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Abstract

This document is analysing two famous stochastic volatily models, namely

SABR and Heston. It introduces the problems of the Black Scholes model,

the two stochastic models and in a final step calibrates volatilty smiles/-

surfaces for given FX option data.
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1 Introduction

According to the Black-Scholes model, we should expect options that expire

on the same date to have the same implied volatility regardless of the strikes.

Thus, Black erroneously assumed that the volatility of the underlying is con-

stant. However, implied volatilities vary among the different strike prices. This

discrepancy is known as the volatility skew or smile. In general, at-the-money

options tend to have lower volatilities that in- or out-of-the-money options, see

figure 1.

For estimating and fitting such volatility smiles, in terms to accuaratly price op-

tions, several frameworks have been introduced. Merton [10] suggested to make

the volatility a deterministic function of time. This would indeed explain the

different volatility for different tenors, but would not explain the smile effect for

different strikes. Other local volatility models introduced by Dupire [4], or the

one from Derman and Kani [3], including a state dependent volatility coefficient

yields still a complete market model, but it cannot explain the persistent smile

shape which does not vanish over time with longer maturities.

Thus the next step would be to allow the volatility to move stochastically over

time, where we will chose models to fit a certain market implied volatility sur-

face. This processes were pioneered by Hull and White [8], Heston [7] and later

by Patrick Hagan through the widely used SABR model [6].
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2 Black’s model with implied volatilities

The implied volatility of a european option in the Black Scholes framework is an

alternative of quoting the options price, as every other parameter are observable

in the market. If the market price of the option is quoted one find σimp that

the Black Scholes option model price CBS equals the option’s market price.

CBS(S,K, σimp, rd, rf , t, T ) = C∗ (1)

As the option price is monotonically increasing in the volatility it can be uniquely

determined. However, as the BSM formula cannot be solved for the volatility

analytically, a numerical algorithm has to optimise this approach.

For our examples we will analyse the FX option implied volatility surface, as

currencies tend to provide the so called volatility smile in general. Therefore we

need also to introduce the differences to the normal Black Scholes framework.

2.1 FX Black Scholes Framework

For the FX smile we will consider a model for the FX spot rates to be strictly

positive and evolve stochastically over time. In our model framework we will

adapt the Black Scholes model [1] with the model of Garman and Kohlhagen

[5] which is also based onto Black Scholes as an application to foreign currency

options. The following analysis is based on risk neutral valuation, which means

that a risk free portfolio will always yield the risk free interest rate in the re-

spective currency. Otherwise there would be an arbitrage opportunity leading

to a risk free profit.

The important point of risk neutral valuation is, that the underlying asset itself

is a risky investment and therefore also derivatives based on it are risky too.

However, it is possible to costruct an instantaneously risk free portfolio consist-

ing of the two securities. The proportions of the two securities however, are not

static, but need constantly be adapted over time. This process is thus often

referred to as dynamic hedging.

2.2 FX Implied Volatility Smile

Perhaps due to that American options are almost not traded in FX markets,

the market uses the Black Scholes formula for price quotation. These quotes

are in Black Scholes implied volatilities rather than the prices directly. What is

also a peculiarity of the FX market is that quotes are provided at a fixed Black
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Scholes delta not at fixed strike levels as it is usual for options in other markets.

In particular the options are quoted implicitly for five different levels of delta

for different tenor points. These standard moneyness levels are at the money

level, 25 delta out of the money level and 25 delta in the money level (75 delta)

and the same for 10 delta.

FX Volatility Smile
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Figure 1: FX Smile including the three point market convention quotation

Since out of the money levels are liquid moneyness levels in the options market,

market quotes these levels as 25 delta call and 25 delta put. If a trader has

the right model, he can build the whole volatility smile for any time to expiry

by using the three points in the volatility surface. The additional two points of

10 delta options yields a better calibration as far out of the money options can

have even higher than extrapolated implied volatility. In the options market 25

delta call and 25 delta put points are not quoted as volatility. They are quoted

according to their positions to at the money volatilty level. These parameters

are 25 delta butterfly and 25 delta risk reversal.

Risk Reversal:

Risk reversal is the difference between the volatility of the call price and the

put price with the same moneyness levels. 25 delta risk reversal is the difference

between the volatility of 25 delta out of the money Call and 25 delta out of the

money Put.
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RR25 = σ25C − σ25P

Butterfly:

Butterfly is the difference between the avarage volatility of the call price and put

price with the same moneyness level and at the money volatility level. In other

words for example for 25 delta level, butterfly defines how far the average volatil-

ity of 25 delta call and 25 delta put is away from the at the money volatiltiy level.

BF25 = (σ25C + σ25P )/2− σATM

A real world example shall motivate the necessity to apply option pricing mod-

els that are richer than the classical model of Black and Scholes (1973, [1]). It

shows that the Black-Scholes implied volatilities for EUR/JPY FX options for

different deltas and maturities.

Figure 2: Bloomberg market data for the USDJPY implied volatility surface

The volatility surface of this dataset then looks the following
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USDJPY FX Option Volatility Smile
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Figure 3: USDJPY implied volatility surface

3 Stochastic volatility models

3.1 The Heston model

A well established model to price equity options including a volatility smile or

skew in practice is the Heston Model. Here the underlying follows a diffusion

stochastic process, like in the Black Scholes model, but the process’ stochastic

variance ν follows a Cox Ingersoll Ross (CIR) process.

dSt = µStdt+
√
νtStdW

S
t

dνt = κ(θ − νt)dt+ σ
√
νtdW

ν
t

dWS
t dW

ν
t = ρdt

In this model the positive volatility of the underlyings volatility σ generates a

smile, and a nonzero correlation ρ generates a skew of the volatility curve with

slope of the same sign.

The parameters in this model are:

� µ the drift of the underlying process

� κ the speed of mean reversion for the variance

� θ the long term mean level for the variance
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� σ the volatility of the variance

� ν0 the initial variance at t = 0

� ρ the correlation between the two Brownian motions

To derive the semianalytic solution for the FX Option we will first begin with

the classical Heston model for equity options and then show the extension to

the two currency world model. We begin with a portfolio consisting of one asset

more than in the Black Scholes replication approach, as we have also one more

Brownian motion driving the underlying’s volatility. Thus we have a portfolio

consisting of one option V (S, ν, t) a portion of the underlying ∆St and a third

derivative to hedge the volatility φU(S, ν, t). The portfolio has then the value

Πt = V (S, ν, t) + ∆St + φU(S, ν, t).

The next assumption we make is that the portfolio is selffinancing which brings

us to the following equation which describes the change in value of the portfolio:

dΠ = dV + ∆dS + φdU

For the two Options U and V we apply the Ito-formula to expand dU(S, ν, t):

dU = Utdt+ USdS + Uνdν +
1

2
USS(dS)2 + USν(dSdν) +

1

2
Uνν(dν)2

With the quadratic variation and covariation terms expanded we get

(dS)2 = d 〈S〉 = νS2d
〈
WS

〉
= νS2dt,

(dSdν) = d 〈S, ν〉 = νSσd
〈
WS ,W ν

〉
= νSσρdt, and

(dν)2 = d 〈ν〉 = σ2νd 〈W ν〉 = σ2νdt.

The other terms including d 〈t〉 , d 〈t,W ν〉 , d
〈
t,WS

〉
are left out, as the quadratic

variation of a finite variation term is always zero and thus the terms vanish. Thus

dU = Utdt+ USdS + Uνdν +
1

2
USSνSdt+ USννSσρdt+

1

2
Uννσ

2νdt

=

[
Ut +

1

2
USSνS + USννSσρ+

1

2
Uννσ

2ν

]
︸ ︷︷ ︸

=:AU

dt+ USdS + Uνdν

We analogously define the term AU for the derivative V as AV . We then get

the two siplified equations for the developments of the two derivatives as

dU = AUdt+ USdS + Uνdν

dV = AV dt+ VSdS + Vνdν
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Thus the portfolio evolution is described by the following PDE

dΠ =
(
φAU +AV

)
dt+ (VS + φUS + ∆)︸ ︷︷ ︸

!
=0

dS + (Vν + φUν)︸ ︷︷ ︸
!
=0

dν

including a constant hedge by adapting the positions φ and ∆ like in the BSM

model that the stochastic terms dS and dν vanish. We herewith get a unique

solution for the two positions with:

φ = −Vν
Uν

∆ = −VS − φUS = −VS +
VνUS
Uν

We further know as we have introduced before in our risk neutral valuation

assumptions, that under the risk neutral pricing measure the expected portfolio

return must equal the risk free interest rate r.

dΠ = rΠdt

= r(V + ∆S + φU)dt

Thus changes in the riskless protfolio are described by

dΠ =
(
φAU +AV

)
dt = r(V + ∆S + φU)dt

⇔ φAU +AV = r(V + ∆S + φU)

If we now plug in the solution for ∆ and φ derived above, we get

−Vν
Uν
AU +AV = rV − rS

(
VS +

VνUS
Uν

)
− r Vν

Uν
U

−VνAU +AV Uν = rV Uν − rSVSUν + rSVνUS − rVνU
AV − rV + rSVS

Vν
=

AU − rU + rSUS
Uν

So both sides only dependend on the respective derivative U or V , which we

according to Heston assume to be representable by a deterministic function

f(t, ν, S)

f(t, ν, S) = −κ(θ − νt) + λ(t, ν, S)

The term λ(t, ν, S) is called the market price of volatility risk. Heston assumed

it to be linear in the instantaneous variance νt, i.e. λ(t, ν, S) = λ0νt, in order

to retain the form of the equation under the transformation from the statistical

measure to the risk-neutral measure.
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Resubstituting then yields

AU − rU + rSUS
Uν

= −κ(θ − νt) + λ(t, ν, S)

Ut +
1

2
USSνS

2 + USννSσρ+
1

2
Uννσ

2ν − rU + rSUS = −
[
κ(θ − νt) + λ(t, ν, S)

]
Uν

We now have derived exactly the same equation as Heston in his paper.

3.1.1 Heston Option Price

To derive the price of a option we begin by stating a general risk neutral pricing

approach where we assume the price to be the discounted expected future payoff

under the pricing measure. As we know the payoff of a European plain vanilla

call option to be

CT = (ST −K)+

we can generally write the price of the option to be at any time point t ∈ [0, T ]:

Ct = e−r(T−t)E
[
(ST −K)+

∣∣Ft]
= e−r(T−t)E

[
(ST −K)1(ST>K)

∣∣Ft]
= e−r(T−t)E

[
ST1(ST>K)

∣∣Ft]︸ ︷︷ ︸
=:(∗)

− e−r(T−t)KE
[
1(ST>K)

∣∣Ft]︸ ︷︷ ︸
=:(∗∗)

With constant interest rates the stochastic discount factor using the bank ac-

count Bt then becomes 1/Bt = e−
∫ t
0
rsds = e−rt. To be able to calculate the

probabilities above in the first term, we now need to perform a Radon-Nikodym

change of measure.

Zt =
dQ
dP
∣∣Ft =

St
Bt

BT
ST

Thus the first term (∗) gets

(∗) = e−r(T−t)EP [ST1(ST>K)

∣∣Ft]
=

Bt
BT

EP [ST1(ST>K)

∣∣Ft]
=

Bt
BT

EQ [ZtST1(ST>K)

∣∣Ft]
=

Bt
BT

EQ
[
St
Bt

BT
ST

ST1(ST>K)

∣∣∣∣Ft]
= EQ [St1(ST>K)

∣∣Ft]
= StEQ [1(ST>K)

∣∣Ft]
= StQ (ST > K|Ft)

= StP1(St, νt, τ)
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The second term can be calculated analogously even without the change of

measure.

(∗∗) = e−r(T−t)KE
[
1(ST>K)

∣∣Ft]
= e−r(T−t)KP (ST > K|Ft)

= e−r(T−t)KP2(St, νt, τ)

Thus we get a pricing formula

Ct = StP1(St, νt, τ)− e−r(T−t)KP2(St, νt, τ) (2)

which is comparable to the Black Scholes equation, however the two probabilities

are different as we have stochastic volatility and thus a different distribution as

the normally distributed returns in the Black Scholes world. So what we now

need to determine is the probability distribution of S under the two measures.

P (ST > K) = P (lnST > lnK)

= 1− P (lnST ≤ lnK)

= 1− FlnS(K)

For the second term P2 the evolution is under the real probability measure P
whereas the dynamics of P1 are under the new measure Q which we also need

to determine the new distribution. To get a nicer form of the PDE we then

perform a change of variable X := lnS, which means we also need to adapt our

PDE from above due to changes of the derivatives with respect to S:

US = UX
1

S

USS = UXX
1

S2
− UX

1

S2

USν = UXν
1

S

If we plug this in our PDE the form gets much nicer as due to the substitution

of the variables all the S terms cancel and we get the Heston PDE for the log

price X = lnS.

1

2
νS2USS + ρσνSUSν +

1

2
σ2νUνν + rSUS +

[
κ(θ − νt)− λ0νt

]
Uν − rU + Ut = 0

1

2
νS2

(
UXX

1

S2
− UX

1

S2

)
+ ρσνSUXν

1

S
+

1

2
σ2νUνν +

+ rSUX
1

S
+
[
κ(θ − νt)− λ0νt

]
Uν − rU + Ut = 0

1

2
νUXX + ρσνUXν +

1

2
σ2νUνν +

(
r − 1

2
ν

)
UX +

[
κ(θ − νt)− λ0νt

]
Uν − rU + Ut = 0
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3.1.2 Characteristic Functions

The next step to finally reach an option price formula is to get the two proba-

bilities in the pricing formulas, which is being done by using the characterisitc

functions. As we face two different probability measures we also need to find

two characteristic functions of the two probabilities P1 and P2:

ϕ1(u) := ϕQ
X(u|St, νt, τ) = EQ [eiuX ∣∣Ft]

ϕ2(u) := ϕP
X(u|St, νt, τ) = EP [eiuX ∣∣Ft]

Heston assumed the form of the characteristic functions to be

ϕi(u) = eCi(τ,u)+Di(τ,u)ν+iux (3)

which we of course apply also for our approach. To get now the probabilities and

their cumulative distribution function needed, we apply the Fourier Inversion

Formula on the characteristic function

FX(x)− FX(0) = lim
T→∞

1

2π

∫ T

−T

eiux − 1

−iu
ϕX(u)du

and apply the solution of Gil-Pelaez to get the nicer real valued solution of the

transformed characteristic function:

P(X > x) = 1− FX(x) =
1

2
+

1

π

∫ ∞
0

<
[
e−iux

iu
ϕX(u)

]
du

which is the seeked solution for P1 and P2

Pj =
1

2
+

1

π

∫ ∞
0

<
[
e−iux

iu
ϕjX(u)

]
du (4)

Note that the function Pj is a cumulative distribution function (in the variable

x = lnK) of the log-spot price. after time τ := T − t starting at X = lnSt for

some drift µ.

P2 = P (lnST > lnK|Ft)

The same applies for P1 under the risk neutral measure Q. However, it only

does depend on the last value of St and vt and is thus Markov which is quite

useful as a property. To find now the two characteristic functions and their

factors which generate them, we make use of the pricing formula (2), where we

determine the derivatives with respect to t,X and ν and plug it into the PDE

12



of the log price.

∂C

∂t
= Ct = eXP 1

t −Kre−r(T−t)P 2 −Ke−r(T−t)P 2
t

= eXP 1
t −Ke−r(T−t)

(
rP 2 + P 2

t

)
∂C

∂X
= CX = eXP 1 + eXP 1

X − e−r(T−t)KP 2
X

= eX
(
P 1 + P 1

X

)
−Ke−r(T−t)P 2

X

CXX = eXP 1
X + eXP 1 + eXP 1

X + eXP 1
XX − e−r(T−t)KP 2

XX

= eX
(
P 1 + 2P 1

X + P 1
XX

)
− e−r(T−t)KP 2

XX

CXν = eXP 1
ν + eXP 1

Xν − e−r(T−t)KP 2
Xν

= eX
(
P 1
ν + P 1

Xν

)
− e−r(T−t)KP 2

Xν

Cν = eXP 1
ν −Ke−r(T−t)P 2

ν

Cνν = eXP 1
νν −Ke−r(T−t)P 2

νν

As we now have a dependence on τ rather than the current valuation date t we

need to substitute this term, which brings ∂f
∂τ = ∂f

∂t
∂t
∂τ = −∂f∂τ , thus our PDE

looks the following:

1

2
νCXX+ρσνCXν+

1

2
σ2νCνν+

(
r − 1

2
ν

)
CX+

[
κ(θ−νt)−λ0νt

]
Cν−rC−Cτ = 0

(5)

Before we plug the entire terms from above in the equation we will differentiate

between two special cases, as the pricing PDE is always fulfilled irrespective of

the terms in the call contract.

� S = 1,K = 0, r = 0 ⇒ Ct = P1

� S = 0,K = 1, r = 0 ⇒ Ct = −P2

Since −P2 follows the PDE so does P2, so we have got two simplifications for the

pricing PDE which for we will now plug in the derivatives determined above.

1

2
ν
(
P 1 + 2P 1

X + P 1
XX

)
+ ρσν

(
P 1
ν + P 1

Xν

)
+

1

2
σ2νP 1

νν +

+

(
r − 1

2
ν

)(
P 1 + P 1

X

)
+
[
κ(θ − νt)− λ0νt

]
P 1
ν − rP1 − Pτ = 0

If we now rearrange these terms we see that the P1 term cancels out:

1

2
νP 1

XX+ρσνP 1
Xν+

1

2
σ2νP 1

νν+

(
r +

1

2
ν

)
P 1
X+
[
ρσν+κ(θ−νt)−λ0νt

]
P 1
ν−P 1

τ = 0

(6)

Now we perform the same steps for the second scenario including S = 0 and

K = −1 so that only P2 remains in the option price.

1

2
νP 2

XX+ρσνP 2
Xν+

1

2
σ2νP 2

νν+

(
r − 1

2
ν

)
P 2
X+
[
κ(θ−νt)−λ0νt

]
P 2
ν−rP 2+

(
rP 2 − P 2

τ

)
= 0
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Also here the P2 term cancels out and the equation gets:

1

2
νP 2

XX+ρσνP 2
Xν+

1

2
σ2νP 2

νν+

(
r − 1

2
ν

)
P 2
X+
[
κ(θ−νt)−λ0νt

]
P 2
ν−P 2

τ = 0 (7)

For convenience we define a new variable ζi which has the two values ζ1 = 1

and ζ2 = −1, thus we can write a general formula for the two PDEs (6) and (7).

1

2
νP iXX+ρσνP iXν+

1

2
σ2νP iνν+

(
r +

ζ

2
ν

)
P iX+

[
1 + ζ

2
ρσν + κ(θ − νt)− λ0νt

]
P iν−P iτ = 0

(8)

Applying the results of the Feynman-Kac theorem, the characteristic function

will then also follow the Heston PDE.

1

2
νϕiXX+ρσνϕiXν+

1

2
σ2νϕiνν+

(
r +

ζ

2
ν

)
ϕiX+

[
1 + ζ

2
ρσν + κ(θ − νt)− λ0νt

]
ϕiν−ϕiτ = 0

(9)

The respective derivatives we determine by the given structure of the charac-

teristic function in (3).

∂ϕi
∂τ

= −
(
∂Ci
∂τ

+
∂Di

∂τ
ν

)
ϕi

∂ϕi
∂X

= iuϕi

∂2ϕi
∂X2

= −u2ϕi
∂ϕi
∂ν

= Diϕi

∂2ϕi
∂ν2

= D2
iϕi

∂2ϕi
∂X∂ν

= iuDiϕi

So if we plug in the derivatives of the assumed structure of the characteristic

function the PDE gets

−1

2
νu2ϕi + ρσνiuDiϕi +

1

2
σ2νD2

iϕi +

(
r +

ζ

2
ν

)
iuϕi + (10)

+

[
1 + ζ

2
ρσν + κ(θ − νt)− λ0νt

]
Diϕi +

(
∂Ci
∂τ

+
∂Di

∂τ
ν

)
ϕi = 0

The derivation of the solution for the PDE can be looked up in the appendix

(5.1). The solution for Di looks as follows:

Di =
(b+ di)

(
1− ediτ

)
σ2 (1− giediτ )

where

gi =
b+ di
b− di

14



and

di =
√
b2 − σ2(ζiu− u2)

The second equation can then easily be determined by simply integrating out

∂Ci
∂τ

= −riu− κθDi

Ci = riuτ +
κθ

σ2

[
(b+ di)τ − 2 ln

(
1− giediτ

1− gi

)]
Thus we have derived all components of the semi-analytic pricing equation for

Heston options.

3.1.3 Heston FX Option Extension

Before we go now directly to the FX Heston model we will first derive the

framework extension of Black Scholes for FX markets by Garman and Kohlhagen

[5]. For the two currency framework we make use of the work of Musiela and

Rutkowski [12].

FX Black Scholes Model

We henceforth denote Bdt and Bft for t ∈ [0, T ] as the price of the domestic and

foreign saving account each denominated in units of their respective currency.

The exchange rate process Qt is the price of units of domestic currency for 1 unit

of the foreign currency and is described under the actual probability measure P
by

dQt = µQtdt+ σQtdWt

The solution of this SDE is cleary

Qt = Q0 ·Q
(
µ−σ22

)
t+σWt .

Let us now consider an auxiliary process Q∗t := QtB
f
t /B

d
t which then of course

satisfies

Q∗t =
QtB

f
t

Bdt

= Q0e

(
µ−σ22

)
t+σWte(rf−rd)t

= Q0e

(
µ+rf−rd−σ

2

2

)
t+σWt

or putting back in SDE form we have

dQ∗t = (µ+ rf − rd)Q∗t dt+ σQ∗t dWt

Thus we can clearly see that Q∗t is a martingale under the original measure P
iff µ = rd − rf .
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Under the domestic martingale measure Qd, which is equivalent to P, the process

Q∗t is a Qd-martingale. Thus the domestic martingale measure is a risk neutral

measure for the domestic investor. Applying Girsanov’s theorem and having all

parameter constant over time we get for the change of measure

dQd
dP

∣∣∣FT = eθWT− 1
2‖θ‖

2T

with

µ+ rf − rd + σθ = 0

θ =
rd − rf − µ

σ

In addition, the process

W d
t = Wt − θt, ∀t ∈ [0, T ]

follows a Brownian motion under Qd. Thus the dynamics of Qt under Qd are

described by

dQt = (rd − rf )Qtdt+ σQtdW
d
t

If we now assume that the underlying process (Qt) is now the exchange rate we

still have the final payoff for a Call option of the form

FXCT = max(QT −K, 0)

and following the Garman-Kohlhagen model we know that the price of the FX

option gets

FXCt = e−rf (T−t)QtP
FX
1 (Qt, νt, τ)− e−rd(T−t)KPFX2 (Qt, νt, τ) (11)

Heston FX Option Price

This is only a slight change in our pricing formula to our derived results using

the Heston model. We will nevertheless also start by replicating a derivative U

with the underlying Q, the bank account and a second derivative V now linked

to the exchange rate as underlying.

dU = ∆dQ+ φdV + µUUdt+ µV φV dt+ µQ∆Qdt

Under the risk neutral pricing measure Qd the evolution is

dU = ∆dQ+ φdV + rdUdt+ rdφV dt+ (rd − rf )∆Qdt

=
[
rd(U + φV ) + (rd − rf )∆Q

]
dt+ ∆dQ+ φdV

The PDE of the FX Option is thus
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1

2
νQ2UQQ+ρσνQUQν+

1

2
Uννσ

2ν+(rd−rf )QUQ+
[
κ(θ−νt)−λ0νt

]
Uν−rdU+Ut = 0

Transformation to the logspot and the change of derivative with respect to τ

rather than t and the change of variable of the log spot X := lnQ brings us a

PDE without Q terms and of the following form

1

2
νUXX+ρσνUXν+

1

2
σ2νUνν+

(
rd − rf −

1

2
ν

)
UX+

[
κ(θ−νt)−λ0νt

]
Uν−rdU−Uτ = 0

(12)

So the calculation of the FX option is not completely different to the normal

Heston model if the interest rates are considered fixed. Using the boundary

Conditions for the PDE solution, brings us also to a general pricing formula for

C(t, ν,Q) with an exchange rate as underlying.

C(T, ν,Q) = max(QT −K, 0)

C(t,∞, Q) = Qe−rf (T−t)

∂C

∂Q
(t, ν,∞) = e−rf (T−t)

C(t, ν, 0) = 0

rdC(t, 0, Q) =

[
(rd − rf )Q

∂C

∂Q
+ κθ

∂C

∂ν
+
∂C

∂t

]
(t, 0, Q)

The pricing formula (11) also has different probabilities PFXi (Qt, νt, τ) with

parameters for the characteristic function:

Ci = (rd − rf )iuτ +
κθ

σ2

[
(b+ di)τ − 2 ln

(
1− giediτ

1− gi

)]
The remaining parameters being the same as in the general Heston model.

3.1.4 Summary for Heston Option Pricing

European Call Option

Recall from equation (2) that we have a pricing formula of the form

Ct = StP1(St, νt, τ)− e−r(T−t)KP2(St, νt, τ)

where the two probabilities Pj are as in (4) derived

Pj =
1

2
+

1

π

∫ ∞
0

<
[
e−iux

iu
ϕjX(u)

]
du

with the characteric function being of the form

ϕj(u) = eCj(τ,u)+Dj(τ,u)ν+iux.
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To determine the call price we now just have to calculate the expressions Cj and

Dj from section 3.1.2 and plug them into the characteristic function. Then we

have to evaluate the two probabilities a using numerical integration algorithm

as Gauß-Lobatto, to finally evaluate the option price using the pricing function.

European FX Call Option

Here we only have a different pricing function

Ct = e−rf (T−t)StP1(St, νt, τ)− e−rd(T−t)KP2(St, νt, τ)

and the parameters for the characteristic functions change slightly as described

in section 3.1.3.
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3.2 The SABR model

The stochastic αβρ or SABR model is typically used to model forward Libor

rates, forward swap rates, forward index prices or any other forward rate. It is

an extension to Black’s model and of the CEV model. Unlike other stochstic

volatility models e.g Heston, the model does not itself derives option prices. It

rather produces estimations of the implied volatility curve, which are used as

inputs in Black’s model to price especially interest rate derivatives.

3.2.1 Definition

The SABR model by Hagan et al. [6] is thus given by the system of stochastic

differential equations

dF̂ = α̂F̂ βdW1, (13)

dα̂ = να̂dW2, (14)

under the forward measure with the initial conditions

F̂ (0) = f, (15)

α̂(0) = α. (16)

The movements in the underlying forward rate are correlated with the move-

ments in the underlying volatility

dW1dW2 = ρdt (17)

whereas the Brownian motions are correlated. The parameters are

� α the initial variance,

� ν the volatility of variance,

� β the exponent for the forward rate,

� ρ the correlation between the two Brownian motions.

The case β = 0 produces the stochastic normal model, β = 1 produces the

stochastic lognormal model, and β = 1
2 produces the stochastic Cox-Ingersoll-

Ross model (or CIR model).

Compared to other stochastic volatility models the SABR model has the virtue

of being one of the simplest models which is homogeneous in ft and αt and has
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an approximating direct formula for the price of a European option. It can be

used to accurately fit the implied volatility curves observed in the marketplace

for any single maturity T . This makes the SABR model an effective means to

manage the smile risk in markets where each asset only has a single exercise

date, including swaptions and caplet/floorlet markets.

As a consequence the SABR may or may not be able to fit the volatility surface

of an asset which has European options at several maturities, such as FX options

and most equity options. Hagan et al. [6], thus introduced a dynamic SABR

model, as it has not been derived completely it will not be covered in this paper.

Still, there is a chance to derive the volatility surface by using interpolation

methods. Nevertheless, we will observe this problem in the calibration beginning

in the next sections.

3.2.2 SABR Implied Volatility

To obtain the implied volatility (surface) of an underlying European option the

SABR dynamics offers analytical formulas, which have to be calibrated against

observed volatilities on the market. These market volatilities may either be

extracted by the price of an option or directly from market streams as Bloomberg

or Thomson Reuters (see figure 2).

This analytical framework can be seen as one of the major selling points of SABR

compared to other stochastical volatility models. As we have seen for the Heston

model, it first has to obtain the price to extract the implied volatilities in the a

second step. The SABR on the contrary just uses a compliant volatility formula

to Black’s model to calibrate it’s the parameters for the implied volatilities. To

receive the formulas singular perturbation techniques are used to obtain the

prices of European options. From these prices, the option’s implied volatility

σ
B

is obtained. An extensive analysis of the SABR model and the derivation of

the SABR implied volatility can be found in the appendix.

The starting point for the analysis is thus the pricing formulas of Black:

CBS(f,K, σB , T ) = e−rT (fN(d1)−KN(d2)) (18)

with

d1,2 =
log f

K ±
1
2σ

2
B
T

σ
B

√
T

(19)

where the implied volatility σ
B

(f,K) is given by

σ
B

(K, f) =
α

(fK)(1−β)/2
{

1 + (1−β)2
24 log2 f

K + (1−β)4
1920 log4 f

K

} · ( z

x(z)

)
·

{
1 +

[
(1− β)2

24

α2

(fK)1−β
+

1

4

ρβνα

(fK)(1−β)/2
+

2− 3ρ2

24
ν2
]
T

}
. (20)
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Where z is defined by

z =
ν

α
(fK)(1−β)/2 log

f

K
(21)

and x(z) is given by

x(z) = log

{√
1− 2ρz + z2 + z − ρ

1− ρ

}
. (22)

For at-the-money options (K = f) the formula reduces to σ
B

(f, f) = σATM such

that

σ
ATM

=
α
{

1 +
[
(1−β)2

24
α2

f2−2β + 1
4
ρβνα
f(1−β) + 2−3ρ2

24 ν2
]
T
}

f (1−β)
. (23)

Once the parameters α, β, ρ and ν are estimated, the implied volatility σB is

a function only of the forward price f and the strike K. This is the result of

the fact that SABR only produces implied volatilites for single maturities, the

dependence of σB on T is not reflected in the notation σB(K, f).

Equipped with these formula’s one can obtain the parameters by estimation of

plain vanilla options, swaptions and FX options as the theoretical framework

can compromise the these prodcuts (see Hagan et al. [6]).

3.2.3 Model dynamics

Before the estimation of parameters, however, we observe the qualitative behav-

ior of the SABR model. To reveal the dynamics of the model we can approximate

the formula (20) of σ
B

(K, f) as

σ
B

(K, f) =
α

f1−β

{
1− 1

2
(1− β − ρλ) log

K

f
(24)

+
1

12

[
(1− β)2 + (2− 3ρ2)λ2

]
log2 K

f

}
, (25)

with strike K being not too far from the current forward f . The ratio

λ =
ν

α
f1−β (26)

measures the strenght of ν, the “volvol”, compared to the local volatility αfβ−1

at the current forward. Please be aware that these equations should not be

used for pricing. In the section calibration we will be looking in more detail of

the influence of each factor with concrete values. This section, however, should

serve as a general explanaiton of the framework.

As f varies during trading, the curve that the ATM volatility σ
B

(f, f) traces is

know as the backbone, while the smile and skew refer to the implied volatility
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σ
B

(K, f) as a function of strike K for a fixed f. That is, the market smile/skew

gives a snapshot of the market prices for differnet strikes K at a given instance,

when the forward f has a specific price.

Consider now the implied volatility σ
B

(K, f). The first term α
f1−β in equation

(25) is the implied volatility for ATM options. So the backbone is essentially

σ
B

(f, f) = α
f1−β and entirely determined by the exponent β. With β = 1 it is

downward sloping and β = 0 almost flat.

The second term − 1
2 (1 − β − ρλ) log K

f in equation (25) represents the skew,

which is the slope of the implied volatility with respect to the strike K. The first

part − 1
2 (1− β) log K

f is also know as the beta skew, which is downward sloping

as 0 ≤ β ≤ 1. It arises because αfβ−1 is decreasing. The second part 1
2ρλ log K

f

is known as the vanna skew, the skew caused by the correlation between the

volatility and the asset price. Typically the volatility and the asset price are

negatively correlated, so on average, the volatility α decreases (increases) when

the forward f increases (decrease). Thus the vanna skew is too downward slop-

ing.

The last term in equation (25) constist of two parts. The first 1
12 (1−β)2 log2 K

f

appears to be the smile (quadratic) term, but it is dominated by the beta skew

and just modifies this skew. The second part 1
12 (2 − 3ρ2) log2 K

f is the smile

induced by the volga (volatility-gamma) effect. Physically this smile arises be-

caus of “adverse selection”: large movements of the forward f happen mor often

when the volatility α increases, and less often when α decreases.

3.2.4 Parameter Estimation

First β has to be estimated, although the choice does not greatly affect the

shape of the volatility curve. With β estimated, there are two possible choices

for estimating the remaining parameters:

2. Estimate α, ρ and ν directly, or

3. Estimate ρ and ν directly, and infer α from ρ, ν and the at-the-money

volatility, σ
ATM

In general, it is more convenient to use the ATM volatility σATM , β, ρ and ν as

the SABR parameters (2.) instead of the original parameters α, β, ρ and ν.

1. Estimation of β

For estimation of β the at-the money volatility σ
ATM

from equation (23) is used

as a starting point. Taking the logs produces
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log σATM = logα− (1− β) log f +

log

{
1 +

[
(1− β)2

24

α2

f2−2β
+

1

4

ρβνα

f (1−β)
+

2− 3ρ2

24
ν2
]
T + · · ·

}
.(27)

Hence, β can be estimated by a linear regression on a time series of logs of

ATM volatilities and logs of forward rates. Since both f and α are stochastic

variables, this fitting procedure can be quite noisy, and as the [· · · ]ttex term is

typically less than one or two per cent, it is usuallly ignored in fitting β and the

approximation

log σATM ≈ logα− (1− β) log f (28)

is used.

Alternatively, β can be chosen from prior beliefs about which model - stochastic

normal (β = 0), lognormal (β = 1) or CIR (β = 1
2 ) is appopriate:

� Proponents of β= 1 cite log normal models as being “more natural” or

believe that the horizontal backbone - the curve that ATM volatility σ
ATM

traces - best represents their market. These proponents often include desks

trading foreign exchange options.

� Proponents of β= 0 usually believe that a normal model, with its sym-

metric break-even points, is more effective tool for managing risks, and

would claim that β = 0 is essential for trading markets where forwards f

can be negative or zero.

� Proponents of β= 1
2 are usually interest rate desks that have developed

trust in CIR models.

In practice, as already mentioned, the choice of β has little effect on the resulting

shape of the volatility curve produced by the SABR model. However, β may

have an affect on the sensitivities.

2. Estimation of α, ρ and ν

Once the estimator of β, β̂ is set, it remains to estimat α,ρ and ν. This can

be accomplished by minimizing the errors between the model and the market

volatilities, σmkt
i with identical maturity T . Hence, we can use the sum of

squared errors (SSE), which produces:

(α̂, ρ̂, ν̂) = arg min
α,ρ,ν

∑
i

(
σmkt
i − σ

B
(fi,Ki;α, ρ, ν)

)2
. (29)
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3. Estimation of ρ and ν

The number of parameters to be estimated can be reduced by using σ
ATM

to

receive α̂ via equation (23), instead of directly estimating α. Thus, only two

parameters, namely ρ and µ need to be estimated and α̂ is obtain by simply

inverting equation (23), noting that α is the root of the cubic equation

σATMf
(1−β) − α

{
1 +

[
(1 − β)2

24

α2

f2−2β
+

1

4

ρβνα

f (1−β)
+

2 − 3ρ2

24
ν2

]
T

}
= 0 (30)(

(1 − β)2T

24f2−2β

)
α3 +

(
1

4

ρβνT

f (1−β)

)
α2 +

(
1 +

2 − 3ρ2

24
ν2T

)
α− σATMf

(1−β) = 0 (31)

It is possible for this cubic equation to have more than a single real root. It is

suggested selecting the smallest positive root in such a case.

As a result for parametrization first the cubic equation for α has to be solved

namely α(ρ, ν) and the SSE from equation (29) has to be minimized such that

(α̂, ρ̂, ν̂) = arg min
α,ρ,ν

∑
i

(
σmkt
i − σ

B
(fi,Ki;α(ρ, ν), ρ, ν)

)2
. (32)

3.2.5 SABR Refinements

The SABR implied volatility analytical formula of Hagan et al. [6] has shown

to be wrong in regions of small strikes but large maturities. In these regions it

assigns negative price to a structure with a positive payoff. Therefore, Objón [?]

derived a formula that refined the SABR model to either completely solve the

problem or improves it for lower strikes. Given the log-moneyness x = log f
K

with maturity T, the implied volatility σB(x) can be approximated as

σB(x) ≈ IH(x) = I0H(x)(1 + I1H(x)T ). (33)

Where 1 + I1H(x)T is similarly defined as the second line in equation (20) with

I1H(x) =
(1− β)2

24

α2

(fK)1−β
+

1

4

ρβνα

(fK)(1−β)/2
+

2− 3ρ2

24
ν2. (34)

For I0B(x), however, Berestycki at al distinguishes between four different cases

as:

1. Case, if x = 0 then

I0(0) = αKβ−1 (35)

2. Case, if ν = 0 then

I0(x) =
xα(1− β)

fβ−1 −Kβ−1 (36)
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3. Case, if β = 1 then

I0(x) =
νx

ln

(√
1−2ρz+z2+z−ρ

1−ρ

) (37)

with

z =
νx

α
(38)

4. Case, if β < 1 then

I0(x) =
νx

ln

(√
1−2ρz+z2+z−ρ

1−ρ

) (39)

with

z =
νfβ−1 −Kβ−1

α(1− β)
(40)

Obviously, Hagan et al. [6] and Objón are only differing in case 4 as for Hagan

et al. [6] the fourth case is defined as

I0(x) =
νx ζz

ln

(√
1−2ρζ+ζ2+z−ρ

1−ρ

) for β < 1 (41)

with

z =
νfβ−1 −Kβ−1

α(1− β)
and ζ =

ν

α

f −K
(fK)β/2

. (42)

Nevertheless, parameters can be obtained by estimation and prices by plugging

into Black’s formula as before.
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3.3 Calibration and Simulation

Now we will discuss the calibration of the two models, including the method of

calibration, the different effects of changing parameters and its strengths and of

course weaknesses. In general we will not go into the very detail of numerical

iterations and efficiency in coding, but will introduce which method can be used

for.

3.3.1 The Heston Model

We will now try to calibrate the Heston model according to the data of the FX

option implied volatility surface of a USD/JPY and a EUR/JPY dataset. But

first we will analyse the parameters to calibrate.
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Figure 4: The effects of changing the Heston input parameters on the shape of

the volatility smile.

It clearly can be seen that the first two parameters, the initial volatility ν0

and θ work both as a shift of the volatility curve, thus we can fix one of the

two already before the calibration at an appropriate level. We used the same

approac as suggested by Janek et. al [9] by setting the initial volatility
√
ν0

equal to the implied at the money (ATM) volatility in the market.

The variance’s volatility σ and the level of mean reversion κ also both have the

same effect on the volatility surface. Both can change the curvature of the smile

in the same way which is why we will also here set the parameter κ prior to

the calibration to a fixed level. The only parameter which changes the slope of

the surface is the parameter rho what is why this one is definetely essential and
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Parameter Analysis − sigma

Delta

Im
pl

ie
d 

V
ol

at
ili

ty

10C 25C ATM 25P 10P

0.
09

0.
10

0.
11

0.
12

0.
13

0.
14

0.
15 sigma = 0.20

sigma = 0.30
sigma = 0.40

Parameter Analysis − kappa

Delta

Im
pl

ie
d 

V
ol

at
ili

ty

10C 25C ATM 25P 10P

0.
10

0.
11

0.
12

0.
13

0.
14

0.
15 kappa = 0.5

kappa = 1.5
kappa = 3.0

Figure 5: The effects of changing the Heston input parameters on the shape of

the volatility smile.

thus should not be fixed prior to optimisation.

As we now have fixed already two parameters and only let the remaining three

vary within the calibration process we need to be careful, that a special con-

dition is still fulfilled. As it turns out the CIR process, responsible for the

variance process, might degegenerate to a deterministic process and stays at

zero. However, the process stays strictly positive if

κθ ≥ σ2

2

which is often referred to as the so called Feller condition.

Sum of squared error approach.

For this optimisation approach we compare the market implied volatility σ̂ with

the volatility returned by the Heston model σ(κ, θ, σ, ν0, ρ). Explicitly we sum

up the squared differences and this will be minimised by changing the three

parameters θ, σ and ρ.

min
θ,σ,ρ

∑
i,j

(
σ̂ − σ(κ, θ, σ, ν0, ρ)

)2
The two volatility surfaces of the USD/JPY and a EUR/JPY dataset are two

typical characteristics. We have once a volatility skew for the EUR/JPY dataset

which includes a higher volatility of the out of the money puts, including a po-

tential higher risk for the Euro to depreciate against the Japanese Yen. The
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Parameter Analysis − rho
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Figure 6: The effects of changing the correlation in the Heston model.

second currency pair USD/JPY shows the classical volatility smile where the

potential depreciations are to both sides of nearly the same grade.

USDJPY FX Option Volatility Smile
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Figure 7: USD/JPY and EUR/JPY volatility surfaces

We now perform for both volatility surfaces a self implemented Heston calibra-

tion in the statistic software R. Therefore we fix prior to calibration the initial

variance to the ATM implied one, and also the mean reversion level κ to differ-

ent levels, and look where we get the best fits.
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Figure 8: USD/JPY and EUR/JPY Heston volatility surface fits

We can see for that examples that the Heston model in both cases can be suc-

cessfully applied to appropriately modeling the volatility surface for FX options,

especially for the mid and long term maturities. But the model has weaknesses

in the short term. If a fit for short tenors is desired we can add a weighting

vector in the SSE approach, that the minimisation of the shorter volatilities is

prioritised, but we will then of course get away from the real values in the long

run.

Simulation of option pricing

Now we have everything complete to price European options analytically with

the market adjusted Heston model for any maturity or strike level. Further-

fore, we are also able to price any exotic option using the Monte Carlo ap-

poach. Therefore we need to discretise our PDEs for example via finite difference

method.

St = St−1 + µSt−1∆t +
√
νt−1St−1

√
∆tW

S
t

νt = νt−1 + κ(θ − νt−1)∆t + σ
√
νt−1

√
∆tW

ν
t

WS
t = B1

t

W ν
t = ρB1

t +
√

1− ρ2B2
t

with B1
t , B

2
t being two independent normally distributed random variables,

which we get using the Cholesky decomposition for two correlated random vari-
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ables. We now will for simplicity just compare an analytically calculated Heston

call option with an MC priced call option using finite difference path simulation

with the same parameters.

> paths <- replicate( 100000,

+ heston.pather(S0=2,T=2,delta=1/365,rd=0.03,rf=0.01,

+ kappa=2,theta=0.1,vol=0.3,nu0=0.04,rho=0.1) )

> mc.call <- mc.option(paths=paths, K=2,rd=0.03, T=2, type=1)

> mc.call

[1] 0.2715734

> ana.call <- heston( S=2,K=2, kappa=2,theta=0.1,sigma=0.3,rho=0.1,

+ lambda=0,nu0=0.04,rd=0.03,rf=0.01,t=0,T=2, type=1 )

> ana.call

[1] 0.2715323

We see that the two prices hardly differentiate. This approach can be used to

price exotic options based on the information of plain vanilla options on the

market.

3.3.2 The SABR model

Using following fictional data set

Maturity/Tenor (T ) 1

in years:

Forward (f) 7.3

in cents:

Strike (K): 4.3 4.8 5.3 5.8 6.3 6.8 7.3 7.8

in cents: 8.3 8.8 9.3 9.8 10.3 10.8 11.3

Implied Volatility (σmkt) 20.8 19.8 18.1 16.1 15.1 14.5 14.0 14.3

in %: 15.0 15.9 16.2 16.4 16.6 17.3 19.1

Table 1: Fictional data set to analyse SABR model

we will look at the difference of the two ways of estimation and the properties

of each estimated parameter. In a second step we will look at the FX option

data set and observe if and how good the SABR model can approximate to the

implied volatilities of a Bloomberg data stream.
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Figure 9: Implied volatitility of the market given fictional data set and two-way

SABR estimation

Comparison of parametrization

Let’s repeat, the SABR model can be calibrated using two different ways of

parametrization. The first way calibrates the SABR model by estimating α̂, ρ̂

and ν̂ directly via sum of squared errors of the market implied volatilites (see

equation (29)). The second possibility is two extract α̂ directly from the ATM

market volatilities via a cubic equation, review equation (23). Having estimated

α̂, as previously one only has to obtain the remaining parameters ρ̂ and ν̂ via

the SSE method, as stated in equation (32).

Given the market implied volatilities from table 1, the market volatility smile

looks as in figure 9 on the right side. Doing a computational estimation via R

for both types of estimation we receive following parameters:

1.Parametrization 2.Parametrization

α 0.13926953 0.13606879

ρ -0.06867152 -0.06366734

ν 0.57781612 0.60382596

SSE 2.456405 · 10−4 2.860274 · 10−4

Table 2: Value of parameters by type of estimation

We see that the figures are gernerally close to each other. Probably the largest

difference can be found in ν with a difference of approx. 0.02. We will see that

ν has a large impact on the skew and sort of influences the height of the smile,

this will however be analysed in greater detail on the next paragraph. What
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is more, given the figures we see that the second parametrization does a better

fitting having a smaller SSE than the first parametrization.

Looking at figure 9 we see the fits of both parametrization and its difference.

The second parametrization does clearly better on values close to the ATM

volatility, whereas for the tails data points are typically the same. Certainly,

this is due to the fact that the second parametrization obtains α̂ directly from

the ATM implied volatility and does not estimate it again. The differences of the

two estimations is also shown in the graph. This underpins previous argument

as errors are typically large close to the ATM volatility.

So additionally to saving time by optimizing one parameter less, the second

parametrization delivers better and more accurate values.

Dynamics of the parameters

Having observed the types of parametrization let’s move forward and look at

the impact of the values of the parameters itself. Regarding the section 3.2.3

we should already have an intuition of the effects of changes in ther parameters,

still let’s have a look if this holds true.

Taking the order of parametrization, we start with the observation of β. In

the literature there is a general sentiment that market smiles can be fit equally

well with any specific value of β. In the figure below we have set β to be 0

(normal),12 (CIR) and 1 (log-normal) and plotted the results against each other.

Thus, by looking at the right side of figure 10 the sentiment can be understood,

as the smile is clearly not strongly influenced by the choice of β. Thus, β may

not be determined by fitting the market smile as this would amount to “fitting

the noise” and instead using general beliefs of the market is a safer approach.

However, we can see that β in general has influence on the skew of the smile,

the so called beta skew, but in general not a large one.

Further let’s observe the parameter α, the volatility, in figure 10 on the right

side. α is responsible for the horizontal positioning of the smile. So for an

increasing and decreasing α, the smile shifts either upwards or downwards. As

α is only prominent in α/f1−β and not any other section of the formula σ
B

(f,K)

the shift is related to the value of the forward and the size of β.

The correlation ρ in figure 11 on the right side has a main influence on the skew

of the volatility curve. In the general dynamics it is also explained as the vanna

skew, caused by the correlation between asset price and volatility. The figure

underlines this as a higher correlation turns the curve to the right and a lower to

the left. As the axis of the skewness can the ATM volatility σ
B

(f, f) obsevered.

The final parameter is the “volvol” ν. As we already discussed the skewness in ρ
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Figure 10: Implied volatitility of the market given fictional data set and two-way

SABR estimation
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SABR estimation
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and β and the shift in α, it is obvious that ν must be some kind responsible for

the curvature in the smile. As a matter of fact figure 11 on the left side shows

that an increasing ν makes the curve sharper whereas a decreasing ν makes the

curve flatter - called the volga gamma effect.

SABR model on FX options

In the introduction of the SABR model its weakness on FX options and equity

options has already been announced. The reason for this, as already mentioned,

is that it can not estimated time dependend volatility surfaces, due to the fact

that there is no time dependend parameter. However, in the FX option literature

it is often explained to bypass this problem by using interpolation. Thus, this

chapter will compare the outcomes of SABR using one single set of parameters

and one where the last tenor and the first tenors are used to estimate parameters

and interpolate implied volatilites.

First, we will look at the EUR/JPY volatility surface. For the estimation the

strikes have been extracted from the Bloomberg data stream explained in the

introduction. From this data the ATM money forwards have been extracted

and for some tenors the paramaters for the SABR volatility surface have been

estimated via multiple SSE for multiple inputs (see figure 12 on the right). As

a second step the SABR has been estimated for each tenor seperately to see if

SABR is able to estimation at all (see left side).
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Figure 12: On the left EUR/JPY volatility surface for multiple tenors and on

the right the interpolated EUR/JPY surface.

In general, the SABR estimation of the volatility surface is not doing too bad.

The first two volatility curves of the small tenors is not working too well but for
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the last three ones the fit is quite surprising. Especially for higher strikes SABR

seems to have fitted the curvature quite will. The weakness, however, lies in

the lower strikes where for the last tenor the fit is quite strongly off the market

volatilites. Let’s continue on the interpolated surface. For the interpolation we

take the lowest tenor and the largest tenor and fit the parameters for them.

Thus, we have to sets of parameters. This can be observed in precision of the

fit for the first and last skew, for t1 and t2, respectivelly. Then via “flat forward

volatility interpolation”,

σ2(t∗) =
1

t∗(t2 − t1)

(
σ2
X(t2)t2(t∗ − t1)σ2

X(t1)t1(t2 − t∗)
)

the implied volatility for any t∗ inbetween of t1 and t2 can be approximated.

For the skew and the curvature this approximation seems to be pretty good

however we observed problems with the shift of the smile.
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Figure 13: On the left USD/JPY volatility surface for multiple tenors and on

the right the interpolated USD/JPY surfac.

As a second comparison we looked as well at same fitting processes for USDJPY,

see figure 13. On the left hand sided again the surface approach on the right hand

side the single smile curve approach. Comparing to the results of the Heston

models, where the fit is for later tenors almost perfect, SABR’s performance

is weak, to speak friendly. For the lower tenors the curvature could not be

adapted at all, being almost flat and for the later tenors it is too sharp. It is

interesting, however, to see that for the later tenors the implied volatilities that

are way off from ATM are fitted quite well. Still, the ATM volatilies can not be

reproduced again. For the interpolated volatility smile, the situation for SABR

is as previously very good in terms of curvature and skew, however the shift we
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have observed is way to high. Overall, the performance of SABR for USDJPY

FX options is worse then the EURJPY estimation. Probably this is due to fact

that the EURJPY are much flatter than the USDJPY surfaces and thus the

time independence is increasing the fitting error.
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4 Conclusio

After a thorough analysis of the Heston stochastic volatility model we can say

that the attractive features definitely are:

� its volatility updating structure permits analytical solutions to be gener-

ated for European options

� the form of the Heston stochastic process used to model price dynamics

allows for non-lognormal probability distributions

� the model also describes the important mean-reverting property of volatil-

ity which is prevailing in the market

� empirically the model often gives a very good fit to the observed Black

Scholes implied volatility surfaces

Clearly, that the Heston’s model is a real player in the competition to be a

successor of the Black and Scholes model. This model is very popular among

practitioners now. On the other hand there remain some disadvantages and

open questions:

� for certain parameter constellations there might be negative option prices

or at least prices which were lying below the usual arbitrage bounds (this

means the Black Scholes implied volatility determination is impossible)

� the model consistently performs well for medium to long maturities, but

has strong deficits for short maturity fits

� Heston’s model implicitly takes systematic volatility risk λ into account

by means of a linear specification for the volatility risk premium (λ0νt)

Furthermore it is worthwile mentioning that parameters of the Heston model

after calibration to market data turn out to be non-constant. This means that

at best we can deduce from the prices of derivatives, so called fitting. But this

is far from adequate, the fitting will only work if those who set the prices of

derivatives are using the same model and they are consistent in that the fitted

parameters do not change when the model is refitted a few days later. Whether

we have a deterministic volatility surface or a stochastic volatility model with

prescribed or fitted parameters, we will always be faced with how to interpret

refitting.

The SABR model on the other hand has shown us to have following features:
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� The asymptotic solution with the SABR implied volatility gives an easy-

to-use framework which allows to derive the implied volatility directly

without deriving prices first.

� Parameter fitting turned out to be easy to implement and fast to estimate.

The fitting through SSE also turned out to be in some points more accurate

than the Heston model.

� Great fitting with only using three parameters.

This is probably the reason why the SABR is one of the leading model for

pricing European options and interest rate products. However, throughout our

analysis in typical the work with FX options has pointed out the main flaws of

the model:

� No additional parameter which can be used for time dependent volatility

surface estimation. Thus, estimation is best for single maturity instru-

ments.

� Derive volatility surface through interpolation, instructed by [2], yielded

high errors and thus performance of Heston was much more competable.

� Although refinements of the SABR model have been undertaken the SABR

faces still problems with small strikes and long maturities.

Overall, both models are worthwhile with all their pros and cons.
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5 Appendix

5.1 Heston Riccati differential equation

We have the structure of the characteristic function of the following form:

−1

2
νu2ϕi + ρσνiuDiϕi +

1

2
σ2νD2

iϕi +

(
r +

ζ

2
ν

)
iuϕi + (43)

+

[
1 + ζ

2
ρσν + κ(θ − νt)− λ0νt

]
Diϕi +

(
∂Ci
∂τ

+
∂Di

∂τ
ν

)
ϕi = 0

We now can divide both sides by ϕi to cancel this term, and rearrange the

equation to

⇔ ν

[
∂Di

∂τ
+ ρσiuDi −

1

2
νu2 +

1

2
σ2D2

i + iu
ζ

2
+

(
1 + ζ

2
ρσ − κ− λ0

)
Di

]
+

+
∂Ci
∂τ

+ riu+ κθDi = 0

so that both the term in the brackets and the second has to be zero. The first

term is the following equation

∂Di

∂τ
= −ρσiuDi +

1

2
u2 − 1

2
σ2D2

i − iu
ζ

2
−
(

1 + ζ

2
ρσ − κ− λ0

)
Di

=
1

2
u2 − iuζ

2︸ ︷︷ ︸
a

+

(
1 + ζ

2
ρσ − κ− λ0 − ρσiu

)
︸ ︷︷ ︸

b

Di +

(
−1

2
σ2

)
︸ ︷︷ ︸

c

D2
i

We can see that this equation is of the form of a Riccati differential equation

∂D(t)

∂t
= k(t) + h(t)D(t) + g(t)D(t)2

which there exists no general solution for it. However, if we add a special solution

D = ϕ(t) = 0 to our equation we get a Bernoulli differential equation for which

we get a solution.

∂D(t)

∂t
=

(
g(t) + 2ϕ(t)h(t)

)
D(t) + h(t)D(t)2

= g(t)D(t) + h(t)D(t)2

The solution of the Bernoulli differential equation we get by performing a change

of variable y(t) = D(t)−1

∂y(t)

∂t
= −D−2 ∂D(t)

∂t
= −g(t)D(t)−1 − h(t)

= −g(t)y(t)− h(t)
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This ODE can now be solved by first finding a solution for the homogeneous

differential equation.

∂yh(t)

∂t
= −g(t)yh(t)∫

1

yh(t)dy
= −

∫
g(t)dt

ln|yh| = −G(t) + c

yh(t) = c · e−G(t)

To find the non-homogeneous solution yn(t) of the Bernoulli differential equation

we now need to perform a variation of constants.

yn(t) = c(t)e−G(t)

∂yn(t)

∂t
=
∂c(t)

∂t
e−G(t) − g(t)c(t)e−G(t)

−g(t)c(t)e−G(t) − h(t) =
∂c(t)

∂t
e−G(t) − g(t)c(t)e−G(t)

−h(t) =
∂c(t)

∂t
e−G(t)

c(t) = −
∫
h(t)eG(t)dt

Thus we now have the general solution of the equation if we resubstitute our

variable.

D(t)−1 = −e−G(t)

∫
h(t)eG(t)dt

D(t) = − eG(t)∫
h(t)eG(t)dt

These calculations have been performed and simplified using the computer soft-

ware Maple. The solutions for Di are then again shown in the paper.

5.2 Analysis of the the SABR model

To analyse the SABR model on terms of an European options, a singular pertur-

bation techniques is used. The analysis is based on small volatility expansions,

α̂ and ν, re-written to α̂→ εα̂ and ν → εν such that

dF̂ = εα̂C(F̂ )dW1, (44)

dα̂ = ενα̂dW2 (45)

with d〈W1,W2〉 = ρdt in the distinguished limit ε � 1 and C(F̂ ) generalized,

instead of the power law F̂ β .
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Suppose the economy is in state F̂ (t) = f and α̂(t) = α at date t. There is a
probability density for time T , asset A and forward F by

p(t, f, α;T, F,A)dFdA = Prob
{
F < F̂ (T ) < F + dF,A < α̂(T ) < A+ dA | F̂ (t) = f, α̂(t) = α

}
.

The density satisifies the forward Kolmogorov equation

p
T

=
1

2
ε2A2 ∂2

∂F 2
C2(F )p+ ε2ρν

∂2

∂F∂A
A2C2(F )p+

1

2
ε2ν2

∂2

∂A2
A2p (46)

for T > t with

p = δ(F − f)δ(A− α), at T = t (47)

is well known and the density at maturity T is defined as

p(t, f, α;T, F,A) = δ(F − f)δ(A− α) +

∫ T

t

p
T

(t, f, α;T, F,A)dT. (48)

Let V (t, f, α) then be the value of an European call option at t at above de-

fined state of economy. For maturity T and strike K by substition and twice

integration by parts the value is

V (t, f, α) = E
(

[F̂ (T )−K]+ | F̂ (t) = f, α̂(t) = α
)

=

∫ ∞
−∞

∫ ∞
K

(F −K)p(t, f, α;T, F,A)dFdA (49)

= [f −K]+ +

∫ T

t

∫ ∞
−∞

∫ ∞
K

(F −K)p
T

(t, f, α;T, F,A)dT (50)

= [f −K]+ +
ε2

2

∫ T

t

∫ ∞
−∞

∫ ∞
K

A2(F −K)
∂2

∂F 2
C2(F )p dFdAdT

(51)

= [f −K]+ +
ε2C2(K)

2

∫ T

t

∫ ∞
−∞

A2p(t, f, α;T,K,A)dAdT (52)

received. This problem can be simplified further by defining

P (t, f, α;T,K) =

∫ ∞
−∞

A2p(t, f, α;T,K,A)dA. (53)

As t does not appear explicitly in the equation, P depends only on the combini-

ation T − t, and not seperately. Thus defining τ = T − t leeds to the pricing

formula

V (t, f, α) = [f −K]+ +
ε2C2(K)

2

∫ τ

t

P (τ, f, α;K)dτ (54)

where P (τ, f, α;K) is the solution of

Pτ =
1

2
ε2α2C2(f)

∂2P

∂f2
+ ε2ρνα2C(f)

∂2P

∂f∂α
+

1

2
ε2ν2α2 ∂

2P

∂α2
, for τ > 0, (55)

P = α2δ(f −K), for τ = 0. (56)

41



Given these results one could obtain the option formula directly. However, more

useful formulas can be derived when re-computing the option price under the

normal model dF̂ = σ
N
dW and equate which normal volatility σ

N
need to be

used to reproduce the options’s price under SABR. As a result the “implied

normal volatility” under SABR is found.

As a second step the option price is compared under the Black model, dF̂ =

σ
B
dW , and the normal model, at the log-normal volatility is thus received. This

means, the option is priced via SABR in terms of the option’s implied volatility.

Singular perturbation expansion

A straightforward perturbation expansion would yield a Gaussian density to

leading order of the form

P =
α√

2πε2C2)K)τ
e
− (f−K)2

2ε2α2C2(K)τ {1 + · · ·︸ ︷︷ ︸
:=A

}. (57)

However, this expansion would become inaccurate in the parts of A as soon as

(f −K)C
′(K)
C(K) becomes a significant fraction of 1, that is, when strike C(K) and

forward C(f) are significantly different. It is better to re-cast the series as

P =
α√

2πε2C2)K)τ
e
− (f−K)2

2ε2α2C2(K)τ
{1+··· }

. (58)

and expand the exponents, as it is believed that only small changes to the expo-

nent will be needed to effect the much larger changes in the density. This expan-

sion also describes the basic physics better, because P is essentially a Gaussian

probability density which tails off faster or slower depending on whether the

C(f) decreases or increases. In this article we will only look at the results of

the perturbation expansion, for a more detailed view please use the initial paper

of Hagan et al. [6]. Thus, the perturbation expansion yields an European Call

option value by

V (t, f, α) = [f −K]2 +
| f −K |

4
√
π

∫ ∞
x2

2τ −ε2θ

e−q

q3/2
dq (59)

with
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x =
1

εν
log

(√
1− 2ερνz + ε2ν2z2 − ρ+ ενz

1− ρ

)
(60)

ε2θ = log

(
εαz

f −K
√
B(0)B(εαz)

)
+ log

(
xI1/2(ενz)

z

)
+

1

4
ε2ρναb1z

2

(61)

I(ζ) =
√

1− 2ρζ + ζ2, (62)

b1 =
B′(εαz0)

B(εαz0)
, (63)

B(εαz) = C(f), (64)

z =
1

εα

∫ f

K

df ′

C(f ′)
(65)

through O(ε2).

Equivalent normal volatility

The above formula is for the dollar price of a call option under SABR model.

However, to obtain a more convinient formula, we convert it - as mentioned

previously - into the equivalent implied volatilitiy. First normal and afterwards

log-normal.

Suppose the above analysis is repeated under the normal model

dF̂ = σ
N
dW, F̂ (0) = f. (66)

with σ
N

constant, not stochastic. The option value would then be

V (t, f) = [f −K]+ +
| f −K |

4
√
π

∫ ∞
(f−K)2

2σ2
N
τ

e−q

q3/2
dq (67)

for C(f) = 1, εα = σ
N

and ν = 0. Integration yields then

V (t, f) = (f −K)Φ

(
f −K
σ
N

√
τ

)
+ σ

N

√
τG
(
f −K
σ
N

√
τ

)
(68)

with the Gaussian density G

G(q) =
1√
2π
e−q

2/2 (69)

The option price under the normal model, (67), matches the option price under

the SABR model (59), iff σ
N

is chosen the way that

σ−2
N

=
x2

(f −K)2

{
1− 2ε2

θ

x2
τ

}
(70)

σ
N

=
f −K
x

{
1 + ε2

θ

x2
τ + · · ·

}
(71)
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through O(ε2). The result can be simplified such that it is correct through O(ε2)

- see Hagan et al. [6] - and the implied normal volatility is provided as

σ
N

(K) =
εα(f −K)∫ f
K

df ′

C(f ′)

(
ζ

x̂(ζ)

)
(72)

·
{

1 +

[
2γ2 − γ21

24
α2C2(fav) +

1

4
ρναγ1C(fav) +

2− 3ρ2

24
ν2
]
ε2τ + · · ·

}
.

With

fav =
√
fK, γ1 =

C ′(fav)

C(fav)
, γ2 =

C ′′(fav)

C(fav)
(73)

ζ =
ν(f −K)

αC(fav)
, x̂(ζ) = log

(√
1− 2ρζ + ζ2 − ρ+ ζ

1− ρ

)
. (74)

The first two factors provide the dominant behaviour, with the remaining factor

1 + [· · · ]ετ usually providing corrections around 1%.

Equivalent Black volatility

Usually, Black volatilities are prefered over normal volatilies in Business. To

derive the implied volatility consider again Black’s model

dF̂ = εσ
B
F̂ dW, F̂ (0) = f (75)

with εσ
B

for consistency of the analysis. The implied normal volatility for

Black’s model for SABR can be obtained by setting C(f) = f and ν = 0 in

equations (72)-(74) such that

σ
N

(K) =
εσ

B
(f −K)

log f
K

{1− 1

24
ε2σ2

B
τ + · · · }. (76)

through O(ε2). Solving the equation (76) for σ
B

with equation (72) through

O(ε2) yields

σ
B

(K) =
α log f

K∫ f
K

df ′

C(f ′)

(
ζ

x̂(ζ)

)
(77)

·

{
1 +

[
2γ2 − γ21 + 1

f2
av

24
α2C2(fav) +

1

4
ρναγ1C(fav) +

2− 3ρ2

24
ν2

]
ε2τ + · · ·

}
.

The formula can be simply re-cast in terms of original variables by simply setting

ε = 1.
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Stochastic β model

Finally, we look at the original state, where the SABR consist of C(f) = fβ .

Thus the model

dF̂ = εα̂F̂ βdW1, F̂ (0) = f (78)

dα̂ = ενα̂dW2, α̂(0) = α (79)

with d〈W1,W2〉 = ρdt is used.

Making the substition in equations (72) - (74) the implied normal volatility is

σ
N

(K) =
εα(1− β)(f −K)

f1−β −K1−β

(
ζ

x̂(ζ)

)
(80)

·
{

1 +

[
−β(2− β)α2

24f2−2βav

+
ρανβ

4f1−βav

+
2− 3ρ2

24
ν2
]
ε2τ + · · ·

}
.

through O(ε2), with fav and x̂(ζ) as defined previously and

ζ =
ν(f −K)

αfβav
(81)

Via approximation of

f −K =
√
fK log f/K{1 +

1

24
log2 f/K +

1

1920
log4 f/K + · · · },

(82)

f1−β −K1−β = (1− β)(fK)(1−β)/2 log f/K{1 +
(1− β)2

24
log2 f/K +

(1− β)4

1920
log4 f/K + · · · },

(83)

the implied normal volatility can be reduced to

σ
N

(K) = εα(fK)β/2
1 + 1

24 log2 f/K + 1
1920 log4 f/K + · · ·

1 + (1−β)2
24 log2 f/K + (1−β)4

1920 log4 f/K + · · ·

(
ζ

x̂(ζ)

)
(84)

·
{

1 +

[
−β(2− β)α2

24(fK)1−β
+

ρανβ

4(fK)(1−β)/2
+

2− 3ρ2

24
ν2
]
ε2τ + · · ·

}
with x̂(ζ) as defined previously and

ζ =
ν

α
(fK)(1−β)/2 log f/K (85)

Redoing this substitutions for the implied Black volatility as in equation (78)

yields
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σ
B

(K) =
εα

(fK)(1−β)/2
1

1 + (1−β)2
24 log2 f/K + (1−β)4

1920 log4 f/K + · · ·

(
ζ

x̂(ζ)

)
(86)

·
{

1 +

[
(1− β2)α2

24(fK)1−β
+

ρανβ

4(fK)(1−β)/2
+

2− 3ρ2

24
ν2
]
ε2τ + · · ·

}
through O(ε2), where ζ and x̂(ζ) are given as before. Apart from setting ε = 1

to recover the original units, this is the formula quoted in section 3.2.2.

5.3 Implementation in R

5.3.1 FX Black Scholes Framework

###########################################
## Implied BSM Vola
###########################################

BSMFX <- function(S,K,vol,rd,rf,t=0,T,type=1){
d1 <- (log(S/K) + (rd - rf + vol^2/2)*(T-t))/(vol*sqrt(T-t))
d2 <- d1 - vol*sqrt(T-t)
type * (exp(-rf*(T-t))*S*pnorm(type*d1)-exp(-rd*(T-t))*K*pnorm(type*d2))

}

BSMFXsolve <- function(vol, price,S,K,rd,rf,t=0,T,type=1){
d1 <- (log(S/K) + (rd - rf + vol^2/2)*(T-t))/(vol*sqrt(T-t))
d2 <- d1 - vol*sqrt(T-t)
(type * (exp(-rf*(T-t))*S*pnorm(type*d1)-exp(-rd*(T-t))*K*pnorm(type*d2)) - price)^2

}

impVol <- function(data, t0,t,S,K,rd,rf){
if(length(data)==1){ nlminb(0.4, BSMFXsolve, price=data, S=S,K=K[1],rd=rd[1],rf=rf[1],t=t0
,T=t[1],type=1, lower=0)$par
}else{
IV <- matrix(0,length(t),length(K))
for(i in 1:length(t)){

for(j in 1:length(K)){
IV[i,j] <- nlminb(0.4, BSMFXsolve, price=data[i,j], S=S,K=K[j],rd=rd[i],rf=rf[i],t=t0,T=t[i]
,type=1, lower=0)$par
#IV[i,j] <- optim(0.4, fn=BSMFXsolve, price=data[i,j], S=S,K=K[j],rd=rd[i],rf=rf[i],t=t0,T=t[i]
,type=1)$par

}
}
IV
}

}

###########################################
## Implied BSM Delta Strike
###########################################

BSMDeltasolve <- function(K, vol,S,rd,rf,t=0,T,Delta,type=1){
Kfwd <- K*exp((rd-rf)*(T-t)) # FWD Delta
d1 <- (log(S/Kfwd) + (rd - rf + vol^2/2)*(T-t))/(vol*sqrt(T-t))
( (type*exp(-rf*(T-t))*pnorm(type*d1)) - Delta )^2

}

impStrike <- function(data, t0,t,S,rd,rf, Deltafix=""){
if(length(data)==1){
nlminb(S, BSMDeltasolve, vol=data, S=2,rd=rd[1],rf=rf[1],t=t0,T=t[1],Deltafix, type=1, lower=0)$par
}else{
if(dim(data)[2] != 5) stop("Data format is not correct!")
Delta <- c(0.1,0.25,0.5,0.75,0.9)
K <- matrix(0,length(t),5)
for(i in 1:length(t)){
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for(j in 1:5){
#K[i,j] <- nlminb(S, BSMDeltasolve, vol=data[i,j], S=S,rd=rd[i],rf=rf[i],t=t0,T=t[i],Delta=Delta[j],
type=1, lower=0,control = list( eval.max=400,iter.max =300 ))$par
#K[i,j] <- optim(method="Brent",lower=S/3,upper=S*2, S, fn=BSMDeltasolve, vol=data[i,j], S=S,
rd=rd[i],rf=rf[i], t=t0,T=t[i],Delta=Delta[j],type=1)$par

options(warn=-1)
K[i,j] <- optim(S, fn=BSMDeltasolve, vol=data[i,j], S=S,rd=rd[i],rf=rf[i],t=t0,T=t[i],Delta=Delta[j],
type=1)$par

options(warn=0)
}

}
K
}

}

5.3.2 Heston Framework

###########################################
## Characteristic Function
###########################################

CF <- function(u, S,kappa,theta,sigma,rho,lambda,nu0,rd,rf,t,T,type="both"){
if(type=="both") zeta <- c(1,-1)
else{

if(type==1) zeta <- 1
if(type==2) zeta <- -1

}
i <- complex(real=0,imaginary=1)
X <- log(S)
b <- kappa + lambda - (1+zeta)/2*rho*sigma
d <- sqrt( (rho*sigma*i*u-b)^2 - sigma^2*(zeta*i*u-u^2) )
g <- (b-rho*sigma*u*i+d)/(b-rho*sigma*u*i-d)
if(Re(g[1])==Inf){ C <- (rd-rf)*u*i*(T-t) + kappa*theta/sigma^2* (b-rho*u*i+d)*(T-t)
}else{ C <- (rd-rf)*u*i*(T-t) + kappa*theta/sigma^2*( (b-rho*u*i+d)*(T-t)
- 2*log((1-g*exp(d*(T-t)))/(1-g)) ) }
D <- (b-rho*sigma*u*i+d)/sigma^2 *( (1-exp(d*(T-t)))/(1-g*exp(d*(T-t))) )

exp(C+D*nu0+i*u*X)
}

###########################################
## Heston Option Pricer
###########################################

heston <- function( S,K, kappa,theta,sigma,rho,lambda,nu0,rd,rf,t,T, type=1 ){
# type = 1 => Call
# type = -1 => Put

i <- complex(real=0,imaginary=1)
Y <- log(K)
P1 <- 1/2 + 1/pi* integrate(function(u) Re(exp(-i*u*Y)/(i*u)*CF(u, S=S,kappa=kappa,theta=theta,
sigma=sigma,rho=rho,lambda=lambda,nu0=nu0,rd=rd,rf=rf,t=t,T=T,type=1)),
1e-16,100)$value
P2 <- 1/2 + 1/pi* integrate(function(u) Re(exp(-i*u*Y)/(i*u)*CF(u, S=S,kappa=kappa,theta=theta,
sigma=sigma,rho=rho,lambda=lambda,nu0=nu0,rd=rd,rf=rf,t=t,T=T,type=2)),
1e-16,100)$value
p1 <- (1-type)/2 + type*P1
p2 <- (1-type)/2 + type*P2

type * ( exp(-rf*(T-t))*S*p1 - exp(-rd*(T-t))*K*p2 )
}

###########################################
## Calibration
###########################################

## Sum of Squared Errors Vol

SSE <- function(params, data,S,kappa,lambda,nu0,rd,rf,t,T, w){
theta <- params[1]
sigma <- params[2]
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rho <- params[3]
n <- length(T)
price <- matrix(0,n,5)
vol <- matrix(0,n,5)
K <- impStrike(data=data,t0=0,t=T,S=S,rd=rd,rf=rf)
for(i in 1:n){

for(j in 1:5){
price[i,j] <- heston(S=S,K=K[i,j], kappa=kappa,theta=theta,sigma=sigma,rho=rho,lambda=0,
nu0=nu0,rd=rd[i],rf=rf[i],t=0,T=T[i] )
vol[i,j] <- impVol(data=price[i,j],t0=0,t=T[i],S=S,K=K[i,j],rd=rd[i],rf=rf[i])

}
}
sqrt( sum( (vol - data)^2 ) )

}

## Fitting of the volatility surface

fitsmile <- function(params, S,data, kappa,lambda,nu0,rd,rf,t,T){
theta <- params[1]
sigma <- params[2]
rho <- params[3]

price <- matrix(0,length(T),5)
vol <- matrix(0,length(T),5)
K <- impStrike(data=data,t0=0,t=T,S=S,rd=rd,rf=rf)
for(i in 1:length(T)){

for(j in 1:5){
price[i,j] <- heston(S=S,K=K[i,j], kappa=kappa,theta=theta,sigma=sigma,rho=rho,
lambda=0,nu0=nu0,rd=rd[i],rf=rf[i],t=0,T=T[i] )
vol[i,j] <- impVol(data=price[i,j],t0=0,t=T[i],S=S,K=K[i,j],rd=rd[i],rf=rf[i])

}
}
vol

}

###########################################
## MC - PRICING
###########################################

heston.pather <- function(S0,T,delta,rd,rf, kappa,theta,vol,nu0,rho){
# Feller Condition
if(vol^2 >= 2*kappa*theta) stop("Variance can get zero!")

n <- T/delta+1
S <- numeric(n)
v <- numeric(n)
S[1] <- S0
v[1] <- nu0

X1 <- rnorm(n)
X2 <- rnorm(n)
W1 <- X1
W2 <- rho*X1 + sqrt(1-rho^2)*X2

for( i in 2:n){
S[i] <- S[i-1] + (rd-rf)*S[i-1]*delta + sqrt(abs(v[i-1]))*S[i-1]*delta*W1[i]
v[i] <- v[i-1] + kappa*(theta-v[i-1])*delta + vol*sqrt(abs(v[i-1]))*sqrt(delta)*W2[i]

}
S

}

5.3.3 SABR Framework

###########################################
## SABR Implied Volatility
###########################################

sigma.B <- function(f,K,T,beta,alpha,rho,nu,ref = FALSE){
if(ref){

x <- log(f/K)
if(x == 0) I.B <- alpha*K^(beta-1)
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else if(nu == 0) I.B <- (x*alpha*(1-beta))/(f^(1-beta)-K^(1-beta))
else if(beta == 1){

z <- nu*x/alpha
I.B <- (nu*x)/log((sqrt(1-2*rho*z+z^2)+z-rho)/(1-rho))

}
else if(beta < 1){

z <- (nu*(f^(1-beta)-K^(1-beta)))/(alpha*(1-beta))
I.B <- (nu*x)/log((sqrt(1-2*rho*z+z^2)+z-rho)/(1-rho))

}
else{}

I.H <- 1 + ((1-beta)^2/24*alpha^2/(f*K)^(1-beta) + 1/4 * (rho * beta * nu * alpha)/(f*K)
^((1-beta)/2) + (2-3*rho^2)/24*nu^2)*T

sigma.B <- I.B * I.H
}
else{
if(abs(f-K) >= 0.0001){
z <- nu/alpha*(f*K)^((1-beta)/2)*log(f/K)
x <- log((sqrt(1-2*rho*z+z^2)+ z - rho)/(1-rho))

A <- alpha/((f*K)^((1-beta)/2)*1+(1-beta)^2/24*log(f/K)^2 + (1-beta)^4/1920*log(f/K))
B <- z/x
C <- 1 + ((1-beta)^2/24*alpha^2/(f*K)^(1-beta) + 1/4 * (rho * beta * nu * alpha)/(f*K)
^((1-beta)/2) + (2-3*rho^2)/24*nu^2)*T

}
else{
A <- alpha/((f)^(1-beta))

B <- 1
C <- 1 + ((1-beta)^2/24*alpha^2/(f)^(2-2*beta) + 1/4 * (rho * beta * nu * alpha)/(f)
^(1-beta) + (2-3*rho^2)/24*nu^2)*T

}

sigma.B <- A*B*C
}

return(sigma.B)
}

###########################################
## Alpha Estimator
###########################################

getAlpha <- function(f,K,T,sigma.ATM,beta,rho,nu){
C0 <- -sigma.ATM * f^(1-beta)
C1 <- 1 + 1/24 * (2-3*rho^2) * nu^2 * T
C2 <- 1/4 * rho * beta * nu * f^{beta-1} * T
C3 <- 1/24 * (1-beta)^2 * f^(2*(beta-1)) * T

alpha.vec <- solve(as.polynomial(c(C0,C1,C2,C3)))
index <- which(Im(alpha.vec) == 0 & Re(alpha.vec) > 0)
alpha <- alpha.vec[index]
if(length(alpha) == 0) alpha <- 0

return(min(Re(alpha)))
}

###########################################
## Volatility Fitter
###########################################

fit.vol <- function(f,K,T,beta,alpha,rho,nu,ref=FALSE){
if(is.null(dim(K))){
vol <- numeric(length(K))

for (i in seq_along(K)){
vol[i] <- sigma.B(f=f,K=K[i],T=T,beta=beta,alpha=alpha,rho=rho,nu=nu,ref)

}
}
else{
vol <- numeric(dim(K)[2]*length(T))
dim(vol) <- c(length(T),dim(K)[2])
for(i in seq_along(T)){
for(j in 1:dim(K)[2]){
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vol[i,j] <- sigma.B(f[i],K[i,j],T[i],beta,alpha,rho,nu,ref)
}
}
}

return(vol)
}

###########################################
## Sum of Sqared Errors (SSE)
###########################################
SSE <- function(params,sigma.Mkt,f,K,T,beta,ref=FALSE){
atm <- FALSE
if(length(params) > 2){
alpha <- params[1]
rho <- params[2]
nu <- params[3]
}
else{
atm <- TRUE
rho <- params[1]
nu <- params[2]
}

if(is.null(dim(K))){
error <- numeric(length(K))

if(atm){
sigma.ATM <- sigma.Mkt[which(K == f)]

alpha <- getAlpha(f,f,T,sigma.ATM,beta,rho,nu)
}
for (i in seq_along(K)){

error[i] <- sigma.Mkt[i] - sigma.B(f=f,K=K[i],T=T,beta=beta,alpha=alpha,rho=rho,nu=nu,ref)
}

}
else{

error <- numeric(dim(K)[2]*length(T))
dim(error) <- c(length(T),dim(K)[2])

for(i in seq_along(T)){
if(atm){

sigma.ATM <- sigma.Mkt[which(K == f[i])]
alpha <- getAlpha(f[i],f[i],T[i],sigma.ATM,beta,rho,nu)
}
for (j in 1:dim(K)[2]){
error[i,j] <- sigma.Mkt[i,j] - sigma.B(f=f[i],K=K[i,j],T=T[i],beta=beta,alpha=alpha,rho=rho,nu=nu,ref)
}
}

}

SSE <- sum(error^2,na.rm=TRUE)
cat(SSE,"\n")
if(abs(rho) > 1) SSE <- Inf

return(SSE)
}
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