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approach to stochastic volatility 
(SV) modelling begins with the 

specification of an SV process, typically on the grounds of its 
analytical tractability (see, for example, Heston, 1993). Then, 
after a closed-form solution for vanilla options has been derived 
and implemented, the parameters of the SV process are cali-
brated to the implied volatility surface of vanilla options using 
complicated non-linear optimisation methods. The drawback of 
this approach for business applications is that the calibrated 
parameters are unstable from day to day irrespective of changes 
in the implied volatility surface such as in the at-the-money 
(ATM) implied volatility, skew or convexity. Also, key variables, 
such as forward skews and volatility of volatility, are outputs in 
these models and cannot be tweaked to reproduce market 
observables or proprietary views.

The problem of modelling forward skews was relaxed by the 
introduction of local stochastic volatility (LSV) models (Lipton, 
2002), which combine local volatility to fit the vanilla surface and 
the SV dynamics to model forward skews. The advantage is that 
as the vanilla surface is matched by construction for any set of SV 
dynamics, the modeller has the freedom to specify parameters to 
match either historical data or exotic options. The typical driver 
for the SV part is chosen to be either the square root process, as in 
the Heston model, or an exponential Ornstein-Uhlenbeck proc-
ess (Bergomi, 2004).

While LSV models became popular in foreign exchange mar-
kets, in equity markets they are less popular. One disadvantage of 
LSV models is their tendency to underprice volatility products 
such as cliquets because they imply high convexity for the for-
ward smile and as a result overprice caps and underprice floors of 
forward-starting products. This can be relaxed by introducing 
jumps in the model dynamics (Sepp, 2011) at the expense of add-
ing extra parameters, one for the jump intensity and two for jump 
sizes in the price and volatility. Another disadvantage is the diffi-
culty in interpreting the SV parameters such as equity-volatility 
correlation, volatility of volatility and mean-reversion rate, even 
before including jumps, and their impact on forward skews.

In this article, we introduce a stochastic volatility model. The 
key parameter of the model, b, can be naturally interpreted as the 

rate of change in the short-term at-the-money (ATM) volatility 
given change in the spot price and easily implied from historical 
and current market data. The remaining two parameters – the 
idiosyncratic volatility of volatility and the mean-reversion rate –  
have less impact on forward skews and also can be estimated from 
historical data without the need to apply time-expensive and 
obscure non-linear fits. The beta stochastic volatility for the loga-
rithm of the volatility was first implemented by Bardhan & Kara-
sinski (1993). A similar model, but in the discrete time setting, 
was developed by Langnau (2004). Here we describe the model 
dynamics incorporating the local volatility with calibration that 
can be implemented using conventional partial differential equa-
tion (PDE) methods. In the limiting case of the deterministic 
local volatility, we derive an accurate approximation for prices of 
vanilla options in this model. Finally, we provide illustrations of 
model calibration and its implications.

The dynamics
We consider two specifications of model dynamics for the underly-
ing price S(t) and its instantaneous stochastic volatility. The first is 
an econometric version applied for model analysis using time series, 
and the second is a pricing version applied for risk-neutral valuation 
purposes in the context of local stochastic volatility models.

The econometric model is expressed in terms of the stochastic 
volatility process V(t):

	

dS t( )
S t( )

= µ̂ t( )dt +V t( )dW 0( ), S 0( ) = S

dV t( ) = κ̂ θ̂ −V t( )( )dt + β̂V t( )dW 0( ) + ε̂dW 1( ), V 0( ) =V0 	

(1)

where b^ < 0 is the rate of change in the volatility corresponding to 
change in the spot price, e^ is the idiosyncratic volatility of volatil-
ity, k^ is the mean-reversion rate, q^ is the mean level of volatility, 
W (0)(t) and W (1)(t) are two Brownian motions with 
d〈W (0), W (1)〉t = 0 and m^ (t) is the drift.

The pricing model is expressed in terms of the normalised vola-
tility factor Y(t):

dS t( )
S t( )

= µ t( )dt +σ 1+Y t( )( )dW 0( ), S 0( ) = S

dY t( ) = −κY t( )dt +βσ 1+Y t( )( )dW 0( ) +εdW 1( ), Y 0( ) = 0	

(2)

where s is the overall level of volatility (we assume that s is set to 
either constant volatility sCV, deterministic volatility sDV(t) or local 
stochastic volatility sLSV(t, S)), W (0)(t) and W (1)(t) are two Brownian 
motions with d〈W (0), W (1)〉t = 0 and m(t) is the risk-neutral drift.

For constant volatility sCV, the following relationship holds 
between parameters of the econometric and pricing models:

	
Y t( ) =

V t( )
σCV

−1, β =
β̂
σCV

, ε =
ε̂

σCV
, κ = κ̂

	
(3)

We note that in this case the diffusion terms in the dynamics 
(2) are linear in Y(t) so a unique global solution exists for this pair 
of stochastic differential equations, unlike some conventional 
exponential Ornstein-Uhlenbeck models, which is important for 

The beta stochastic volatility model
Local stochastic volatility models combine perfect 
calibration at time zero with realistic price dynamics. 
But traditional methods tend to underestimate the 
forward skew, and mis-price exotics such as cliquets 
as a result. Piotr Karasinski and Artur Sepp introduce 
a new model that uses the sensitivity of the at-the-
money implied volatility to spot as a key input to 
ensure forward skew is better fit and exotics are 
correctly priced

The traditional
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the stability of Monte Carlo and PDE methods.
n Intuition. To get an intuition of the dynamics (1) of the econo-
metric model, suppose there is no mean-reversion or idiosyncratic 
volatility of volatility, taking k^ = e^ = 0 and m^ (t) = 0. Assume that 
the dynamics of the ATM implied volatility for an infinitesimal 
maturity is specified by sATM(t) = V(t), so that using (1) we obtain:

	
dσATM t( ) = β̂

dS t( )
S t( ) 	

(4)

As a result, the dynamics (4) can be interpreted as a regression 
model. As b^ < 0, if the spot price decreases and vice versa, recreating 
the leverage effect observed in the market.

The coefficient b^ can be estimated using the time series for 
sATM(t) and S(t) by means of standard regression methods as we 
describe below. Empirically, there is strong correlation between 
changes in sATM(t) and S(t). In figure 1 (left), we show the scatter 
plot daily changes in one-month ATM volatility corresponding to 
daily returns in the S&P 500 index using market data from Octo-
ber 2009–October 2011, and the corresponding regression 
model. We see that the regression model explains about 80% of 
daily variations in sATM(t). The rest of the variation is modelled by 
the idiosyncratic volatility of volatility e^. Empirically, the residual 
is independent of S(t) so we can safely assume the correlation 
between the two Brownian motions in the model dynamics (2) is 
zero to reduce the number of model parameters.
n Comparison with the SABR and other stochastic volatility 
models. Now we consider the dynamics of the pricing model (2) 
again with no mean-reversion and idiosyncratic volatility of vola-
tility, k = e = 0. Using notation as in the stochastic alpha-beta-rho 
(SABR) model of Hagan et al (2002) with b = 1, where b is the 
constant elasticity of volatility exponent, we obtain the following 
specification of SABR model parameters in terms of the beta sto-
chastic volatility model:

	 â = σCV 1+Y t( )( ), ρ = −1, ν = −βσCV , α = σCV 	 (5)

In particular, using formula (3.1a) of Hagan et al (2002) for a 
short maturity and small log-moneyness k, k = ln(K/S0), we 
obtain the following relationship for the Black-Scholes-Merton 
implied volatility sIMP(k):

	
σ IMP k( ) = σCV +

1
2
σCVβk −

1
12
σCV βk( )2

	
(6)

The main similarity between the beta SV model and the SABR 

model is that both assume the lognormal process for the instanta-
neous volatility (in the restricted case (5)). In general, the volatil-
ity process in the dynamics (2) is a mixture of lognormal and 
normal components.

The difference between the two models is that, in the lognor-
mal case of the SABR model, the covariance between spot and 
volatility moves and the variance of idiosyncratic modes in the 
volatility are modelled through the same set of parameters, n, a^ 
and r. In the beta SV model, these are modelled through inde-
pendent parameters so we have more freedom to model the skew 
and curvature of the implied volatility.

Importantly, the key difference between the beta SV model and 
the SABR model is that the latter is mostly used for the parame-
terisation of the implied volatility surface, while to use a stochas-
tic volatility model for pricing path-dependent options we require 
a mean-reversion. The intuition behind the mean-reversion is that 
when the ATM volatility is small it will tend to rise, while when it 
is too large it will tend to decline. Thus, over long time horizons 
(say two years or three years), the realised volatility of volatility is 
expected to stay in a range and not increase with maturity time, 
as implied by models with no mean-reversion. The concept of 
mean-reversion is related to the existence of the steady-state dis-
tribution and the ergodicity of the process (the long-term distri-
bution does not depend on maturity time). The steady-state dis-
tribution of the volatility does not exist in the SABR model. 
However, it does exist in the beta SV model (see equation (20)).
n Interpretation of parameter b. Following the same assump-
tions as in the previous section, we use formula (6) as an alterna-
tive way of calibrating the parameter b from the implied market 
volatility sIMP(k) and skew:

	
β =

Skew
σ IMP 0( )

, Skew =
σ IMP k+( )−σ IMP k−( )

1
2 k+ − k−( ) 	

(7)

where k+ and k– are the log-strikes for out-of-the-money (OTM)
calls and puts typically 10% either side, respectively. We find the 
model implies the following approximate relationship:

	 Skew t( ) = βσATM t( ) 	 (8)

This relationship is observed empirically. In figure 1 (centre), 
we show the scatter plot of one-month 110–90% skew (unscaled) 
against one-month ATM volatility. The relationship is relatively 
strong. In particular, high ATM volatilities are associated with 
steep skews.
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Left: the scatter plot of daily changes in one-month ATM volatility against daily returns in the S&P 500 index; centre: the scatter plot of one-month
110–90% skew against the one-month ATM volatility; right: the scatter plot of daily changes in one-month 110–90% skew against daily returns in
the S&P 500 index using market data from October 2009 to October 2011
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In the Heston SV model, the short-term skew is approximately 
given by re/(2√V

__
(0)
__

), where r is the correlation between the vari-
ance V and log-returns, and e is the volatility of variance (Ber-
gomi, 2004). So the Heston model implies the inverse relation-
ship between short-term ATM volatility and skew. As a result, 
through calibration to steep skews and high ATM volatilities, the 
Heston model implies very high volatility of variance e (see figure 
2 in Bergomi, 2004), as r ≈ –1 and the only way for the model to 
fit the skew is by increasing e. By contrast, in the beta SV model, 
idiosyncratic volatility of volatility e is stable over different mar-
ket conditions.

Finally, (4) and (8) imply the following approximate dynamics 
for the short-term skew in the econometric model:

	
dSkew t( ) = β̂2

dS t( )
S t( ) 	

(9)

So the model produces explicit dependence between changes in 
the skew given changes in the spot price, unlike conventional SV 
models. The dependence between changes in the skew and spot 
returns is observed empirically. In figure 1 (right), we show the 
scatter plot daily changes in one-month 110–90% skew corre-
sponding to daily changes in the S&P 500 index, and the corre-
sponding regression model. Although it is less strong than that of 
the ATM volatility, the corresponding regression model explains 
33% of daily variations in the skew. The slope is positive as nega-
tive changes in the S&P 500 increase hedging demand for OTM 
puts, thus increasing the skew.

Time series estimation
First we discuss how to estimate model parameters b^, k^ and e^ and 
examine the time series of these parameters. We use the time 
series of daily returns R(ti) = (S(ti)/S(ti–1)) – 1, on the S&P 500 

index and the Vix, which we use as a proxy for one-month ATM 
implied volatilities, sATM(ti). We assume that V(ti) is proxied by 
the ATM volatility V(ti) = sATM(ti) ≡ Vix(ti).

The continuous time dynamics (2) can be approximated in dis-
crete time using the following regression:

	 V ti( )−V ti−1( ) = β̂R ti( ) +η σATM −V ti−1( )( ) + ϑ ti( )	 (10)

where s
_
ATM is the average of the ATM volatilities, η ≡ k^dt with dt 

= 1/252 and ϑ(ti) are independent normally distributed residuals. 
The standard deviation of residuals, ϑ(ti), is used to estimate e^, 
after applying the annualisation factor 252.

For illustration, we use the time series of the S&P 500 index and 
Vix from January 1990–January 2012. For each year in the sample, 
we apply the regression model (10) for daily returns to estimate the 
model parameters using data corresponding to any given year. Our 
results are reported in table A. Here, we use the following notation: 
‘SP500’ and ‘Vix’ denote averages of the S&P 500 and Vix closing 
levels, respectively, during the given year. A prefix ‘R’ or ‘St’ stands 
for the average daily return and standard deviation, both annual-
ised, on the S&P 500 index (arithmetic return) and the Vix (abso-
lute return), respectively. ‘Beta’ and ‘Kappa’ are estimates for the 
parameters b

^ and k^. ‘St Resid’ stands for standard deviation of 
residuals, annualised. ‘Correl’ denotes correlation between returns 
on the S&P 500 index and Vix, and ‘Skew’ is the implied skew 
calculated as 10%b

^
s
_
ATM. Finally, ‘State’ stands for the market 

regime with three states: ‘Risk Off’ and ‘Risk On’ when average 
annual returns on the S&P 500 index are negative and positive 
respectively, and ‘Range’ when returns are within 3%.

We see that the Vix increases during Risk Off years and declines 
during Risk On years, while the skew typically declines right 
before Risk Off years or during Range years, when the demand 
for protective OTM puts increases relative to ATM options. In 

a.	Market	and	model	historical	data	–	econometric	model
year sP500 vix R	sP500 R	vix st	sP500 st	vix Beta Kappa st	Resid R2 correl skew state

1990 334.60 23.08% –8.46% 9.42% 15.95% 26.97% –1.00 14.66 21.17% 39% –60% –10.05% Risk Off

1991 376.55 18.35% 25.57% –7.67% 14.27% 19.39% –0.74 10.12 15.82% 33% –57% –7.38% Risk On

1992 415.82 15.41% 4.72% –5.59% 9.72% 11.71% –0.60 15.99 9.96% 28% –50% –5.98% Risk On

1993 451.73 12.68% 7.05% –0.79% 8.62% 11.45% –0.64 31.04 9.57% 30% –50% –6.38% Risk On

1994 460.39 13.94% –0.89% 1.68% 9.84% 15.04% –1.07 23.54 10.15% 55% –71% –10.71% Range

1995 542.36 12.41% 30.48% –2.06% 7.83% 9.94% –0.50 54.27 8.46% 28% –40% –4.98% Risk On

1996 670.95 16.50% 17.87% 8.95% 11.82% 15.71% –0.87 30.78 11.06% 51% –67% –8.71% Risk On

1997 874.37 22.39% 29.65% 2.28% 18.16% 19.69% –0.75 6.86 13.79% 51% –71% –7.46% Risk On

1998 1,086.51 25.61% 25.14% 2.75% 20.29% 29.63% –1.24 5.57 15.06% 74% –86% –12.37% Risk On

1999 1,328.23 24.35% 18.60% –1.96% 18.10% 21.85% –0.97 17.68 12.08% 69% –82% –9.65% Risk On

2000 1,426.54 23.32% –10.08% 5.78% 22.38% 21.73% –0.76 11.70 12.98% 64% –79% –7.62% Risk Off

2001 1,193.66 25.74% –8.32% –7.28% 21.21% 23.98% –0.93 4.68 13.76% 67% –82% –9.27% Risk Off

2002 992.96 27.29% –20.49% 2.68% 26.24% 27.47% –0.87 2.81 14.79% 71% –84% –8.74% Risk Off

2003 966.02 21.95% 21.24% –7.17% 16.76% 13.96% –0.54 3.54 10.49% 44% –65% –5.43% Risk On

2004 1,131.02 15.46% 8.72% –4.14% 11.12% 12.76% –0.86 16.44 8.02% 61% –76% –8.64% Risk On

2005 1,207.49 12.80% 5.94% –2.94% 10.38% 11.34% –0.90 13.91 6.16% 71% –83% –8.96% Risk On

2006 1,311.05 12.81% 11.51% 0.90% 9.88% 14.18% –1.13 14.91 8.26% 66% –80% –11.28% Risk On

2007 1,477.31 17.58% 3.42% 11.13% 16.02% 25.77% –1.38 6.66 12.69% 76% –87% –13.81% Range

2008 1,218.01 32.76% –35.54% 16.02% 41.17% 56.77% –1.20 2.28 27.54% 77% –87% –11.98% Risk Off

2009 948.84 31.40% 23.23% –19.15% 27.15% 32.27% –0.93 5.60 19.67% 63% –79% –9.35% Risk On

2010 1,140.52 22.54% 13.18% –2.43% 18.02% 31.93% –1.46 15.12 17.15% 71% –83% –14.56% Risk On

2011 1,267.66 24.22% 3.12% 5.36% 23.30% 39.92% –1.51 4.01 18.48% 79% –89% –15.06% Range
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contrast, the Vix increases during Risk Off years, when demand 
for both ATM puts and calls increases relative for OTM puts, as 
the latter become prohibitively expensive given high levels of 
ATM volatility.

We see that k^ increases during Risk On years as any shock in 
volatility dissipates quickly driven by ‘buy the dip’ mentality. But it 
is very low right after Risk Off or Range years, implying that the 
volatility declines very slowly from elevated levels given the preva-
lent risk-aversion. Similarly, b^ increases during Risk On years for 
the same reasons. The standard deviations increase during Risk Off 
years. Remarkably, the idiosyncratic volatility e^ is relatively stable, 
ranging from 10–20%, in contrast with the volatility of volatility 
in the Heston model, which is known to be highly unstable.

Finally, we note that the model R2 tends to increase during 
Risk On and Range years but decreases right after Risk Off years, 
as declines in the volatility tend to lag increases in stock prices. 
Remarkably, we observe the increasing growth in R2 and absolute 
value of the correlation during the past decade, in line with inten-
sified correlations in cross-asset returns.

In conclusion, we find that the model R2 and idiosyncratic vol-
atility e^ are relatively stable, while changes in b

^ and k^ can be 
explained by prevalent market conditions. For pricing applica-
tions, we can use a term structure of b to fit forward skews or 
reflect proprietary views on the market dynamics.

Pricing equation and calibration
The model dynamics (2) do not have a closed-form solution for 
vanilla options even with constant volatility. We obtain an 
approximate solution for call option values with a constant sCV or 
deterministic volatility sDV(t). We illustrate that the proposed for-
mula is in good agreement with numerical PDE solution across 
different maturities and strikes, especially for near-ATM strikes 
(available upon request). Nevertheless, the calibration of local 
volatility can only be implemented by means of PDE methods. 
Here we derive the necessary equations.

Using dynamics (2) for the log-spot, X(t) = ln(S(t)/S(0)), we 
obtain:

dX t( ) = µ t( )dt − 1
2
σ2 1+Y t( )( )2 dt +σ 1+Y t( )( )dW 0( ), X 0( ) = 0

dY t( ) = βσ 1+Y t( )( )dW 0( ) − κY t( )dt +εdW 1( ), Y 0( ) = 0 	
(11)

with:

dY t( )dY t( ) = ε2 +β2σ2 1+Y t( )( )2( )dt
dX t( )dY t( ) = βσ2 1+Y t( )( )2 dt

Finally, the pricing equation for value function U(t, T, X, Y) has 
the form:

	

Ut +
1
2
σ2 1+ 2Y +Y 2( ) UXX −UX[ ]+µ t( )UX

+
1
2
ε2 +β2σ2 1+ 2Y +Y 2( )( )UYY − κYUY

+βσ2 1+ 2Y +Y 2( )UXY − r t( )U = 0
	

(12)

where r(t) is the discount rate and subscripts denote partial 
derivatives.

The parameters of the stochastic volatility, b, e and k are 
specified before the calibration. Given that these parameters are 
specified, we calibrate the local volatility s ≡ sLSV(t, S) so that 
the vanilla surface is matched by construction. We use the 

standard relationship for local SV models:

	  
σLSV
2 T ,K( )E 1+Y T( )( )2 S T( ) = K⎡

⎣⎢
⎤
⎦⎥= σ LV

2 T ,K( )
	

(13)

where s2
LV(T, K) is the local Dupire volatility.

The above expectation is calculated by solving the forward 
PDE corresponding to pricing PDE (12) using finite-difference 
methods and calculating s2

LSV(T, K) stepping forward in time (see 
Sepp, 2011, for details). Once sLSV(t, S) is calibrated, we use either 
backward PDEs or Monte Carlo simulation for valuation of 
exotic options.

Properties of the volatility process
Here, we consider the pricing model (2) with constant volatil-
ity sCV.

The instantaneous variance of Y(t) is given by:

	
dY t( )dY t( ) = β2σCV

2 1+Y t( )( )2 +ε2( )dt
	

(14)

which has the systemic part and idiosyncratic part e. In a stress 
regime, for large values of Y(t), the variance is dominated by 
b2s2

CVY
2(t). While in a normal regime, the variance is nearly a 

constant (b2s2
CV + e2). The variance of variance can be increased 

by increasing b (so the model approaches a pure SV model) or e 
(so the model approaches a local SV model). Regimes with high 
volatility of volatility, say with volatility of the Vix of 100%, are 
reproduced by a combination of high values of sCV (local volatil-
ity s2

LSV in the local beta SV model), b and e.
Now, we show that the volatility process has steady-state vola-

tility, so that the volatility approaches stationary distribution in 
the long run. We consider ϒ(t) = Y 2(t) using equation (2):

dϒ t( ) = −2κϒ t( )+ε2 +β2σCV2 1+ 2Y t( ) + ϒ t( )( )( )dt + ...	 (15)

We define Y
_
(t) = E[Y(t)⎜Y(0) = 0] and ϒ

_
(t) = E[ϒ(t)⎜Y(0) = 0]. 

Using (15), we obtain Y
_
(t) = 0 and:

	
ϒ t( ) = ε2 +β2σCV

2

2κ −β2σCV
2 1− e− 2κ−β

2σCV
2( )t⎛

⎝
⎜

⎞

⎠
⎟

	
(16)

The effective mean-reversion for the volatility of variance is:

2κ −β2σCV
2

so that we need to enforce k > 1/2b2s2
CV. Also the steady-state vari-

ance of volatility is:
ε2 +β2σCV

2

2κ −β2σCV
2

For high volatility sCV, the mean-reversion rate decreases, while 
the volatility of variance increases, which is in line with observed 
behaviour following Risk Off regimes, as explained above. For 
the SV model based on the Ornstein-Uhlenbeck process, the 
steady-state volatility of variance is given by e2

OU/2kOU, so that we 
obtain the following relationship:

κOU = κ −
1
2
β2σCV

2 , εOU
2 = ε2 +β2σCV

2

n Instantaneous correlation. We consider the instantaneous 
correlation between dY(t) and dX(t) using (11):

ρ dX t( )dY t( )( ) =
βσCV

2 1+Y t( )( )2

ε2 +β2σCV
2 1+Y t( )( )2( ) σCV

2 1+Y t( )( )2
	

(17)
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The first thing to note is that the correlations are state-depend-
ent – in contrast to the Heston and Ornstein-Uhlenbeck-based 
SV models, in which it is constant – through the role of Y(t) in 
the functional form. But asymptotes for high and low volatility 
regimes can be derived.

A high-volatility regime can be considered by letting Y(t) → ∞ 
in (17), to find r(dX(t)dY(t)) = –1, as b < 0. On the other hand, in 
a normal regime, Y(t) ≈ 0, so:

	

ρ dX t( )dY t( )( ) Y t( )≈0
= −

1
ε2

β2σCV
2 +1( )

,

ρ dX t( )dY t( )( ) Y t( )≈∞
= −1

	

(18)

Now consider the low-volatility regime case when Y(t) is close 
to –1, Y(t) = –1 + d, with ⎜d⎜ small. Making this substitution 
yields:

ρ dX t( )dY t( )( ) Y t( )=−1+δ
= −

1
ε2

δ2β2σCV
2 +1( )

→−1 as δ→ 0

So the correlation approaches –1 for small instantaneous volatil-
ity as well. The asymptote is obtained in the limiting case of log-
normal volatility, e = 0. Since e is small, the probability of Y(t) 
going below –1 is negligible.

Finally, we note that we can use the first equation in (18) to 
estimate the idiosyncratic volatility of volatility e given a specified 
spot-volatility correlation r* by equating it to a given correlation 
r* to obtain:

	

ε2 = σCV
2 β2

1− ρ*( )
2

ρ*( )2 	

(19)

n The steady-state density. The steady-state density function 
G(Y) of the volatility factor Y(t) in dynamics (2) solves the follow-
ing equation:

	

1
2

ε2 +β2σCV
2 1+ 2Y +Y 2( )( )G⎡

⎣
⎤
⎦YY

+ κYG[ ]Y = 0 	
(20)

We can show that G(Y) exhibits the power-like behaviour for 
large values of Y:

	

lim
Y→+∞

G Y( ) =Y −α , α = 2 1+ κ

βσCV( )2
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

	

(21)

This power-like behaviour contrasts with Heston and exponen-
tial volatility models that imply exponential tails for the steady-
state density of the volatility. The beta SV model predicts much 
higher probabilities of large values of instantaneous volatility. 
This requires some care for numerical PDE implementation. For 
numerical PDE methods, we specify the upper bound Y

∞
 so that:

	  
P Y >Y∞[ ] ≡ 1

α−1
Y∞
1−α ≤ ε, so Y∞ ≥ α −1( )ε⎡⎣ ⎤⎦

1
α−1

	
(22)

To find the lower bound, we can show that, in the vicinity of Y 
= –1, G(Y) is Gaussian:

	

lim
Y→−1

G Y( ) = n Y +1
η

⎛

⎝
⎜

⎞

⎠
⎟, η2 =

ε2

2 κ+ βσCV( )2( ) 	
(23)

where n(x) is the normal probability density function. So the 
lower bound Y0 can be specified by Y0 ≤ ηN–1(e) –1, where N–1(x) 
is the inverse of the normal cumulative distribution function. For 
typical model parameters and e = 10–4, Y

∞
 ≈ 15 and Y0 ≈ –3. For 

our PDE solver, we use a refined grid with 800 points in the Y 
direction and 250 in the time and spot directions.

Illustrations
n Model calibration. The quality of fit of the beta SV model is 
similar to one-factor SV models. The model fits longer-term skews 
well but is unable to fit short-term skews of up to one year unless 
the beta parameter b is large. To model the short-term skews, we 
could resort to jumps, but choose to introduce local volatility.

To calibrate the model, we first use the pricing model with 
deterministic volatility and set the parameter b so that the model 
fits the market-implied long-term 105–95% skew. We found that 
the following empirical rule based on equation (7) works well:

	
β =

σ IMP 6m,5%( )−σ IMP 6m,−5%( )
0.05σ IMP 6m,0%( ) 	

(24)

where sIMP(6m, k%) is six-month implied volatility for a forward-
based log-strike k.

Then we use equation (19) to specify e given beta and sCV = 
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sDV(1y). A couple of iterations are needed as sDV(1y) mildly 
depends on e. We set the correlation to an approximate historical 
average, r* = –0.80. The mean-reversion k is fixed so that the 
shape of the model-implied 105–95% skew fits the market above 
one year. Applying this to market options data on the S&P 500 
index as of June 20, 2012, we obtain:

	 β = −4.74, ε = 0.86, κ =1.10 	 (25)

n Impact of model parameters on term structure of current 
skew. In figure 2 (left), we show the impact of parameters b, e 
and both of them, respectively, on the term structure of the 
model-implied 105–95% skew using model parameters in (25) as 
the base case. We use the beta SV model with deterministic sDV(t) 
fitted to match the term structure of ATM volatilities for any 
combination of model parameters. Here, we shift b down and up 
by 50% to b = –7.11 and b = –2.37, respectively, and e up and 
down by 50% to e = 1.29 and e = 1.43, respectively.

We see that, in the base case, the beta SV with deterministic 
volatility fits the term structure of the skew above one year very 
well. Decreasing b in absolute value leads to a smaller overall level 
of skew. Increasing b leads to steeper skew in the short and  medium 
term but the effect is not parallel as the convexity effect reduces the 
skew for longer maturities. Decreasing (increasing) e leads to a 
roughly parallel downward (upward) shift in the term structure of 
the skew as the idiosyncratic component of the volatility of volatil-
ity declines (grows), increasing (decreasing) the skew. For shorter 
maturities, e has little impact. Finally, increasing b in absolute 
value while decreasing e leads to a roughly parallel downward shift 
in the model-implied skew as a smaller value of the idiosyncratic 
volatility e mitigates the convexity coming from a high value of b. 
As a result, by changing values of b and e, we can generate a variety 
of shapes for the term structure of the model-implied skew.
n Impact of model parameters on forward skew. In figure 2 
(right), we show the impact of parameters b, e and both of them, 
respectively, on the forward three-year three-month skews for 
forward-start options. Here, we use the beta SV model with local 
volatility so that the model produces the same vanilla skews for 
different combinations of SV model parameters. In comparison, 
we plot the current three-month implied skew, and the forward 
skews calculated by the local volatility. In general, we see that the 
local volatility predicts fattening skews; in contrast, the beta SV 
model produces steep forward skews.

We see that for larger (in absolute value) b, the forward skews 
are steeper. Increasing e, the convexity increases and the skew 
becomes U-shaped. However, the impact of e is less pronounced 
for forward skews of OTM puts. Finally, increasing b and reduc-
ing e leads to steep forward skews with forward three-year three-
month 105–95% skew being nearly as steep as the current three-
month skew. As a result, by changing the values of the parameters 
b and e, we can produce different shapes of forward skews.
n Pricing cliquets. Now we apply the beta SV model for pricing 
cliquets using parameters as in (25) with local volatility calibrated 
to the vanilla surface. For comparison, we provide prices calcu-
lated by the local volatility model and the Heston model cali-
brated to skews at maturities of one year, two years and three 
years. For the beta SV model, we use three sets of parameters: 
LSV beta (I) corresponds to the base case with b = –4.74, e = 
0.86; LSV beta (II) corresponds to the model with increased b, b 
= –7.11, e = 0.86; and LSV beta (III) corresponds to the model 
with increased b and decreased e, b = –7.11, e = 0.43.

Our example is the cliquet option with the following payout:

max
i=1

N
∑ min

S ti( )
S ti−1( )

−1,C
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,F

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

In table B, we show prices of cliquet options with quarterly fix-
ings and local floor (F) and cap (C) of –5% and 5%, respectively. 
This product depends heavily on the forward skew. In the local 
volatility model, the cap is overpriced while the floor is under-
priced so that the cliquet price is too small. The Heston model 
produces markedly higher prices than the local volatility model, 
but it is known that observed market prices of cliquets are higher 
than those that can be produced by the Heston model. The base 
case model (I) underprices cliques compared with Heston, while 
increasing b produces higher prices in model (II), while the 
strongest effect is produced with decreased e in model (III).

Conclusion
We have presented the beta stochastic volatility model. One of the 
important features of this model is that its key parameter b has a 
natural interpretation as the rate of change in the short-term ATM 
volatility given change in the stock price. As a result, empirical esti-
mation of model parameters is easy to implement and interpret. In 
general, the beta SV model is augmented with local volatility, so 
that users can concentrate on modelling of forward skews with the 
vanilla surface being matched by construction. In the case of deter-
ministic volatility, we have derived an accurate approximation for 
call prices in this model. We have shown than the beta SV model 
produces steeper forward skews and can be better suited for model-
ling of the forward volatility and related products. n
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B.	Pricing	cliquets	(%)
Local	vol Heston Lsv	beta	(i) Lsv	beta	(ii) Lsv	beta	(iii)

1y 1.03 2.10 1.38 1.93 1.82

2y 0.67 3.70 2.25 2.82 3.69

3y 0.01 5.09 3.16 4.10 5.99

Note: LSV beta (I) corresponds to b = –4.74, e = 0.86; LSV beta (II) corresponds to b = –7.11, e = 
0.86; LSV beta (III) corresponds to b = –7.11, e = 0.43
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