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Abstract
Value-at-risk is a standard risk metric calculated to assess the upper limit 
on losses incurred by a portfolio due to adverse market moves for a speci-
fied confidence level. Usually it is calculated over a 10 day period using a 
confidence level of 99% (95% is also common). There are three commonly 
used methodologies for calculating VaR (Bohdalová, 2007). These are the 
delta-normal method, historical simulation and Monte-Carlo simulation 
based method. Of these, Monte-Carlo simulation based method is the most 
flexible because it can work with a specified probability distribution of asset 
returns. This work uses the probability distribution of asset prices extracted 
from option prices to get the VaR of a portfolio using Monte-Carlo method.
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1 Introduction
Value-at-risk is commonly calculated using one of the three methods: 
delta-normal method, historical simulation based method or Monte-Carlo 
simulation based method. Delta normal method is used by JP Morgan’s 
RiskMetricsTM (Zangari, 1996; Laubsch, 1999). This approach assumes a mul-
tivariate normal distribution of returns. It takes covariance matrix of asset 
returns (usually estimated from historical data) and finds the loss level that 
corresponds to the normal distribution quantile point corresponding to 
the confidence level. This approach produces a quick estimate of VaR that is 
fairly accurate for short time horizon. However it assumes a normal distribu-
tion of returns which is not very realistic. Financial data on equity returns 
usually displays fat-tails and higher peak at the mean, signifying greater 
probability of large moves than those implied by a Gaussian model.

Historical simulation assumes the future return distribution to be the 
same as one in the past (Pritzker, 2001; Berkowitz, 2002). It looks at historical 
returns and calculates the relevant quantile of returns (for the confidence 
interval). This approach is based on the premise that future will not be too 
different from the past. Defining the past then becomes an issue of impor-
tance. A too big period for the past may give values that are averaged over that 
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period. Further, selecting an appropriate time interval suited for the calcula-
tion of VaR over the desired time horizon may differ for individual assets.

Monte-Carlo simulation based methods sample from a specified prob-
ability distribution of returns conforming to the correlation among asset 
returns. The approach presented here uses Monte-Carlo method using prob-
ability distribution extracted from options prices. The remainder of this 
paper is organized as follows: section 2 describes the mathematics of the 
model, section 3 gives numerical results for VaR calculation for a hypotheti-
cal portfolio and compares them against those obtained using delta-normal 
method, section 4 provides the data source, and section 5 concludes this 
work, mentioning the pros and cons of the method employed. All VaR calcu-
lations are based on a 99% confidence interval.

2 Description of the Model
Options on equities imply a probability distribution of the underlying asset 
price (Derman and Kani, 1994). Option prices move to reflect the greater 
probability of a stock price reaching a level in response to anticipated 
future events foreseen by the  market. For example, as the date of earnings 
report for a company with volatile stock price approaches, price of out of 
the money calls and out of the money puts near the current stock price 
increases relative to the price of options at other strikes. This implies greater 
probability of the asset moving up or down in value from its current price. 
The present approach uses this probability distribution to calculate value-at-
risk for a portfolio of assets.

The most commonly traded option by volume is the American-style 
option on equities. Portfolio managers often buy options to hedge the 
portfolio against price swings for an asset. They typically do not exercise 
the option before maturity. Options also provide a means to speculate on 
the future price of an asset without owning the asset. For a stock paying no 
dividend, it is never optimal to exercise a call option before maturity. Hence 
for the purpose of extracting transition probability of stock price reaching a 
certain level at a specified time, American options are treated like European 
options. The value (at time t) of expected payoff at maturity for a European 
option in a risk-neutral world is given by (1). T is the time to maturity. The 
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present value (t = 0) of the expected payoff at maturity is assumed to be the 
price of European option. 

 C(t, K) = e−rf (T−t)E[S(T) − K | S(T) > K] = E[(S(T) − K)+]  (1)

Here r
f
 is the risk-free rate, T is the time to maturity, S(T) is the asset price at 

time T and K is the strike for the option. LIBOR rate can serve as a proxy for 
risk free rate. In this case, r

f
 is given by (2). l(t) is the LIBOR rate. 

 
rf =

∫ T
t l(τ )dτ

T − t
 (2)

Rewriting equation (1) in terms of Heaviside operator, q (z). 

 

C(t, K) = e−rf (T−t)E[(S(T) − K)θ (S(T) − K)]

θ (z) =
{

1 if z > 0

0 if z < 0
 (3)

Differentiating (3) with respect to strike, K: 

 

∂C(t, K)

∂K
= e−rf (T−t)E[−θ (S(T) − K)]

∂2C(t, K)

∂K2
= e−rf (T−t)E[δ(S(T) − K)]

= e−rf (T−t)P(S(T), K, T − t)
 (4)

δ is the Dirac delta function satisfying the following conditions (5). 

 

δ(x) =
{

∞ if x = 0

0 if x �= 0∫ +∞

−∞
δ(x)f (x)dx = f (0)  (5)

Equation (4) is the Breeden–Litzenberger formula (Breeden and 
Litzenberger, 1978). P(S(T), K, T − t) is the risk-neutral probability at time t of asset 
price becoming equal to K at time T when the asset price is S(t) at time t with t ≤ T.

The partial derivative in equation (4) is calculated by using natural cubic 
spline based interpolation between option prices and strikes. A cubic spline 
interpolating terminal point coordinates and second derivatives at terminal 
points can be written as in 6.

 

C(t, K) = aC1(t) + bC2(t) + c
∂2C1(t)

∂K2
+ d

∂2C2(t)

∂K2

a = K2 − K

K2 − K1

b = K − K2

K2 − K1

c = 1

6
(a3 − a)(K2 − K1)2

d = 1

6
(b3 − b)(K2 − K1)2  (6)

A natural cubic spline interpolant is employed because ∂
2C(t,K)
∂K2 = 0  at the 

extreme strike values. This can be seen from (4) because the probability of 

reaching the extreme strike values becomes negligible. To determine 
∂2C(t,K)

∂K2  

at node points (strikes), continuity of first-order derivative ∂C(t,K)
∂K

 is enforced. 

 

∂C(t, K)

∂K
= C2(t) − C1(t)

K2 − K1
+ 1

6
(−3a2 + 1)(K2 − K1)

∂2C1(t)

∂K2

+ 1

6
(3b2 − 1)(K2 − K1)

∂2C2(t)

∂K2  (7)

Equation (7) gives (n − 1) conditions at internal nodes. (n + 1) denotes the 
number of strikes. Adding the natural cubic spline assumption of zero sec-
ond derivative at two extreme endpoints gives a uniquely determined linear 
tridiagonal system of equations. Solving them (in O(n2) time) gives the value 

of ∂
2C(t,K)
∂K2  at the nodes. Equation expressing equality of first derivative at 

internal node i can be written as in (8). 

 

1

6
(Ki − Ki−1)

∂2Ci−1(t)

∂K2
+ 2

6
(Ki+1 − Ki−1)

∂2Ci(t)

∂K2
+ 1

6
(Ki+1 − Ki)

∂2Ci+1(t)

∂K2

= Ci+1(t) − Ci(t)

Ki+1 − Ki
− Ci(t) − Ci−1(t)

Ki − Ki−1
 (8)

Boundary conditions for natural spline is in (9). 

 

∂2C0(t)

∂K2
= ∂2Cn(t)

∂K2
= 0  (9)

Having found ∂
2C(t,K)
∂K2  at the nodes, the probability of price transition to that 

node can be calculated using equation (4) . This gives the probability dis-
tribution of asset price at time T. In the context of this work, t is taken as 0 
corresponding to present time. The approach assumes availability of option 
prices expiring at the end of time horizon for VaR computation. If the asset 
pays dividend during the time horizon of VaR computation, an additional 
discount factor can be added to the model to account for dividend yield. 
In this case, the risk free rate in (2) can be modified as in (10). q denotes the 
 dividend yield. 

 
r∗

f =
∫ T

t l(τ )dτ

T − t
− q

 (10)

Equation (4) expressing the risk-neutral probability of asset price reaching a 
strike value at time T is modified to equation (11). 

 

∂2C(t, K)

∂K2
= e−r∗f (T−t)P(S(T), K, T − t)  (11)

This process is repeated for all assets in the portfolio. To perform Monte-
Carlo simulation for finding Value-at-Risk, a random sampler picks a random 
sample of asset prices conforming to the probability distribution. Covariance 
matrix of asset returns is obtained using last one month’s historical data. 
More advanced methods like GARCH (Bollerslev, 1986) or EGARCH (Nelson, 
DB. 1991.) can be used to get a better forward estimate of covariance matrix. 
Cholesky decomposition of this positive-definite matrix is used to generate 
correlated random samples from the independent samples obtained earlier. 
These prices are used to calculate the PnL of the portfolio for one iteration of 
Monte-Carlo method. Repeating this process for the desired number of itera-
tions and calculating the relevant quantile gives the value-at-risk.

Monte-Carlo simulation can be made more efficient using control-vari-
ate method. Let the portfolio be comprised of N assets, each asset having N

i
 

units, each worth S
i
(t) at time t. 

 

�(t) =
N∑

j=1

NjSj(t)
 (12)
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Monte-Carlo simulation estimates time T value of the portfolio using N 
random samples. Following the control variate methodology for variance 
reduction, a new variable ~∏ is defined as in (13). 

 

�̃(T) = �(T) +
m∑

j=1

bj(Sj(T) − E[Sj(T)])

= �(T) +
m∑

j=1

bj(Sj(T) − Sj(t)e
−rf (T−t))  (13)

m is the number of control variates introduced. In the present work it is 
taken to be 2, with the top 2 assets by value included. The expected value of 
modified portfolio (after introducing control variate terms) in (13) is equal 
to the expected value of the original portfolio. 

 
E
[
�̃(T)

]
= E [�(T)]  (14)

Variance of the portfolio can be written as in (15). 

 

Var
(
�̃(T)

)
= Var (�(T)) +

m∑
i=1

m∑
j=1

bibjCov(Si(T), Sj(T))

+
N∑

i=1

m∑
j=1

NibjCov(Si(T), Sj(T))  (15)

Minimizing the variance in (15) with respect to b
j
 gives the system of 

 equations in (16).

 

m∑
i=1

biCov(Si(T), Sj(T)) = −
N∑

i=1

NiCov(Si(T), Sj(T))
 (16)

Covariance in asset returns needed in equation (16) are calculated 
using historical prices. Variance of the modified portfolio in (13) is given 
by (17) and is less than the variance of original portfolio. This enhances the 
 efficiency of Monte-Carlo simulation. 

 
Var

(
�̃(T)

)
= Var (�(T)) −

∑N
i=1

∑m
j=1 NiCov(Si(T), Sj(T))∑m
j=1 Var(Sj(T))  (17)

3 Results
A test portfolio was defined as of June 20, 2011 (Table 1) . 

Variance-covariance matrix for the portfolio has been estimated using 
historical data of daily log returns from past one month. The daily covari-
ance is converted to covariance of returns over the relevant time period (in 
this example, it was 21 days from June 20, 2011 to the expiration date of July 
11, 2011). The obtained matrix is shown in (19). 

 

�daily =

⎡
⎢⎢⎣

1.13E − 5 1.04E − 5 1.05E − 5 1.37E − 5
1.04E − 5 2.28E − 5 1.52E − 5 1.49E − 5
1.05E − 5 1.52E − 5 4.50E − 5 9.62E − 6
1.37E − 5 1.49E − 5 9.62E − 6 2.69E − 5

⎤
⎥⎥⎦ (18)

 

� =

⎡
⎢⎢⎣

2.373E − 4 2.184E − 4 2.205E − 4 2.877E − 4
2.184E − 4 4.788E − 4 3.192E − 4 3.129E − 4
2.205E − 4 3.192E − 4 9.45E − 4 2.0202E − 4
2.877E − 4 3.129E − 4 2.0202E − 4 5.649E − 4

⎤
⎥⎥⎦ (19)

Correlation matrix is determined from the variance covariance matrix 
in (19).

Option prices for the next expiration period were used to calculate the 
transition probabilities1. Probabilities extracted from call and put prices 
were used above and below the current price of the underlying stock. The 
transition probabilities for MSFT and INTC have been plotted and tabulated. 
When compared against Gaussian distribution, excess kurtosis can be seen 
in fatter tails.

Monte-Carlo simulation is performed with 10000 steps to get a 99% VaR. 
R language has been used to implement the Monte Carlo simulator. Random 
number generator from R package Tinflex (Leydold, Botts, and Hörmann, 2011) 
was used in the Monte Carlo simulation2. VaR from 10 Monte Carlo simulation 
runs is shown in table 4. VaR obtained is compared against that from delta-
normal method. The Value-at-Risk obtained from Monte-Carlo simulation 
($93303.3) is higher than that obtained from delta-normal method ($87870.90). 
This reflects a greater tail risk in returns as implied from option prices. 

The difference in VaR calculated using this method (Monte-Carlo simula-
tion) and delta-normal method becomes more pronounced as the difference 
in historical volatility and the expected volatility in the future (as reflected 
in option prices) becomes larger. Another sample run for calculating the 

Table 1: Portfolio

Asset Units Market Price (June 20, 2011)

S&P 500 (SPY) index fund 1000 $127.05

Microsoft Corp (MSFT) 5000 $24.26

Intel Corp (INTC) 8000 $21.20

General Electric (GE) 5000 $18.49

Total $510400

Table 2: Option Prices and Transition Probabilities for MSFT, 
Spot = $24.26

Strike Call 
Price

Put 
Price

Transition 
Probability

Lognormal 
Transition Prob

15 9.10 0.02 0 4.57E-10

17.50 6.50 0.01 9.94138E-3 4.57E-10

20 4.25 0.04 0 3.42E-4

21 3.15 0.06 3.27053E-2 3.32E-3

22 2.35 0.11 5.05443E-2 3.11E-2

23 1.42 0.22 1.25118E-1 1.27E-1

24 0.73 0.47 2.88985E-1 2.61E-1

25 0.27 1.00 3.65493E-1 2.93E-1

26 0.09 1.83 7.46327E-2 1.90E-1

27 0.03 2.77 5.59761E-2 7.37E-2

28 0.02 3.94 1.46281E-3 1.76E-2

29 0.02 4.87 0 2.69E-3

30 0.02 6.20 5.84661E-3 2.72E-4

31 0.02 6.87 0 1.89E-5

32 0.01 7.80 2.03898E-2 9.43E-7

33 0.01 8.80 0 3.46E-8
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Table 4: Monte-Carlo Simulation Results for 99% VaR using 10000 Steps
Run 99% VaR

1 $92685.5

2 $94428.4

3 $95590.3

4 $96552.7

5 $92994.3

6 $93103.3

7 $94514.7

8 $93083.7

9 $94245.9

10 $93303.3

Average $93933.99

Standard Deviation 1231.19

Table 3: Option Prices and Transition Probabilities for INTC, Spot = $21.20

Strike Call
Price

Put
Price

Transition 
Probability

Lognormal 
Transition Prob

15 6.25 0.01 0 6.84E-5

16 5.20 0.02 0 6.84E-5

17 4.80 0.03 3.78661E-2 1.38E-3

18 3.59 0.06 0 1.24E-2

19 2.33 0.10 1.10125E-1 5.65E-2

20 1.45 0.23 1.21498E-1 1.47E-1

21 0.73 0.51 3.03883E-1 2.34E-1

22 0.27 1.05 2.68249E-1 2.44E-1

23 0.07 1.83 1.72417E-1 1.74E-1

24 0.03 2.81 2.08182E-3 8.76E-2

25 0.02 3.82 0 3.24E-2

26 0.01 4.50 8.96828E-4 9.06E-3

27 0.01 4.25 5.71573E-2 1.98E-3

28 0.04 – 0 3.45E-4

30 0.02 8.13 0 5.89E-6

Figure 1: Market Implied Transition Probability from Option Prices and Lognormal Transition Probability for MSFT (Spot = $24.26) and INTC (Spot = $21.20).

September 19, 2011 and closed at 19.99 on June 20, 2011, indicating a signifi-
cantly higher market volatility for the second run. One month VaR for the 
test portfolio calculated using option-implied probability distribution with 
Monte-Carlo method has a mean of $110868.50 and a standard deviation 
of 883.84 while the VaR calculated using delta-normal method using one 
month historical variance is $93986.40.

VaR of the test portfolio defined in table (1) was run for September 19, 2011. 
Taking VIX, CBOE Volatility Index for S&P 500 (CBOE Volatility Index®, 
2009), as a measure of market volatility, we find that VIX closed at 32.73 on 
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Appendix: Supporting Calculation Results

To test the affect of potential positive news on VaR, the Monte-Carlo 
method using option based probability distribution was applied to Alcoa 
and Intel using closing prices on September 30, 2011. The fourth quarter 
earnings for Alcoa (AA) is scheduled for October 11, 2011, and for Intel 
(INTC) it is scheduled for October 18, 2011. The earnings release schedule 
dates fall before the options expiry (October 21 2011). Simulations show 
that for a position comprising 1000 shares of Alcoa, the VaR using Monte-
Carlo based simulation is $3446.58 (with standard deviation of 6.2312). VaR 
for this position using delta-normal method is higher at $4880.55. This is 
because options based probability distribution is implying a higher prob-
ability of a positive earnings surprise, thereby reducing the downside risk. 
Similary, VaR for a position of 1000 shares of Intel (INTC) common stock has 
an average VaR of $6112.60 using monte-Carlo based simulation method, 
but is $10878 using delta-normal method. The detailed results are present-
ed in Appendix.

In equation (20) and (21) σ
i
 denotes the standard deviation in daily log 

return for asset i. N
i
(0, 1) is a random number drawn from standard nor-

mal distribution (mean = 0 and variance = 1). W denotes a column vector 
composed of asset values (at time t = 0), W

i 
= N

i
S

i
(0). Σ denotes the variance-

 covariance matrix of log returns.

 

�(T) =
n∑

i=1

NiSi(T)

�(T) − �(0)

�(0)
=

∑
NiS(0)

(
exp

(−σ2
i T

2 + σi
√

TNi(0, 1)
)

− 1
)

�NiS(0)

=
∑

Wi

(
exp

(−σ 2
i T

2
+ σi

√
TNi(0, 1)

)
− 1

)

≈
∑

Wi

(−σ 2
i T

2
+ σi

√
TNi(0, 1)

)

=
∑

Wi
−σ 2

i T

2
+ N(0, W

′
�W )

 (20)

 

⇒ VaR99% = �(0)

(
−

∑
Wi

σ 2
i T

2
− 2.33

√
W ′�W

)

= $87870.90
 (21)

4  Data Source
Options data and historical price quotes (daily close price) were obtained 
from Yahoo Finance website http://finance.yahoo.com. Historical prices and 
option chains are freely available for each ticker on this website.

5 Conclusion
VaR based on market implied probability distribution is able to capture 
the effect of upcoming events. For example, just before quarterly earnings 
release the probability distribution increases for strikes above and below the 
spot price reflecting a greater probability of up or down jumps. Also, after 
sharp drops in asset price, the probability distribution shifts to the right 
echoing the option traders view of likely recovery in asset price. The method 

ENDNOTES 
1.The tridiagonal matrix from equation (8) was solved using R pack limSolve (Soetaert, Van 
den Meersche, and van Oevelen, 2009).
2. Tinflex package (Leydold, Botts, and Hörmann, 2011) allows random number generation 
from specified probablity distribution.
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Table A1: Portfolio Value on September 19, 2011

Asset Units Market Price (Sept 19, 2011)

S&P 500 (SPY) index fund 1000 $120.17

Microsoft Corp (MSFT) 5000 $26.98

Intel Corp (INTC) 8000 $22.20

General Electric (GE) 5000 $16.04

Total $512870

presented is able to capture the impact of these upcoming events on market 
risk. On the downside, this method is effective only for assets with liquid 
option prices. Also, option prices may reflect greater aversion to downward 
market moves (volatility smile) that usually do not materialize. This may 
cause an overstatement of Value-at-Risk. This method cannot be used for 
assets that do not have traded options.
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Table A3: Monte-Carlo Simulation Results for 1000 Shares of AA Common 
Stock on September 30, 2011. Spot Price = $9.57. (99% VaR using 10000 
Steps)

Run 99% VaR

1 $3446.33

2 $3449.04

3 $3449.81

4 $3433.19

5 $3455.59

6 $3446.33

7 $3450.96

8 $3443.24

9 $3444.79

10 $3446.57

Average $3446.59

Standard Deviation 6.23

Table A4: Monte-Carlo Simulation Results for 1000 Shares of INTC Common 
Stock on September 30, 2011. Spot Price = $21.33. (99% VaR using 10000 
Steps)

Run 99% VaR

1 $6117.86

2 $6123.85

3 $6093.23

4 $6129.17

5 $6117.86

6 $6068.56

7 $6109.88

8 $6118.53

9 $6119.86

10 $6127.17

Average $6112.60

Standard Deviation 18.49

Table A2: Monte-Carlo Simulation Results for Test Portfolio on September 
19, 2011. (99% VaR using 10000 Steps)

Run 99% VaR

1 $110332.00

2 $110116.00

3 $111191.00

4 $110749.00

5 $112535.00

6 $111880.00

7 $110146.00

8 $111401.00

9 $109683.00

10 $110652.00

Average $110868.50

Standard Deviation 883.84
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