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Abstract

Recent troubles in the financial industry have led market participants to recon-

sider some influential pricing assumptions, such as the completeness of the market
(mathematically, there is not only one risk neutral probability, as financially speak-
ing all tradable asscts can be replicated in different ways). Since the uncertaintics in
the market are real, practitioners have become more open to reconsider the basics.
Indeed, some valuation methods initially rejected by the market now begin to be
valuable. In this paper, we develop some numerical procedures that give us the ability
to solve generically the valuation in an uncertain world.
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Markov Chain

1 Introduction
In these stressful times, practitioners have begun to realise how difficult it is to rely
on market information and even more difficult to extrapolate it. For instance, market
volatility is far from being perfectly implied. It is well known that the standard option
pricing model of Black-Scholes (1973 [1]) and Merton (1976 [2]), which considers
a flat volatility for the underlying, is inconsistent with observed market prices. In
such model, the observed skew is not the only reason for this inconsistency, indeed
itisalso due to the bid-ask information linked to the asset liquidity which is not con-
sidered in the derivative valuations (although is taken into account via an “add-on”™
post-evaluation called hedging adjustment). The standard way to price exotics is
based on the market’s transformation into an ideal world called “’risk neutral world”.
Avellaneda (1995 [4]) has developed the Uncertain Volatility Model (UVM),
later Kamtchueng (2008 [14]) proposed an extension to the equity correlation
(Uncertain Correlation Model). For many reasons that we will mention later, those
models used to be put aside. However, the interest on this type of view has increased
significantly in the past two years. Our scope is to provide a generic methodology
(not product dependent) to evaluate the exotic in an uncertain world via a panel of
alternative numerical methods. Our framework can be compared to recent works
based on second order BSBESs, see for instance Touzi (2004, [9]; 2007 [12]; 2009 [13]),
Guyon (2010 [15]). We do not go in this direction, rather, we provide a naive forward
way to resolve our uncertain pricing problem, also a backward solution of the BSB
via Markov Chain. Firstly we will describe the UVM theory. After presenting the
disadvantages of the usual method, we will introduce the Uncertain Tree, then the
Uncertain Monte Carlo and try to extend our approach to the multi-asset case. In

"The opinions of this article are those of the author and do not reflect in any way the views or
business of his employer.
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Section 4, we present various numerical method and describe each of them precisely,
in section 5, we are focus on the results for the single asset and multi-asset case.

Our main results are the following: by considering a Double Markov Chain we
managed to reduce considerably the time computation of the uncertain price. Indeed
the presented algorithm avoids any Monte Carlo of O N;V‘ order, or O N:J
with N the number of pathsand N, the number of mesh paths in order to compute
the Gamma. Accuracy is correct and can be adjusted. This is a big achievement
which in addition can be extended to the multi-factor or multi-asset framework. We
managed to elaborate some efficient numerical algorithms to determine the uncer-
tain price of multi-asset or multi-factor product via Markov Chain construction.

2 Notations

« N number of paths
« N,number of steps
« N number of meshs paths
N, number of Buckets at time ¢
N, maximum of the (NB.t), ,te {1.N}
Mesh(S,) intermediate Mesh construct via the intermediate density at S,
Mesh] = Mesh(S”) intermediate Mesh construct via the intermediate density
ats;

o intermediate local gamma construct via the intermediate density at S”
A’[ ' intermediate local delta construct via the intermediate density at S
Weight' intermediate local gamma construct via the intermediate density
Weigh trr;\; intermediate local gamma construct via the intermediate density
ats; for the maturity Tt [E!Q [Weigh &S, = S/rl]
Weigh tg,; intermediate local gamma construct via the density f* at §7 to the
bucket | : E& C[Weightrrﬂ s en )19 € BE| with e o)
f intermediate density related to the mid level volatility
f* the density related to the upper bound volatility
/™ the density related to the lower bound volatility

$ path generated with the density. f

S path generated with the density f*

s path generated with the density f~

BF bucket s represented by j/i‘ and construct via Monte Carlo simulation of §
following the f density

B¥ bucket is represented by y** and construct via Monte Carlo simulation of
Sfollowing the f*density with *e {+,-}

)7’; called centroid can be seen as: [E‘rr‘I [s]s, € Bﬂ

¥ called centroid can be seen as: EY [S,|S, € BY] with *e {+,-}

h¥(tS,) the uncertain price process

1(t,S) the uncertain price process defined by backward propagation.
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His the payoff of the contingent claim

0%hY (1,5,)
e .S = e
o I, §,) the price process computed with the intermediate density for the stock.
. 0%h (1,S,)
e IS, i=——
0s?

Sis the uncertain path generated with a uncertain vol funtion of [

o t,S,) the price process computed backward via an importance sampling
method.

.. d 2K(1,S)

P ¢

“ S -
Sis the uncertain path generated with a uncertain vol funtion of I"
h(tS) the price process computed backward via an double Markov Chain.
- % (1,8
o« T8 := #
0s*

« Sisthe uncertain path generated with a uncertain vol funtion of I

3 Uncertain volatility model
Introduced by Avellaneda, the Uncertain Volatility Model (see [4]) is a way to esti-
mate the risk in the volatility (in an incomplete market, the vol is more than risky, it is
uncertain). The UVM solution is the solution of the Black Scholes Barenblatt equa-
tion (see for instance [5] 2001). g, the volatility of S, is bounded by o*and o~

6" <o;<0" (1)
BSB equation will be referred to as:

oL aedfh
i S o 0 )
i - H(s,)
(Notice that it is assumed that the interest rate is null.)
If one is short the option, o * is defined as described below.

o* :=1{|A>o}‘7++1{|;<0}‘7_ (3)
0%
T'oi=—
ST o8

(Notice that the solution to the BSB equation is equivalent to the solution to the BS
equation with the underlying’s volatility equal to o * volatility. This can be interpret-
cd as the worst case scenario in terms of hedging cost given the boundaries within
the hypothesis of the uncertain parameter.)

The main disadvantage of this approach is PDE implementation, which given
the fact that the dynamic is unknown, remains the only stable way to implement this
model. We will try in this paper to described some alternative numerical methods.

The BSB equation is defined as follows in the multi-underlying case:

oh
—_— max * sy ¥
R [ WN e P |

.Sij P h

Ly [ 4
B Z111':1 0} Py zszm 0 “

H((Sr) i)

hy

In the rest of this paper, we will propose to solve the BSB equation via other
numerical methods. So we put ourselves in the UVM context but this approach can
be generalized to other parameters in an uncertainty world.

4 Uncertain tree
The binomial tree is a well-known numerical method - we propose in this section
to extend it to take into account an uncertain world. In the context of the Uncertain
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Volatility Model (UVM), the dynamic of our underlying is determined by the local
gamma of the option. In fact with this type of model, the Profit and Loss is our major focus
and not the asset itself. We will build our tree by considering the following algorithm:

. SAu‘ =5,7¢ {+-}.

S: is the node jat time ¢, from St" we compute 4 nodes S;f; 0 and

30 it the volatility 0, " {+,-}. ¢ §T'j (1+Up (6")

t+1 1+1

§7'0 284 (1 4 Dwn(s™)

In fact at time ¢, we do not care about the origin of the node §"'], so we can identify
itas SAL We use f*(n) and f*(1) as functions that determine the number of the nodes
computed via the node 7 from the previous time (see Figure 4 in section UCM Graphs).

lior the backward diffusion of the price process 1i(5S)), the algorithm is the fol-
lowing:

Vn < NbNodes [NL]

W(1.8) =1 (%)
Vi< N
Vn < NbNodes[ (]

() = B [ (418,

= [p“Pf“h(H LSV (1 + Up(a™)) ) +(1—pt )h(t+ 1S/ (1 + Dwin(s™) )]
N—— N—— ——

) e
i+1 SHJ

N

with {#=+} ifl"(t,SA,“)>0, and {*#=-} otherwise, and we defined the risk neutral prob-

ability:
Pt =ar <;—*‘— 1= Up(a*))

t
Remark: By risk neutral probability, we mean the risk neutral probability associ-
ated to the corresponding volatility (o *or o -).

Uncertain Tree
Tree.build A
nbNodes[0] =1 12
S[0] =s 13
fort=1,t<N;: 14
15
NESEN l6
S.resize(nbNodes|t]) 17
forn=1,n<nbNodes[t-1]: 18
S[ f™(n)] =Sr=[n] (1+ Up(c™)) 19
SLFH(m)] = SP=[n] (1 + Dwn(c ™)) 110
SLF“(m)] =87 [n) (1+ Up(a)) i
SLF ()] =8P [n] (1 + Dwn(c™)) 112
Tree.price 113
for n= 1, n < nbNodes[N']:fiy, = H(S[n]) 114
fort=N-1,t>1: 115
forn=1,n < nbNodes[t]: 116
['=Tree.gamma(t,n) 117
if T >0: » » 118
= [pu/V.Jrh[fH(“) +pdwu.+ t+1(m] 119
else: 120
b= [t s
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One other way to use a tree, is to compute the I" of the option via an intermediate
density function f then simulate the underlying by Monte Carlo with the following

“density” f 1= 1ypso f + Ly peo

Uncertain Tree
Tree.build 11
nbNodes[0] =1 12
S[0] =s 13
fort=1,t<N; 14
nbNodes[t] = nbNodes[t-1] + 1 15
§rev=§ l6
S.resize(nbNodes[t]) 17
forn=1,n <nbNodes[t-1]: 18
S f4(m)] = S [n] (1 + Up(5)) 19
S[f(n)] = S#[n] (1 + Dwn(3)) 110
MCTree.price 111
forn= l,nsnbNodes[N’]:};:.l:H(S[n]) 112
ort=N-1,t21: 113
forn=1,n <nbNodes[t]: 114
| = [ il I3
fort=1,t<N; 116
forn=1,n<Ng 117
T = Tree.gamma(t,S)) 118
compute SAI“+l in function of I" 119
120
121

5 Uncertain Monte Carlo approach

5.1 Summary results

We have presented two implementation of the UVM (PDE-Tree). In this sec-
tion, we will first consider forward naive method based on I computed by
Monte Carlo viaa Mesh O(N,N,x I"). Then, we will be focus on a backward
propagation via a Markov Chain O(NN, + ') or via a Double Markov Chain.
This last method is relevant, we compute two Markov Chain then we consider an
adjustment of the MC. In Annexe, we compare the Monte Carlo method against
the PDE. We consider the one underlying case then present results for the two
underlyings case.

5.2 Introduction

The most problematic part of the “uncertain world” pricing is the fact that the
dynamic of the underlying is unknown. However, as Kamtchueng explained in [14],
the dynamic of the underlying is product-paths dependent and can be defined as
below.

ds
S_I = rr;,lde
t
Sy = s
ors i=1n >0} 05 + 1{r, <0} 0§
- *hV (t.8;)
BT os2
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h'(t,S ) is the price in the uncertain world a time ¢, it could be determinated via back-
ward propagation and for J (discretisation step) small enough could be approxi-
mated by A( £,S). Fora contingent claim, we can defined h as follows:

h(T1,8;) = H(Sy)
Vt<T
h (T’ Sr) = IEazy [h (T+ 1’Sr+1)} 1[l‘w>0}Jr [E?i [h (rJr lvsm)] 1{1“,_51<u]

% (t,8,)
K

First we will introduce the Explosive Monte Carlo then we will try to reconstruct
the idea of the Uncertain Tree in the Monte Carlo framework via a Markov Chain.
We will consider a discretisation of the underlying space for each time step repre-
sented by the set of the (f/f)ke{ 1N, ) with N the number of buckets. The buckets
are the interval discretisation of the underlying space (see Figure 6 and for instance
[10] [7] and [8]).

5.3 Methodologies
Tn this section, we present various implementation of the Uncertain Monte Carlo.
Basically we first introduce naive ways then the Markov Chain based.

« Explosive Monte Carlo: this approach is very straigh forward. As explained in
section Pseudo Code, we generate the local gamma I* by using a finite differ-

ence method which cost us in time computation O (NSNt X [ 3NN, ] ) As
——
X st
we will see, we can reduce the by using a Mesh: O (NSN, X [ 3NyN, ] ) .
——

T
The Monte Carlo algorithm can be summurized as follows (the details of the
pseudo code is in Section 10):

(a) compute T" via Mesh using $
(b) generate Sin function of [*

Remark: The Mesh can be seen as a Mini Monte Carlo.

« Intuitive Mesh Malliavin: this method only differs by the use of Malliavin
Weight in order to compute the local gamma . By Malliavin calculus we

manage to reduce the computation time O <NSN1 X [ NyN, ] ) .
——

st
The Monte Carlo algorithm can be summurized as follows (the details of the
pseudo code is in Section 10):

(a) compute I via Mesh using $
(b) generate Sin function of r

Remark: the Gamma Malliavin Weight in Black and Scholes is defined as:
. Wr W; -T . .
Weightly, := —= + ———, We are interested by the local Weight
o TS (,, TSo)
« Integration Mesh Malliavin: We build numerically a Markov Chain viaa

Monte Carlo simulation of the path $ (generated via the intermediate density
f ). By backward propagation we retrieve the uncertain price via an impor-
tance sampling method (we need to know analytically /" and f°), alternatively
(orin addition) we can generate another Monte Carlo to perform the conver-
geance given the local Gamma I" computed for each centroide point.
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This approach distinguishes the simulation and the gamma computation. Indeed
our simulations will be used for the construction of the Markov Chain but also for
the Malliavin weight O(Ner + [ NgN, ] ) .

—~—

"The Monte Carlo algorithm can be summurized as follows (the details of the

pseudo code is in Section 10):

(a) generate § via the intermediate density

(b) constructa Markov Chain via S

(¢) compute I"via backward propagation and importance sampling or viaa Mesh
for each centroid p* at each time steps

(d

=

generate § in function of I

Double Markov Chain: the main idea is to be able to retrieve the following
transition probabilities

Uj (y?:l b’r‘%) =0 (Sjﬂ € Biﬂ S; € B];F (Sr)) ©)
*€ {+,—}
this can be done numerically via

- an Explosive Monte Carlo: As we can see in Figure 5, it is a method very simi-
lar to our uncertain tree

- aDouble Monte Carlo: generate two Monte Carlo simulation, one with f“and
another with f~

We compute backward the Gamma of each Markov Chain T'* and I then if the
sign are commun we derive the uncertain price in favor of the Gamma sign Markov
Chain otherwise we re-compute the Gamma’s with a finner discretisation of the
underlying space as described in the Pseudo Code Section 10.

This approach distinguishes the simulation and the gamma computation. Indeed
our simulations will be used for the construction of the Markov Chain but also for

the Malliavin Weight O<2NSN,+ [ NN, ])
——

The Monte Carlo algorithm can be Summurized as follows (the details of the
pseudo code is in Section 10) :

(a) generate $*and §” via respectively f"and f~

(b) construct two Markov Chain via S*and$”

(c) compute I'“via backward propagation and importance sampling or via a
Mesh for both Markov Chain for each centroide y*” at each time steps
generate S in function of I’

(d

Remark: the last step of the Markov Chain methods can be avoided by a propa-
gation of the uncertain price adjusted by an Importance Sampling. Can be seen in
Table 5 for the one underlying case.

5.4 Localgamma
In this section, we describe the proxies used for the local gamma.
Remark: we assume 3 time steps (£, T'), and compute the local gammain t.
S =s (6)
- (S, +e€)+h, (S, —e)—2h, (S
£ (5) < Pelire) rhuls —0) 3R s) o
€
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PR () ®)
T s
0%, (s)
oS )
# 0s?
T (5) = E2 [ (7) weight!, | (10)
N 0%h, (s) (i1
T s
%Y, (s) (12)
0s*
S, eBf (13)
W(St %)
——
. (S 94.1)
I, (yF) = ER| H (S;) Weightt ——L~
l(yt) t ( T) eigl r’Tf(ST,}A/’;,t) (14)
0°h, (s)
as (13)
PHY, ()
anLts (16)
# as*
ﬁUﬂZEFWMMﬁEFM+EFWHNﬁ@rM
N—— N——— (17)
T T
N 0*hY (s) (18)
T T8
() =Er [II (S7) Weigh r,rl] (19)
= /H(ST) Weight';‘,lf * (Sy,s) dSy (20)
R

Remark: our major assumption is that the Local Gamma sign stays unchanged
within the bucket.

Remark: we have considered uncertain pricing problem which a finite set of pre-
defined solutions. In the general case, we are exposed to the optimisation problem.
This can been solved by using importance sampling and a classical optimizer.

6 Results
6.1 Option with one underlying

‘We have implemented the methods described in the previous section to the pricing
of a Digital Option.

First of all, we present the classic pricing result using the Monte Carlo method
and then the Markov Chain method. As shown in Appendix 8.1, the speed of conver-
gence is relatively different with either approach.

Asdescribed in Section 5.2, after using the paths in order to build the Markov
Chain, we compute the price at each time (each bucket) via backwards propagation
of the price, and therefore the computation time is longer.

Figure 2 in Appendix 8.3 is based on Table 3 results. We can see that the double
Markov Chain converges faster than the other two Monte Carlo (Naive and Intuitive
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Mesh Malliavin) with less Monte Carlo Paths. Indeed MC Naive and Malliavin MC
are using 5000 paths unlike the DMarkov MC with only 1000 paths to build and to
adjust (viaa Monte Carlo).

In Tables 5 and 6, we can see that 1000 paths are enough to build our Markov
Chain. An additional Monte Carlo adjustment of less than 2000 paths ensures good
convergence. Therefore 2000 paths are enough to price the option with closed form
Gamma. In Table 4, with 2000 paths the convergence is less accurate, 0.912 against
0.905, and more time consuming 20 scconds against 8.47 scconds.

Concerning the Markov Chain method, it can be seen in Tables 6, 7, and 8 and
Figure 1, that we do not need a huge number of paths builder, or a number of buckets,
to produce an accurate price.

The Monte Carlo adjustment improves the accuracy of pricing as it is shown in
Figure 2, Uncertain Pricing computation.

6.2 Option with two underlyings

As we mentioned in introduction, the PDE implementation is limited by the dimen-
sion of our pricing problem. If the Naive Method is working, the time cost is huge.
We are in favor of the Markov Chain approach. We propose two algorithms:

« Mid Markov: it is an extension of Integration Mesh-Malliavin. We compute
numerically our Markov Chain via a multi-dimensional Monte Carlo with
paths generated via the joint intermediate density. We then re-run another
Monte Carlo, using the Gamma Grid from the Intermediate Markov Chain.
Multi Markov Chain: it is an extension of the Double Markov Chain. We
compute the entire combination of the pair of Markov Chain (o], &) with
(€ {+,=}, *#€ {+,-}). Then from the Gamma profile of the set of Markov
Chains we made our decision when we re-run our Monte Carlo.

6.2.1 OutPerformance or Choice Option
‘We have for this payoff a close form for the uncertain price. Indeed given a positive
correlation we have the BSB solution provide by the upper volatilitics.

OutPerf (1,51.57) = E, | (5} - 53) @

the Option price of the 6M OutPerf is 1.2005. Our results are presented in the
Table 10.

6.2.2 Spread ofCall

Asalinear product with a cross gamma null, we can determine the solution of the
BSB equation associated with the Spread Of Call defined as follows.
SpreadCall (1,51.57) =, [ (8- K)" = (53 - K.) )| @2)

t

by taking the upper bound of the first asset and the lower bound for the second asset,
we have the closed solution of our uncertain pricing problem. the Option price of the
1Y SpreadCall, with strikes K, =10.5 and K, = 11 is 1.1367.Our results are presented
in the Table 11.

6.2.3 Digital Basket
DigitalBasket (1,S!, $?) = E, [1 (sl s ok }] (23)

Our Results on the 1Y Digital Basket, with strikes K, = 10.5, are presented in the
Table 12. In order to provide the closed Gamma results we have used a Moment
Matching proxy.
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6.2.4 Digital Geometric Average

Digital GeontetricA £8],87) =E, |1 24
igital GeometricAverage (1,S;, S7 ) [|:{\/EZA}:| (24)

Our Results on the 1Y Digital Geometric Average, with strikes K| = 10.5, are pre-
sented in the Table 12.

6.2.5 Comments
"T'he generalisation confirms the result of the previous section. We have implemented
the different approaches for the 4 exotics presented above.

In Table 10, the results are expected and the uncertain price is equal to the upper
bound volatility price 1.2005.

In Table 11, because of the linearity of the payoff the uncertain price is known
and equal at 1.1367. The Uncertain Monte Carlo methods are very closed.

We note a better convergeance for the Multi Markov Chain method.

In Table 12, we try to compute the uncertain price of a Digital Basket. The uncer-
tain price is lower than the actual BS closed formula price which is a proxy using
the Moment Matching volatility of the Basket. We can also see how the Monte Carlo
price o' is closed to our uncertain price Monte Carlo, this can be explained by the
fact that our uncertain price is lower than our Monte Carlo error.

In Table 13, the results are similar at the one from table 12.

After a quick study of the Gamma profile of the option 12 and 13, we opte fora
finner discretisation of the underlying space.

Remark: The results in Table 12 present some interests in sense that we can sepa-
rate the different source of noise. Indeed The closed Gamma is biaised by the fact that
the gamma profile of the Moment Matching proxy and the Digital Basket are not the
same. The Naive Monte Carlo is time consuming without a good convergeance rate.

In Tables 14-16, we study the Gamma profile convergeance by increasing the
paths of the Mesh used to compute the Markov Chain and the Malliavin Weight with
another discretisation. The results are satisfying in sense that in the Table 16 we are
closer to the closed solution.

7 Conclusion
As we have described in this paper, there are various ways to solve our numerical
pricing problem that are independent of the product. The “uncertain tree” approach
is very similar to the BSB PDE therefore does not resolve the multi-dimensional
issue. As demonstrated in the Results section, use of the Markov Chain provides a
faster and more accurate way to determine the uncertain price.

In view of our main concerns, computation time and accuracy, one can consider
a Monte Carlo adjustment to perform the convergence. Another advantage of the
Markov Chain approach is that it takes into account the multi-factor multi-underly-
ing pricing problem (see [7] for the higher dimension quantisation theory).

We shown some results for the multi-underlyings uncertain pricing problem.
If the performance is reasonable for the two underlyings case for both method Mid
Markov and Multi Markov, the rate of convergeance of the last method will explode
with the number of underlyings. Indeed the Multi Markov algorithm has a number
of Markov Chain needed which increases exponentially with the number of assets.

The precision is relative to the product Gamma profile therefore a study product
dependant should be done before making any choice regarding the method.

This method can be applied to more recent issues such as the exposure, collateral
modelling, and liquidity risk (it will be discussed in a subsequent publication).

Concerning the uncertain Monte Carlo, our work can be extended:
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« Firstly, to other uncertain parameters, UCM [14] and other extensions. In
practice, even for the uncertainty volatility model we need more than the sign
of the T, in the general case the exact value of the A and T are needed.

o Secondly, in addition to and as a consequence of the above point, our sensi-
tivities have to be accurate enough to make a good sensitivity decision.

« Thirdly, our framework can be added to recent works by Touzi et al (2004, [9];
2007 [12]52009 [13]), and Guyon et al (2010 [15]).

Appendix
8 Numerical Application One Underlying

« S =

89
I
.=
)
=SS
g3

Digital*(S,, T,K, ") =0.5797

Digitals(S,, I, K, 6-) = 0.8422

Digital®(S, T,K, & ) = 0.6652

Digital(S, T, K, ¢, ) = 0.9020 computed by PDE, 6" = 0.1 and 6= 0.01
computed in 1.1 seconds.

8.1 Pricing Digital Maturity 1Y, Strike 90%
Table 1: Digital Pricing by Monte Carlo, strike 90%

Table 3: Uncertain Monte Carlo, 100 steps, 5000 paths and 1000 paths for
the Mesh (1000 paths to build the Markov Chain)

Naive Mesh DMarkov DMarkov DMarkov
Method MC  Malliavin MC rmc r MC PDE
Price 0.6178 0.8388 0.912 0.9472 0.8709 0.883 0.902
Variance 02361 0.1353 0.081  0.046601 0.104
Time 1190.58 529.78 55! 20.64 5.08 11.8 1.1
NbBuckets 100 100 100

Table 4: Uncertain Digital Price, convergeance MC Gamma

Monte Carlo G

NbSteps 100 100 100 100 100 100 100
NbPaths 500 1000 2000 3000 4000 5000 6000
Price 0914 0.883 0912 0.9033 0.9097 0.9028 0.90283
Variance 0.0802 0.1949 0.08 0.0875 0.0823 0.0879 0.0878
Confidence 0.9388 0903 0924 0913 0918 09110 0.9103
Interval 0.8891 0863 0899 0.892 0.9 08945  0.8953
Time 7.55 11.8 2405 3678 49.73 58.73 69.47

Table 5: Uncertain Digital Price, Double Markov Chain Gamma

Double Markov Chain Gamma

Monte Carlo Pricing of Digital

NbSteps 1 1 50 50 100 100

NbPaths 5000 10000 5000 10000 5000 10000
Price 0.5836 0.5695 0.5763 0.584 0.5772 0.579
Variance 0.0882 0.0882 0.0882  0.0883 0.0883 0.0882
Confidence 0.5918 0.5753 0.5845 0.5898 0.5854 0.5848
Interval 0.5753 0.5636 0.568 0.5781 0.5689 0.5731
Time 0.06 0.07 0.41 0.69 0.69 13

Table 2: Digital Pricing via Markov Chain, strike 90%

NbPathBuilder 500 1000 2000 3000 4000 5000 6000

100 Buckets 0.88337 0.87 0.8741 0.8735 0.8644 0.8655 0.8626
time 0.466 5.08 513 5.75 6 6.58 7.38
150 Buckets 0.8725 0.8762 0.8946 0.8798 0.8852 0.8776 0.8807
time 7.181 7.87 8.14 8.47 9.3 9.88 10.2
200 Buckets 0.8881 0.879 0.8873 0.8893 0.8864 0.888 0.8891
Time 10.34 1059 1078 1131 1194 1205 13.22

Table 6: Uncertain Digital Price, Double Markov MC Gamma

Markov Chain
NbSteps 1 1 50 50 150 150
NbPaths 5000 10000 5000 10000 5000 10000
Price 0.5856  0.5845 05724  0.5855 0.581  0.5725
NbBuckets 50 50 50 50 100 100
Time 0.2 0.28 2.16 2.97 6.59 8.44

8.2 Uncertain Pricing Digital Maturity 1Y, Strike 90%

In this section, we present the result concerning the following methods:

MC Gamma is a Monte Carlo using a closed formulae for the gamma.
Naive MCis described in Section 5.3

Mesh Malliavin (intuitive) is described in Section 5.3

DMarkov (Double Markov Chain) is described in Section 5.3

DMarkov Gamma is DMarkov algorithm using a closed formulae for the
gamma instead of Malliavin

DMarkov MC is DMarkov with an additional Monte Carlo
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Double Markov Chain MC Gamma (PathBuilder 1000,

nbBucket 150)
NbPath MC 500 1000 2000 3000 4000 5000 6000
Price 0.892 0.912 0.905 0.8883 0.8987 0.896 0.8998
Variance 0.0979 0.081 0.0863 0.0994 0.0912 0.09334 0.0902
Confidence  0.9194 0.91788 0.91788 0.89961 0.9081 0.90446 0.9074
Interval 0.8645 0.89211 0.8921 0.877 0.8893 0.88753 0.8922
Time 7.52 8.47 8.47 8.97 9.47 9.55 9.89

Table 7: Uncertain Digital Price, Markov MC Gamma

Markov Mid Vol G MC (Path Builder 1000, nbBucket 150)
NbPath MC 500 1000 2000 3000 4000 5000 6000
Price 0.898  0.889 0.89 0.897 0.905 0.899 0.8985
Variance 0.0932 0.09946 0.0906 0.0926 0.0861 0.09032 0.0913
Confidence  0.9247 0.9085 0.9125 0.90789 0914 09081  0.906
Interval 0.8712 0.8694 0.8862 0.8861 0.8959 0.8914 0.8908
Time 4.83 5.11 5.1 5.55 6.3 6.11 6.63
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Table 8: Uncertain Digital Price, Double Markov MC

Double Markov Chain

NbPath MC 1000 1000 4000 4000 6000 8000
Price 0886 0.952 0.936 0.938 0936

10000
0.9493 0.932

Variance 0.102 0.0466 0.0607 0.0581 0.059 0.0481 0.0634
Confidence 0914  0.9653 0.9512 0.9457 0.944 0.9549 0.9383
Interval 0.8579 0.93862 0.9207 0.9307 0.9289 0.9438 0.9256

Time 18.16  20.64 5931 6061 60.58 87.89 14527
NbPathBuilder 500 1000 1000 4000 4000 6000 6000

Table 9: Uncertain Digital Price, Markov Mid MC

Markov o . MC
NbPath MC 500 1000 1000 6000 4000 4000 8000
Price 074 0774 0812 0786 0.7758 0.798 0.7794
Variance 0.193493 0.1755 0.1533 0.1682 0.174 0.1613 0.1779
Confidence 0.7785 0.7999 0.8362 0.7936 0.7887 0.8104 0.7898
Interval 0.70144  0.748 0.7877 0.7756 0.7629 0.7855 0.7689
Time 10.61 1042 33.03 5245 3659 3463 86.59
NbPathBuilder 1000 1000 4000 8000 6000 4000 10000

8.3 Uncertain Pricing Computation time and accuracy

Figure 1: UMCTime Computation.
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9 Numerical Application Two Underlyings

«$=8:=10
<K =105
<K,=11

o0 =40%
0 =20%

e 0 =30%
c0,=15%
«0;=5%

e 0 "=10%
e p=0%

In this section, we present the result concerning the following methods:

Naive MC is a Monte Carlo based on the intermediate law Gamma provided
by a closed formulae

Mid Markov (Integration Mesh Malliavin) is based on one Markov Chain
built via the intermediate law see section 5.3.

Mid Markov T is Mid Markov algorithm using a closed formulae for the
gamma instead of Malliavin

Multi Markov (Double Markov Chain) is based on a combination of Markov
Chain which reflect the possible (¢ |, o'}) solution of our BSB pricing prob-
lem.

Multi Markov " is Multi Markov algorithm using a closed formulae for the
gamma instead of Malliavin

o+ MCisaMonte Carlo price with the f* density for the two underlyings
using 20000 paths.

o~ MCisaMonte Carlo price with the f~ density for the two underlyings
using 20000 paths.

o BSis the closed form price with the f* density for the two underlyings.
o BSis the closed form price with the f~ density for the two underlyings.

Table 10: Uncertain Monte Carlo price for a OutPerformance Maturity
6 Months

Naive Mid Multi Mid Multi
Method MC  Markovl Markovl Markov Markov o*MC o MC
Price 1.2057 1.1773 1.2022  1.1845 1.1946 1.1982 0.575
Variance  0.2361  3.9021 4.155 4.0937 4.0432 4.1421 0.8597
Time 28380  23.25 220.27 52.86  199.47 BS BS
NbSteps 20 20 20 20 20 1.2005 0.581
NbPaths 20000 20000 20000 20000 20000
NbMesh 5000 5000 5000 5000
NbBuckets 20 20 20 20

Table 11: Uncertain Monte Carlo price for a Spread of Call Maturity 1Year,
strikes 10.5 and 11

Naive  Mid Multi Mid Multi
Method MC Markovl Markovl Markov Markov o*MC o MC
Price 1.3859 1.2174 1.2294  1.1127 1.1329 1.15 0.5815
Variance  8.0022 8.1761 8.5354 8.1108 8.2057 8.147568 1.2702
Time 1180.5 42 230.75 56.59 205.98 BS BS
NbSteps 20 20 20 20 20 1.1367 0.5848
NbPaths 20000 20000 20000 20000 20000
NbMesh 5000 5000 5000 5000
NbBuckets 30 30 30 30
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Table 12: Uncertain Monte Carlo price for a Digital Basket Maturity 1Y,
strike 10.5

Naive Mid Multi Mid Multi
Method MC  Markovl Markovl Markov Markov ¢*MC o MC

Price 0.2015 0.3299 0.3346 0.3361 0.332 0.3302 0.2827
Variance 0.1606  0.221 0.2226  0.2231 0.2217 0.2286 0.2029
Time 1126.06  26.08 228.02 4842 19828 BS BS
NbSteps 20 20 20 20 20 0.3698 0.3008
NbPaths 20000 20000 20000 20000 20000

NbMesh 5000 5000 5000 5000

NbBuckets 20 20 20 20

Table 13: Uncertain Monte Carlo price for a Digital Geometric Average
Maturity 1Y strike 10.5

Naive Mid Multi Mid Multi
Method MC  Markovl Markovl Markov Markov ¢*MC o MC

Price 0.2062  0.3435 0.3469 03522 0.3431 0.3452 0.2929
Variance 0.1636  0.2255 0.2265 02281 0.2254 0.2214 0.2032
Time 1126.81  25.69 22541 4523 2113 BS BS
NbSteps 20 20 20 20 20  0.3292 0.2821
NbPaths 20000 20000 20000 20000 20000

NbMesh 5000 5000 5000 5000

NbBuckets 20 20 20 20

Table 14: Uncertain Monte Carlo with Malliavin Gamma price for a Basket
Digital 1Year, strike 10.5

Method Naive MC Mid Markov Multi Markov
Price 0.3454 0.3644 0.3659 03628 0.369 0.357 0.3694
Variance 02261 02316 0.232 02311 02328 0.2295 0.2329
Time 1012.2 3277 1064 3033 221.84 249.75 26336
NbSteps 5 5 5 5 5 5 5
NbPaths 5000 10000 20000 20000 10000 20000 20000
NbMesh 5000 10000 10000 20000 10000 10000 20000
NbBuckets 30 30 30 30 30 30

Table 15: Uncertain Monte Carlo with Malliavin Gamma price for a
Geometric Average Digital 1Year, strike 10.5

Method Naive MC Mid Markov Multi Markov
Price 0.3294 0.3224 0.324 0.3268 0.3366 0.3565 0.3549
Variance 02209 02184 0.219 022 0.2233 0.2294 0.2289
Time 918.27 27.53 302 1023 231.63 241.34 234.03
NbSteps 5 5 5 5 5 5 5
NbPaths 5000 10000 20000 20000 10000 20000 20000
NbMesh 5000 10000 10000 20000 10000 10000 20000
NbBuckets 30 30 30 30 30 30

Table 16: Uncertain Monte Carlo with Malliavin Gamma price for a Spread
of Call Option 1Year, strikes 10.5, 11

Method Naive MC Mid Markov Multi Markov
Price 03294  1.1459 1.0387 1.1161 1.2082 1.1534 1.1403
Variance 02209 81587 6.8075 6.9995 85192 83773 8.4039
Time 918.27 2336 30.31 20.6 2383 262.64 263.88
NbSteps 5 5 5 5 5 5 5
NbPaths 5000 10000 20000 20000 10000 20000 20000
NbMesh 5000 10000 10000 20000 10000 10000 20000
NbBuckets 30 30 30 30 30 30
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Uncertain Monte Carlo : Explosive Monte Carlo 11
fort=1,t<N;: 12
forn:l,nSNs: 13
compute Mesh(S!") 14
compute price h(S;'t) via Mesh(S!) 15
compute Mesh(S' +€) 16
compute price A(S; + €.1) via Mesh(S" + € ) 17
compute Mesh(S - €) 18
compute price A(S, - € 1) via Mesh(S!' - €) 19
" n_ "
compute T ": = hsiten+h (3’2 e.t) + 2h(S01) by definite differencel10
€

compute SA: ,in function uff‘: 111
112
113
114
115

Uncertain Monte Carlo : Intuitive Mesh-Malliavin 11
fort:l,tSNl: 12
forn=1,t<N: 13
compute Mesh, 14
compute I"! via Malliavin 15
compute S I”H in function of l:;‘ 16

17

18

19

110

111

112

113

114

115

10 Pseudo-Code

Uncertain Monte Carlo : Integration Mesh-Malliavin 11
simulation § 12
Markov Chain build 13
fort=N,t=1: 14
fork:l,tSNuJ: 15
compute T(t, j'i‘ ) 16
compute h(t, j/f) via importance sampling 17

18

19

110

111

112

113

114

115
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Uncertain Monte Carlo : Double Markov Chain
simulation §"*" and §
Markov Chain build
fort:[\/r, t=1:

ork= LtSNu,f

compute T (f, )7? )

compute I (1 ;‘/f)

if T (r,yf)fo and T (£, ¥) >0
compute i (¢, %)

elseif T (1,7%) <0and I (1,5¥) <0
compute i (£, j)][ )

else
affine bucket discretisation

111

115

11 UMCby Graphs

11.1 UncertainTree

Figure 3: UMCTree: At each time steps, each node has two pair of sons
computed viatwo densitiesf" and

0
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11.2 Explosive Monte Carlo

Figure 4: UMC Explo MC: similar to the tree approach, for each time step, we
generate for one path two paths via two densities f*and f~

11.3 Markov Chain

Figure 5: UMC Markov Chain : the transition probability matrix is computed
forward numerically then the price and gamma backward
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