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Abstract

Our goal is to provide a simple, intuitive and model-free motivation for the
importance of volatility-of-volatility in pricing certain kinds of exotic and
structured products.
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1 Introduction

Itis intuitively clear that for exotic products which are strongly dependent
on the dynamics of the volatility surface proper modeling of the volatility-
of-olatility is critical. Several authors, including Schoutens et al. (2004),
Gatheral (2006) and Bergomi (2005, 2008), have shown that the same exotic
product can have significantly different valuations under different stochas-
tic volatility models.

In this short article, we want to illustrate the importance of the volatil-
ity-of-volatility without referring to any of the standard models from the
literature. We compare the pricing of a couple of fundamental payoffs with
and without volatility-of-volatility.

2 A model-free motivation

Let us begin by recalling the important payoffspanning formula, first
observed in Breeden, Litzenberger (1978). Any twice differentiable function
H:(0, ) = R satisfies, for any x> 0:
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This can be generalized to less smooth payoff functions H in scveral ways.
For example, if H is twice differentiable on (0, «)\{x }, continuous at x,
with left and right first derivatives 24 (x ), # (x,), the spanning formula
becomes o *

64

OH~ oHt
H(x) = H(xo) — W(xo) - (xo = X)4 + W(Xo) (X = Xo)+

o §2Ef ~ 9l
+ —(K)- (K—x dK+/ —(K) - (x = K)+dK 2
[ FFmw - [CERm- KA @)
More generally, the spanning formula can be extended to convex H using
generalized derivatives. For our purposes, in this article, statements (1) and
(2)will suffice.

In what follows, we fix two future dates 0 <T, <T,. Suppose we want to
value a contract whose payoffat time T, is
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where we have denoted by S the price of some underlying asset. We first
consider the value of this contract at the future time T,. From the standpoint
of time T,, this payoffcan be spanned into a portfolio of vanilla options.
Specifically, if we take H(x)=r7 iT log?(x/S, ) and use
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an application of the spanning formula (1) gives
1 5 [ St. Sy 2 K
—101<—2):f ,7<1—10 (—))-K—x dK
L-1 " \5) ) ©m-n) (5 )) 9
o 2 K
+ ————(1-log —>>-x—K dK
/s Kl-(h—ﬂ)( (51'1 W

iy

Assuming European Put and Call options, of all strikes K> 0, are tradeable in
the market, we obtain that the value of the contract at time T, is given by
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where we assume the market option prices P(S,,_‘, K, T,-T,)andC(S,.K,T,-T,)
- 1

are such that the two integrals converge. Making the change of variable

K=S§ e and using the Black-Scholes pricing function we can write

P(St,, K, Ty — T1) = Spy - P5S(1,%; 6 (x), Ty — T4)
C(Sr,, K, Ty — Tq) = Sp, - C(1,%; 6(x), Ty — Ty)

where we denoted by & (x) the Black-Scholes implied volatility for money-
nessx= SL We finally obtain the value, at time T, as
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Note that, for our contract, its future value at time T, depends only on the
volatility-by-moneyness curve (i.e. the smile) & (x) (of maturity AT=T,-T)
that will prevail in the market at time T,. Of course, at present, we do not
know what AT-smile will prevail in the market at time T,. Therefore, the
valuation of this product will depend entirely on the future smile scenarios
assumed possible for time T,.

Today’s AT-smile, which is observable in the market, will be denoted by
7, (x).1fwe make the assumption that the future AT-smile, which prevails
in the market at time T , will be identical to today’s siile (that is the case,
for example, in any pure Levy model), we obtain the present value of the
contract as

M Vi (Go(v) @
where we have used today’s AT-smile &, (x) in formula (3).

Assume now that we recognize the uncertainty in the future smile and
consider three possible scenarios: the smile moves up to & (x), stays the
same at &, (x) or moves down to & (x) -with probabilities p , p, and p, respec-
tively. The value of the contract is now computed as

e pu VA (6ul) + po - VA, (50(x) + pa -V (6alx)) | (5)

Figure 1: Comparison of two 3m-smile behaviors: (Left) the future 3m-smile assumed identical to today’s 3m smile, (Right) the future 3m-smile assumed to
take on 3 possible realizations (shifted up by 10 volatility points, remains the same and shifted down by 10 volatility points) with equal probabilities 1/3.
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An interesting question is how the valuation without volatility-of-volatility

1 (4) compares to the valuation with volatility-of-volatility in (5). We next
consider a simple numerical example. The left panel of Figure (1) shows
the three-months, AT=0.25, S&P500 smile from July 31 2009; assume this
is today’s observed smile, denoted above by &, (x). With volatility-of-volatil-
ity, we assume three possible smile shifts: up by 10 volatility points (&, (x) =
G, (x)+0.1), constant and down 10 volatility points (G, (x) = 6, (x) - 0.1) each
with equal probabﬂiry%, Remaining parameters are taken T, =0.25,T,=T, +
AT=0.5, interest rate r=0.4% and dividend yield 8 = 1.9%. We obtain the
(undiscounted) contract value, without vol-of-vol, at 0.0863 and the value,
with vol-of-vol, at % (0.1727 +0.0863 4+ 0.0313) = 0.0968, for a relative differ-
ence of approximately 12.17%. We emphasize that, in both cases, the expected
smile is the same; note that%-(a‘u (x)+ &, (x)+ &, (x) = G, (x). Therefore, the sig-
nificant valuation difference stems entirely from the volatility-of-volatility.
We conclude that, a model which does not properly reflect the stochasticity
of the future smile can severely misprice this product.

Let us now consider the valuation of a slightly more complicated con-

tract, whose payoffat time T, is given by
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and which resembles (albeit remotely) an option on realized variance with
volatility strike g, > 0. As before, we begin by determining the value of the
contract at time T,. This payoff can be decomposed as
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The function H,(x) is twice differentiable on (0, )\{ST e~ kVT2=Ti } with left
and right derivatives at Sy, e~kv12=T1 given by
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Therefore, by applying to H (x) the statement (2) of the spanning formula, we
obtain
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After proceeding analogously with the function H,(x), we finally obtain that
the value of the contract at the future time T, will be given by
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As before, making the change of variable K= x-S, and using the Black-
Scholes implied volatility-by-moneyness smile & ( ) prevailing in the market
attime T, we obtain
VH 20‘}(
0T - Treo/m Ty
2ok BS (1 okTo=TT. ~ (sox/To=TT
—_— g 1, K 2 1: (’TK 2 1),’1" _T)
= AU UG 20

e~k VT2-Ty
./
0

o
2
— (1-1 SC(1,%; 6(x), Ty — Ty)dx.
+[”K — Xz(Tz—Tl)( og(x)) - C(1,x; 6(x), T — T1)dx

(1, e BT 5 (BT T, - )

(1 —log(x)) - PPS(1,%; 6 (x), To — Ty)dx

XHI, = Th)

Again, we notice that the value of the contract at time T, depends only on the
AT-smile which will prevail in the market at time T ; in particular, note that
the value does not depend on the future stock price S, . Similar to our earlier
comparison, we consider the two smile behaviors deplcted in Figure (1): (I)
the AT-smile remains identical to today’s smile and (II) the smile can shift
up/down by 10 volatility points around today’s smile. The two valuations are
then given by formulas (4) and (5) with V; as above. Using o =0.0968 (the
value of the previous contract), we obtain the (undiscounted) price, with-
outvol-of-vol, at 0.044 and, with vol-of-vol, at% (0.1161+0.044 + 0.0091) =
0.0564 — for a relative difference of approximately 28.18 %! As before, the
expected smile is the same in both cases and, therefore, the pricing differ-
ence comes entirely from the volatility-ofvolatility.
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Both contracts considered so far had a substantially higher value with
vol-of-vol than without vol-of-vol. This is explained by their positive convex-
ity in volatility. Specifically, in our setting, the value V‘,." (J(x)) was convex
in the level of the smile & (x) and thus the average computed in equation (5)
across the three possible smiles is larger than the value computed with the
expected smile in equation (4). The importance of vol-of-vol is greater, the
more volatility convexity a product has. In practice, this sensitivity is usually
called Volga which, in turn, is just short-hand for Volatility Gamma.

As expected, different products can have vastly different Volgas. As
another example, let us consider a contract whose payoffat time T, is

St,
(&)
Sh +
i.e. a forward-started at-the-money call. It it straightforward to see that the
value, at time T , of this contract is C®(1, 1, (1), T,~ T,), where &(1) is the at-
the-money implied Black-Scholes volatility of maturity AT prevailing in the

market at time T,. Proceeding as before, we compare the value withoutvol-
ofvol C¥(1, 1, &n (1), 0.25)=4.782% and the value with vol-of-vol

1
s (c“5(1,1,&,((1),o_25) 1+ (1, 1,60(1),0.25) + c“5(1,1,&,1(1),o.25))
1
=3 (6.765% 4 4.782% + 2.797%) — 4.781%

and observe that the two valuations are essentially identical. This is
explained by the fact that at-the-money options are almost linear in volatility
i.e. have a Volga close to zero'. Figure (2) shows the Volga of European vanilla
options across strikes. Indeed, we notice that ATM options have little Volga
and that Volga peaks in a region OTM before dying off for far-OTM options. If
we consider an OTM forward-started call with payoff

S
(i 1. 25)
Sty +

by repeating the calculations above, we obtain a price without vol-ofvol of
about 2.23 bps whereas the price with vol-of-vol is about 12.95 bps. Unlike
the ATM case, vol-of-vol now has a substantial impact on valuation.

Figure 2: Volatility Gamma (Volga) of European vanilla options as a function
of strike, for a Black-Scholes volatility of 25% and maturity 3-months.
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3 Conclusion

All the elementary payoffs that we have been considering in this short
account appear, either explicitly or imnplicitly, in many types of exotic
and structured products. Among these, we mention variance derivatives
and the different variations of locally/globally, floored/capped, arithme-
tic/geometric cliquets. As noted in Eberlein, Madan (2009), the market
for such products has been on an exponential growth trend. Therefore,
for dealers pricing these products proper modeling of the volatility-
of-volatility is of major importance. Bergomi (2005, 2008) proposes a
forward-started modeling approach which allows direct control of the
future smiles; a version which includes jumps is also given in Drimus
(2010). In addition to pricing, the monitoring and risk-management of
the Volatility Gamma (or Volga) becomes critical for an exotics book, as
it drives the profit & loss of the daily rebalancing of the Vega. A further
discussion of the Volga and Vanna?, in a stochastic volatility model, can
be found in Drimus (2011).

ENDNOTES

1. We remark that it can, in fact, be slightly negative depending on the sign of (r— §)*- %4.
2. The change in Delta w.r.t. a change in volatility o
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