claim is a short European call option.

3. Assume now that the contingent claim has a constant positive sign NPV, but its
replication implies a negative position in the underlying asset (e.g.: a long European
put option), then we have again that β > 0 at any time. The pricing formula is also
in this case (28), the same as in the case with no funding spread.

4. If the NPV has a constant negative sign and the replica entails a long position in the
underlying (e.g.: short European put option), then the total amount of the bank
account β is always negative, implying that at any time we have to borrow money
in the replica at the rate rF . The pricing formula will be the same as (42) in the
first case above.

5. Finally, if the NPV has a constant positive or negative sign and the ∆ can flip
from one sign to the other, then it is not possible to determine the sign of the
bank account amount β throughout the entire life of the contract. In this case the
pricing formula (35) cannot be reduced to a convenient representation as in the cases
above, and it has to be very likely computed numerically. Examples of contracts
with non-constant sign ∆ are exotic options, such as reverse knock-out.

From the analysis above it is also clear that when the contract is fully collaterlized,
the effective discount rate is just the collateral rate, whereas the drift rate of the asset can
be either the risk-free rate or the funding rate depending on whether the bank account
preserves, respectively, always a positive or a negative sign during until the expiry.

Example 4.1. We here show a simple example of how the ideas illustrated above can be
applied in practice for a European call option on an underlying asset that can be an equity,
an FX spot rate or a commodity. Typically the model used to price options in these cases
is the standard Black&Scholes’ one:

C(S,K, T, σ, r, y, d) = e−rT [FN(d1)−KN(d2)] (43)

where N() is the Normal cumulated distribution function, F = Se(r−y)T is the forward
price and:

d1 =
ln F

K
+ 0.5σ2T

σ
√
T

, d2 = d1 − σ
√
T

Equation (43) valuates a call expiring in T , struck at K, when the underlying spot price
is S.

Assume we want to price the call option with the input data in table 7. Since a
European call option is a contract of the type in point 1 of the list we have shown above,
the decomposition of the total value in the several components can be operated avoiding
the computation of the integral entering in the definition of the LVA and of the FVA.

Actually, the risk-free, with a risk-free rate drift to set the forward price, non collat-
eralized value of the call can immediately be computed as:

V NC = V NC−RF−RD = C(S,K, T, σ, r, y, r)
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S 100 σ 20%
K 100 r 2%
T 1 y 1%
c 2.5% rF 3%

Table 7: Input data for a European Call Option

The total adjustment of a collateralized option, considering funding costs both into the
discounting and into the drift of the asset to set the forward price, is:

TA = V C−FU−FD−V NC−RF−RD = C(S,K, T, σ, rF , y, (rF (1−γ)+cγ))−C(S,K, T, σ, r, y, r)

In the superscripts C/NC stands for collateralized/non collateralized, RF/FU stands for
risk-free/funding rate discounting and RD/FD stands for risk-free/ funding rate drift.

The quantity TA can be decomposed as follows:

TA =V C−FU−FD − V C−FU−RD

+ V C−FU−RD − V C−RF−RD

+ V C−RF−RD − V NC−RF−RD

Now, the LVA is the third line of the equation above, and it can be computed by the
Black&Scholes formula:

LVA = V C−RF−RD − V NC−RF−RD

= C(S,K, T, σ, r, y, (r(1− γ) + cγ))−C(S,K, T, σ, r, y, r)

The total FVA is in the first two lines of the equation above. Namely, the difference
between the collateralized option, discounted with the funding rate and the drift equal to
the funding rate, and non-collateralized option, discounted with the risk-free rate and the
drift equal to the risk-free rare:

FVA = V C−FU−FD − V C−RF−RD

We can decompose the total FVA by recognizing that FVAU (i.e.: the funding value
adjustment due to the underlying asset) is the difference in the first line of TA:

FVAU = V C−FU−FD − V C−FU−RD

= C(S,K, T, σ, rF , y, (rF (1− γ) + cγ))−C(S,K, T, σ, r, y, (rF (1− γ) + cγ))

The funding value adjustment due to the premium and collateral is :

FVAP = V C−FU−RD − V C−RF−RD

= C(S,K, T, σ, r, y, (rF (1− γ) + cγ))−C(S,K, T, σ, r, y, (r(1− γ) + cγ))

In table 8 we show the decomposition of the total option value into the components
examined above, for different percentage γ of collateralization of the contract’s NPV. It is
quite obvious that for the non-collateralized contract (γ = 0%), the LVA is nil. It should
be also noticed that the total values can be computed strightforwardly via formula (42),
clearly obtaining the same result. Nevertheless with this slighlty longer procedure we are
able to exactly disentangle the different cost’s contributions.
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γ
100% 50% 0%

V NC 8.34941 8.34941 8.34941
LVA -0.04164 -0.02085 0.00000
FVA 0.56381 0.52086 0.47792
FVAP

0.00000 -0.04154 -0.08308

FVAU
0.56381 0.56240 0.56099

Total 8.87157 8.84942 8.82732

Table 8: Decomposition of the call option’s value into the risk-free, LVA and FVA

components.

Example 4.2. Assume now we have the same data as in the example 4.1 and that the
European call is no more plain vanilla, but it has a barrier set above the strike level at
135. The option is and Up&Out call and it can be priced in a closed form formula in
a Black&Scholes economy (see Castagna [1] for a thorough discussion of barrier options
and for pricing formulae, with a focus on the FX market).

In this case it is not possible to use the decomposition we have used in the example
4.1 because the ∆ of the Up&Out call can flip from one sign to the other, depending on
the level of the underlying asset. We are in the fifth case of those listed above. In figure 1
we depict the ∆ as a function of the underlying asset’s price, for three times to maturity,
progressively approaching the contract’s expiry: the plots simply show what we have said.
In this case we have to resort to a numerical integration of the formulae (37) and (38).5

We present the decomposition of the price in table 9, only for the case when the contract
if fully collateralized (γ = 100%). This means that the FVA contains only the component
referring to the underlying asset financing. It is quite easy to justify the lower amount
of both the LVA and the FVA with respect to the corresponding European plain vanilla
examined above.

V NC 4.04127
LVA -0.02215
FVA 0.21679

Total 4.23502

Table 9: Decomposition of the value of an Up&Out call option in its non collateralized
risk-free value, the LVA and the FVA

5We have used 45 time steps within the contract’s duration of 1 year, and a 50 points Gauss-Legendre
quadrature scheme for each time step.
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Figure 1: Delta of an Up&Out call option with different times to maturities, as a function
of the underlying asset’s price. The barrier is at 135 and all other data are the same as
in example 4.1.

5 Funding Rate Different from Investment Rate and

Repo Rate

We now introduce the possibility to lend and borrow money (or, alternatively, the under-
lying asset) via a repo transaction. This is actually the way traders finance the buying
of the underlying asset (typically in the stock market), by borrowing money and lending
the asset as a collateral until the expiry of the contract.

A repo transaction can be seen as a collateralized loan, and the rate paid is lower
than the unsecured funding rate of the bank, since in case of default of the borrower,
the asset can be sold to guarantee the (possibly only partial) recovery of the lent sum.
The difference between the repo rate rE and the risk-free rate is due to the fact that
the underlying asset can be worth less than the lent amount when default occurs: so the
volatility of the asset and the probability of default both affect the repo rate.

We assume that the repo rate is the same when either borrowing money or lending
money against the underlying asset (repo and reverse repo). This means that we are
assuming that the two banks involved in the transaction have the same probability of
default with the same recovery rate in the event of default. We will investigate the
replication costs and the pricing formulae for four possible cases, as above.

Repo transaction should be the proper way to finance the buying of the underlying
asset in the replication strategy. On the other hand, if we really want to consider the
actual alternatives that a trader has to invest received sums in the less credit-risky way,
reverse repo seems an effective option is most of cases. So, we go back to the case when
there is no asymmetry between investment (lending) and funding rate, although the risk
free rate is replaced by the repo rate. The amount to be lent/borrowed via the bank
account is now:

βt =
Vt − Ct

Bt

(44)
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whereas the quantity αt = ∆t of underlying asset is repoed/reverse repoed, thus pay-
ing/receiving the interest rEt ∆tSt. Replacing these quantities in equation (22), one gets:

LrE−yVtdt = r̃tVtdt+ γdVt − (r̃t − ct)Ctdt (45)

The solution to (45) is:
V C
0 = V NC + LVA+ FVA (46)

where, as usual, V NC is the price of the non-collateralized contract assuming no fund-
ing spread and repo, the LVA is the liquidity value adjustment due to the collateral
agreement;

LVA = EQ

[ ∫ T

0

e−
∫ u

0
rvdv(ru − cu)Cudu

]

and FVA is the funding value adjustment:

FVA = EQ

[
−

∫ T

0

e−
∫ u

0
rvdv[sFu 1{β<0}(Vu − Cu)− sEt ∆uSu]du

]
(47)

The FVA is in this case split in the funding cost needed to finance the collateral (sFu 1{β<0}(Vu−
Cu)) and the spread of repo rate over the risk-free rate (sEt = rEt −rt) paid on the position
of amount ∆t of the underlying asset.

To better understand how the total FVA is built up, we split formula (47) in two
components: the first one is FVAP, the cost borne to fund the premium and the collateral
and it is the same as in (39). The second part refers to the repo cost to buy or to sell the
underlying asset to replicate the pay-off:

FVAR = EQ

[ ∫ T

0

e−
∫ u

0
rvdvsEt ∆uSudu

]
(48)

Also in this case it is possible to re-write (46) in a more convenient fashion for com-
putational purposes:

V C
0 = EQ

[
e−

∫ T

0
[r̃u(1−γ)+cuγ]duVT (S

rE−y)

]
(49)

Formula (49) applies in the five cases analysed in the previous section: the discount factor
depends on the sign of the bank account needed to fund the collateral account, whereas
the drift of the underlying asset is any case the repo rate rE.

Example 5.1. We revert to the example 4.1 above on the pricing of a European call
option, and we now assume that the bank can buy or sell the underlying asset via repo
transactions. We ascertain how the components of the total value change in this case.
We still use the same inputs as in the table 7, and we add to them the repo rate set at
rE = 2.25%, which is lower than the unsecured funding rate rF = 3%, but higher than the
risk-free rate r = 2% to account for the volatility of the collateral (the underlying asset)
and the possibility of a smaller collateral value on the default of the borrower (the bank).

We can exploit once again the fact that the European option is a type of contract of the
first case we analysed above, and make the same consideration we made in the example
in section 4.1, and we define the LVA as above:

LVA = V C−RF−RD − V NC−RF−RD

= C(S,K, T, σ, r, y, (r(1− γ) + cγ))−C(S,K, T, σ, r, y, r)
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and the two components of the FVA as:

FVAP = V C−FU−RD − V C−RF−RD = 0

(since β > 0 always and the discounting is operated at the risk-free rate) and

FVAR = V C−RF−FD − V C−RF−RD

= C(S,K, T, σ, rE , y, (r(1− γ) + cγ))−C(S,K, T, σ, r, y, (r(1− γ) + cγ))

In table 10 we show the decomposition of the total option value into the different
components, for different levels of percentage of collateralization.

γ
100% 50% 0%

V NC 8.34941 8.34941 8.34941
LVA -0.04164 -0.02085 0.00000
FVA 0.13860 0.13860 0.13895
FVAP

0.00000 0.00000 0.00000

FVAR
0.13860 0.13895 0.13930

Total 8.44636 8.46751 8.48870

Table 10: Decomposition of the call option’s value into the risk-free, LVA and FVA

components when underlying asset is traded via repo contracts.

6 Interest Rate Derivatives

When the pricing comes to interest rate derivatives, we have to consider the credit issue
as a critical one. We have analysed the replication of a contingent contract with repo
transactions, which help virtually eliminating the credit risk, or at least making it negligi-
ble. Unfortunately it is not possible to replicate interest rate derivatives with such a low
level of credit risk, since the replication strategy involves unsecured lending (besides the
borrowing) as a part of the underlying itself. As an example, without credit risk, a FRA
can be replicated by selling/buying a shorter maturity bond and buying/selling a longer
maturity bond. With credit risk this strategy is clearly flawed since the counterparty
whom we lent money to can go defaulted before the expiry of the bond.

This means that in practice basic interest rate derivatives are no more real derivatives,
but primary securities that cannot be replicated by means of other primary securities (e.g.:
bonds). The derivative contract can be made credit-risk free by a collateral agreement,
but we cannot any more set up a strategy to replicate the pay-off and the evolution of the
collateral account, as we have done above for derivatives on different assets. To illustrate
the implications of the impossibility to implement a replications strategy, we analyse two
contracts in what follows, a Forward Rate Agreement (FRA) and an Interest Rate Swap
(IRS).
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6.1 Forward Rate Agreement

Let us introduce the set up to price interest rates derivatives under collateral agreements.6

Consider times t, Ti−1 and Ti, t ≤ Ti−1 < Ti. The time-t forward rate is defined as the
rate to be exchanged at time Ti for the LIBOR rate Li(Ti−1) = L(Ti−1, Ti) fixed at time
Ti−1, in a FRA(t;Ti−1, Ti) contract, so that the contract has zero value at time t.

In the absence of credit risk (i.e.: in a single curve environment), the forward rate can
be determined via a portfolio of long and short zero coupon bonds. Absence of arbitrage
implies also the existence of a single, risk-free, discounting curve. Assume we have the
discount curve denoted by D; we then have:

LD(t;Ti−1, Ti) =
1

Ti − Ti−1

[
PD(t, Ti−1)

PD(t, Ti)
− 1

]
(50)

The FRA fair forward rate can be set according to the definition of the contract:

FRA(T1;T1, T2) =
Ti − Ti−1

1 + Li(Ti−1)(Ti − Ti−1)

[
Li(Ti−1)−K

]
(51)

Assume now we are in a credit-risky economy. Selling and buying bonds do not allow
to replicate the FRA pay-off since it is always possible that the counterparty whom we
lent money to goes defaulted. The forward trading in the market, in this case should be
considered simply as the expected value of the Libor at the fixing time. If we accept the
fact that market quotes refer to trades between counterparties with collateral agreement,
then we can quite safely assume that the expected value are taken under the risk-free bond
numeraire. The pricing formula takes after that one presented above for contracts on other
underlying assets, although in this case it is not derived from a replication argument but
it is an assertion:

FRA(t;Ti−1, Ti) = PD(t, Ti)τiE
Ti

D [Li(Ti−1)−K] + LVAFRA(t;Ti−1,Ti) (52)

that is the expected Libor rate under the Ti−forward measure of the value of the contract
at the expiry Ti−1, plus the LVA. In (52) τi = Ti − Ti−1.

The LVA in this case is the present value of the difference between the risk-free rate
LD
j (t) and the collateral rate Oj(t), fixed in date tj−1, and valid until date tj, applied to

fraction γ of the value of the contract FRA(tj;Ti−1, T2) for all the N days between t and
the forward settlement T1, so that tN = T1:

LVAFRA(t;Ti−1,Ti) =
N∑

j=1

PD(t, tj)E
tj
D

[
τCj [L

D
j (t)−Oj(t)]γFRA(tj;Ti−1, Ti)

]
(53)

where τCj = tj − tj−1 is the difference in year fraction between two rebalancing times
of the collateral, one day in our case. Formula (52), given the definition of the LVA

in (53), is recursive. We assume that the market quotes for FRA’s refers to the case
when LVA is nil. This means that the collateral rate is supposed to be the risk-free

6The set-up and the notation is the same as in Mercurio [7].

21



rate LD(t; tj−1, tj) = O(t; tj−1, tj), for all j, which is not unreasonable since standard
CSA between banks provides for a remuneration of the collateral account at the OIS (or
equivalent for other currencies) rate. The OIS rate can be considered also a virtually
risk-free rate, or embedding anyway a negligible spread for default risk. If this holds true,
then equation (52) reads as:

FRA(t;Ti−1, Ti) = PD(t, Ti)τiE
Ti

D [Li(Ti−1)−K] (54)

so that we retrieve the standard result, as in Mercurio [7], that the FRA fair rate is
the expected value of the Libor at the settlement date of the contract, under the expiry
Ti−forward risk measure:

K = Li(t) = ETi

D [Li(Ti−1)] (55)

We have assumed that the market FRA settles in Ti, but according to market conventions
it actually settles the present value of the pay-off in Ti in Ti−1. The market FRA fair rate
is then different from the “theoretical” rate in (55), since the latter should be corrected
by a convexity adjustment as discussed in Mercurio [8]. The adjustment is nevertheless
quite small (fraction of a basis point) and can be neglected in typical market conditions,
so we will not consider it.

When the collateral agreement provides for a remuneration of the collateral different
from the OIS rate, then we have a LVA 6= 0, and the FRA fair rate has to be valued
recursively. Let Qi(t) = LD

i (t)−Oi(t) be the spread between the daily risk-free rate and
collateral rate and assume it is a stochastic process independent from the value of the
FRA; we can rewrite equation (53) as:

LVAFRA(t;Ti−1,Ti) =
N∑

j=1

PD(t, tj)E
tj
D [τ

C
j Qj(t)]E

tj
D [γFRA(tj;Ti−1, Ti)] (56)

The second expectation in (56) is PD(t, Ti)E
Ti

D [γτi(Li(Ti−1) − K)]/PD(t, tj), so that we
finally get:

LVAFRA(t;Ti−1,Ti) =
N∑

j=1

PD(t, tj)

[
E

tj
D [τ

C
j Qj(t)]

PD(t, Ti)E
Ti

D [γτi(Li(Ti−1)−K)]

PD(t, tj)

]
(57)

In a very similar fashion, we can derive the the FVA for an FRA: let LF (t; ti−1, ti) =
LF
i (t) be the funding rate paid by the bank, with the notation signifying as above. When

financing the collateral, i.e.: when the NPV of the contract is negative to the bank, it has
to pay this rate and receive the collateral, whereas in the opposite situation, i.e.: when
the NPV is positive, then it invests at the risk-free rate the collateral received, paying the
collateral rate. Let U(t; tj−1, tj) = Uj(t) = LF

j (t)- L
D
j (t) be the funding spread over the

risk-free rate, and assume it is not correlated with the NPV of the FRA. The FVA is
then:

FVAFRA(t;Ti−1,Ti) =
N∑

j=1

PD(t, tj)

[
E

tj
D [τ

C
j Uj(t)]

PD(t, Ti)E
Ti

D [γτi(Li(Ti−1)−K)−]

PD(t, tj)

]
(58)

where E[X−] = E[min(X, 0)]. It is easy to check that:

PD(t, Ti)E
Ti

D [γτi(Li(Ti−1)−K)−]

PD(t, tj)
= − [γτiFloorlet(tj;Ti−1, Ti, K)]

PD(t, tj)
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where Floorlet(tj;Ti−1, Ti, K) is the price of a floorlet priced at time tj, expiry in Ti−1,
settlement in Ti, and strike K. If the bank has a short position in the FRA, then the
FVA is

PD(t, Ti)E
Ti

D [γτi(K − Li(Ti−1))
−]

PD(t, tj)
= − [γτiCaplet(tj;Ti−1, Ti, K)]

PD(t, tj)

where Caplet(ti;Ti−1, Ti, K) is the price of a caplet, and the arguments of the function
are the same as for the floorlet.

The total value of the FRA is:

FRA(t;Ti−1, Ti) = PD(t, Ti)τiE
Ti

D [Li(Ti−1)−K] + LVAFRA(t;Ti−1,Ti) + FVAFRA(t;Ti−1,Ti)

(59)
In any case, the fair rate making zero the value of the contract at inception, has to be
computed recursively.

6.2 Interest Rate Swap

Let us now consider an IRS: the fixed leg pays a rate denoted by K on dates T S
c , ..., T

S
d

(τSk = T S
i − T S

i−1). The present value of these payments is obtained by discounting them
with the discount curve D. The floating leg receives the Libor fixings on dates Ta, ..., Tb,
and the present value is also obtained by discounting with the discounting curve D. We
assume that the set of floating rate dates include the set of fixed rate dates. The value at
time t of the IRS is:

IRS(t,K;Ta, ..., Tb, T
S
c , ..., T

S
c ) =

[ b∑

k=a

PD(t, Tk)τkLk(t)−
d∑

j=c

PD(t, Tj)τ
S
j K

]
+LVAIRS(t;Ta,Tb)

(60)
where the LVA is defined as:

LVAIRS(t;Ta,Tb) =
N∑

j=1

PD(t, tj)E
tj
D

[
τCj [L

D
j (t)−Oj(t)]γIRS(tj;Ta, Tb)

]
(61)

where IRS(t;Ta, Tb) = IRS(t,K;Ta, ..., Tb, T
S
c , ..., T

S
c ). The LVA is also in this case the

difference between the risk-free rate and the collateral rate applied to the fraction γ of
the NPV, for all the N days occurring between the valuation date t and the end of the
contract tN = Tb.

Also for swaps, we make the assumption that the market quotes refer to the situation
when the LVA = 0, implying that the risk-free and collateral rates are the same. The
market swap rate is then the level making nil the value of the contract at the inception
Ta:

K = Sa,b(t) =

∑b

k=a P
D(t, Tk)τkLk(t)∑d

j=c P
D(t, Tj)τSj

(62)

When risk-free and collateral rates are different, the LVA can be evaluated similarly
to the case we have examined for the FRA. We then have:

LVAIRS(t;Ta,Tb) =
N∑

j=1

PD(t, tj)E
tj
D [τ

C
j Qj(t)]E

tj
D [γIRS(tj;Ta, Tb)] (63)
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The second expectation in (56) is Ca,b
D (t)Ea,b

D [γ(Sa,b(t) −K)]/PD(t, tj), where Ea,b
D is the

expectation taken under the swap measure, with numeraire equal to the annuity Ca,b
D (t) =∑b

j=a+1 P
D(t, Tj)τ

S
j . So we can finally write:

LVAIRS(t;Ta,Tb) =
N∑

j=1

PD(t, tj)

[
E

tj
D [τ

C
j Qj(t)]

Ca,b
D (t)Ea,b

D [γ(Sa,b(t)−K)]

PD(t, tj)

]
(64)

The FVA can also be defined analogously to the FRA’s case, and using the same
notation as above, we have:

FVAIRS(t;Ta,Tb) =
N∑

j=1

PD(t, tj)

[
E

tj
D [τ

C
j Uj(t)]

Ca,b
D (t)Ea,b

D [γ(Sa,b(t)−K)−]

PD(t, tj)

]
(65)

We can make use of the option on swaps to express the second expectation in (65) as:

Ca,b
D (t)Ea,b

D [γ(Sa,b(t)−K)−]

PD(t, tj)
= − [γRec(tj;Ta, Tb)]

PD(t, tj)

where Rec(t;Ta, Tb) is the price of a receiver swaption priced at time tj, expiry in Ta, on
a swap starting in Ta and maturing in Tb, and strike K. If the bank has a short position
in the IRS (i.e.: it is a fixed rate receiver), then the FVA is

Ca,b
D (t)Ea,b

D [γ(K − Sa,b(t))
−]

PD(t, tj)
= − [γPay(tj;Ta, Tb)]

PD(t, tj)

where Pay(t;Ta, Tb) is the price of a payer swaption, and the arguments of the function
are the same as for the receiver.

Finally, the total value of the IRS is:

IRS(t,K;Ta, ..., Tb, T
S
c , ..., T

S
c ) =

[ b∑

k=a

PD(t, Tk)τkLk(t)−
d∑

j=c

PD(t, Tj)τ
S
j K

]

+ LVAIRS(t;Ta,Tb)

+ FVAIRS(t;Ta,Tb)

(66)

At inception, the swap rate K = Sa,b(t) is the level making nil the value of the contract
and it will be computed recursively from (66).7

Example 6.1. We show an example for an IRS, assuming that the risk-free rate is equal
to the Eonia rate; the Euribor forward fixings are at spread over the Eonia. The yearly
Eonia foward rates, the spreads and the Euribor forward rates are shown in table 11.

We price under a CSA agreement with full collateralization (γ = 100%) a receiver
swap whereby we we pay the Euribor fixing semi-annually (set at the previous payment

7For an analysis of how funding costs should be included in a non collateralized swap, see Castagna
[3]. The analysis therein applies here for the non-collateralized fraction of the contract, i.e.: 100%− γ.
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Time Eonia Fwd Spread Fwd Euribor

0 0.75% 0.65% 1.40%
0.5 0.75% 0.64% 1.39%
1 1.75% 0.64% 2.39%
1.5 2.00% 0.63% 2.63%
2 2.25% 0.63% 2.88%
2.5 2.37% 0.62% 2.99%
3 2.50% 0.61% 3.11%
3.5 2.65% 0.61% 3.26%
4 2.75% 0.60% 3.35%
4.5 2.87% 0.60% 3.47%
5 3.00% 0.59% 3.59%
5.5 3.10% 0.59% 3.69%
6 3.20% 0.58% 3.78%
6.5 3.30% 0.58% 3.88%
7 3.40% 0.57% 3.97%
7.5 3.50% 0.57% 4.07%
8 3.60% 0.56% 4.16%
8.5 3.67% 0.56% 4.23%
9 3.75% 0.55% 4.30%
9.5 3.82% 0.55% 4.37%
10 3.90% 0.54% 4.44%

Table 11: Yearly OIS forward rates and spreads over them for forward Euribor fixings.

date) and we receive the fixed rate annually. With market data considered, the fair rate
can be easily calculated by means of formula (62) and it is equal to 3.3020. We assume
also that we have to pay a funding spread of Uj(t) = U = 15bps over the Eonia curve.
Finally we assume that the collateral is remunerated at the Eonia rate.

Under the assumptions above, the LVA of the swap is nil, as it is clear from its
definition in (64). The FVA is different from zero, since there is a funding spread. To
compute the FVA in (65), we have to compute a portfolio of payer swaptions. To this
end we make a simplifying assumption that the NPV of the swaptions is constant between
two Euribor fixing dates (i.e.: it is constant over periods of six months). The swpations
can be computed by means of the volatilities in table 12 with a standard Black formula.
It is then possible to plot the profile of the NPV’s of the swaptions, which is actually
the (approximated) expected negative exposure (ENE) of the receiver swap; the profile is
plotted in figure 2

The results are in table 13. The FVA is quite small for a swap starting at the money,
accounting for about half a basis point: an almost negligible impact on the fair swap rate
including the funding costs. This rate should be set by a numerical search, and it is the
rate making nil the value of the swap, given by the risk-free component plus the FVA, at
inception.

A more conservative FVA can be based on a potential future exposure (PFE) rather the
expected exposure as we have done above with the ENE. The PFE is computed similarly
to the ENE, but considering a level of the future swap rate set at a given confidence level
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Swaptions

Expiry Tenor Volatility

0.5 9.5 27.95%
1 9 28.00%
1.5 8.5 27.69%
2 8 27.09%
2.5 7.5 26.61%
3 7 26.32%
3.5 6.5 26.16%
4 6 26.02%
4.5 5.5 25.90%
5 5 25.79%
5.5 4.5 25.68%
6 4 25.57%
6.5 3.5 25.46%
7 3 25.37%
7.5 2.5 25.28%
8 2 25.22%
8.5 1.5 25.21%
9 1 25.34%
9.5 0.5 25.50%
10 0

Table 12: Implied volatilities for the portfolio of swpations used to replicated the ENE

of the receiver swap.

ENE
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Figure 2: ENE of the receiver swap

26



FVA -0.0512%
Fair Swap rate 3.3020%
Swap Rate including FVA 3.3079%
Difference 0.0059%

Table 13: Fair swap rate, FVA and FVA-adjusted fair swap rate.

(80.0000)

(70.0000)

(60.0000)

(50.0000)

(40.0000)

(30.0000)

(20.0000)

(10.0000)

-

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5

PFE

ENE

Figure 3: PFE of the receiver swap

instead of the forward level. We choose 99% as for the confidence level.8 The PFE is
plotted in figure 3. Results are shown in table 14. In this case the FVA is heftier as a
percentage of the notional and accounts for about 7 basis points when included in the fair
rate.

FVA - 0.6265%
Fair Swap rate 3.3020%
Swap Rate + Coll. Fund 3.3728%
Difference 0.0708%

Table 14: Fair swap rate, FVA and FVA-adjusted fair swap rate using PFE.

The FVA is rather small when the swap starts and it is at-the-money. It can become
bigger and bigger as the NPV of the swaps evolves and becomes more negative, or it can
become completely negligible as the NPV increases.

8For a confidence level cl, to determine the corresponding swap rate value at time T we used the

equation Sa,b(T ) = Sa,b(t) exp[−σ2

2
(T − t) + σ

√
T − tα], where α is the point of the Normal standard

distribution returning a probability cl. In the example, a cl = 99% implies that α ≈ 2.326.

27



7 Organization of the Dealing Room

In the daily manufacturing of derivative contracts by market-makers, positions are typi-
cally hedged so that an offsetting pay-off is synthetically replicated. This happens on an
aggregated portfolio level, thus allowing for a natural compensation of exposures origi-
nated by the dealing activity.

If the relevant desks operate the replication strategy considering the formula encom-
passing, for example, the LVA (or equivalently, using an effective discount rate accounting
for the collateral rate), the final pay-off attained is not equal to the contract’s pay-off, as
it is manifest from example 2.1. This difference is due to the LVA and should be assigned
to a Collateral desk, if it exists in the dealing room, to compensate the costs it bears (or
the gains it earns) in managing the collateral account. As a consequence the Derivatives
desk should try and replicate only the risk-free component of the contract, disregarding
the LVA and leaving it to the Collateral desk. When trading the contract, the risk-free
component of the premium is assigned to the Derivatives desk, while the LVA is yielded
to the Collateral desk.

By the same token, the FVA adjustment should be assigned to the Treasury desk,
and to the Repo desk for the repo component if it is present. The FVA is the premium
that the Derivative desk pays to (or receives from) the other desks involved in the deal-
ing room activity, to be granted an execution of the dynamic replication in a virtually
risk-free environment where no collateral and funding effects are operating. In this way,
the Derivative desk’s performance is gauged on the proper basis, without including con-
tributions others than the correct hedging of the contract’s pay-off and the margin that
the desk is able to create and to preserve.

On the other hand, the Collateral desk is remunerated (or is charged) with the LVA

to run its specific activity of management of collateral cash-flows, on which it receives or
pays the collateral rate, and it specularly pays or receives the risk-free rate by investing
or funding them.

The Treasury desk lends money to and borrows money from the other desks at the
risk-free rate. In the money market the Treasury desk pays the funding rate of the bank
and it may invest in risk-free assets receiving the risk-free rate. For this activity it is paid
the FVA.

The Repo desk buys and sells the underlying asset’s quantity needed in the dynamic
replica. The asset is sold to or bought from the Derivative desk as if it were financed at
the risk-free rate. The repo component of the FVA is attributed to the Repo desk to
account for the difference between the repo rate and the risk-free rate.

Figure 4 shows the decomposition of the total premium in the different components
and their attribution to the relevant desks.

In table 15 we show the amount of cash and of underlying asset held by each desk in
the replication strategy process. Table 16 shows the same when the underlying asset is
bought or sold via repo transactions, so that the Repo desk is involved as well.

As it is quite easy to understand, this has profound implications for the organization of
a delaing room. In fact, since recently, desks such as Treasury and Repo, where strongly
specialized on linear contracts (deposits, FRAs, repo and reverse repo and so on) and
only marginally their skills involved the trading and the risk management of non-linear
derivatives contracts, such as options. Nowadays, the importance of funding costs forces
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Figure 4: Attribution of the components of a derivative contract value to the relevant
desks of a dealing room.

these desks to enlarge their skills so as to encompass also the non-linear contracts’ risk
management, although very likely at a lower level with respect to the specific Derivative
desks. The same logic applies also to the Collateral desk, which should be considered not
just a cash-flow manager originating from CSA agreements.

This organization can be achieved in two ways, either by training money market
and repo traders or by creating Treasury, Repo and Collateral desks with very diffuse
competences, gathering traders with a money market and a derivative market making
experience. The second option is in our view the easier, quicker and more effective to
adopt.

Und’g Asset Risk-Free Bond Bank Bond Collateral Acc.

Derivative Desk ∂V NC

∂S
0 0 0

Collateral Desk ∂LVA

∂S
0 0 C

Treasury Desk ∂FVA

∂S
(V − C −∆S)1β>0 (V − C −∆S)1β<0 0

Total Bank ∂V C

∂S
(V − C −∆S)1β>0 (V − C −∆S)1β<0 C

Table 15: Amount of underlying asset, of risk-free bonds and of bank’s own bonds held
by each desk to dynamically replicate the derivative contract.
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Und’g Asset Risk-Free Bond Bank Bond Collateral Acc. Repo

Derivative Desk ∂V NC

∂S
0 0 0

Collateral Desk ∂LVA

∂S
0 0 C

Treasury Desk ∂FVA
P

∂S
(V − C)1β>0 (V − C)1β<0 0

Repo Desk ∂FVA
R

∂S
0 −∆S

Total Bank ∂V C

∂S
(V − C)1β>0 (V − C)1β<0 C −∆S

Table 16: Amount of underlying asset, of risk-free bonds and of bank’s own bonds held
by each desk to dynamically replicate the derivative contract.
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