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Abstract

This paper presents a new approximation formula for pricing swaptions and
caps/floors under the LIBOR market model of interest rates (LMM) with the
local and affine-type stochastic volatility.

In particular, two approximation methods are applied in pricing, one of
which is so called “drift-freezing” that fixes parts of the underlying stochas-
tic processes at their initial values. Another approximation is based on an
asymptotic expansion approach. An advantage of our method is that those
approximations can be applied in a unified manner to a general class of
local-stochastic volatility models of interest rates.

To demonstrate effectiveness of our method, the paper takes CEV-Heston
LMM and Quadratic-Heston LMM as examples; it confirms sufficient flexibil-
ity of the models for calibration in a caplet market and enough accuracies
of the approximation method for numerical evaluation of swaption values
under the models.
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1 Introduction

This paper proposes a new analytical approximation method for pricing
swaptions under the LIBOR market model of interest rates (LMM) with the
local and affine-type stochastic volatility. Especially, our scheme is general
enough to be applied in a unified way to a general class of local-stochastic
volatility models of interest rates, which is distinct from other existing
methods.

After the epoch making papers such as Brace, Gatarek and Musiela (1997)
and Jamshidian (1997), LMM with deterministic volatilities has become a
standard model in interest rate derivative markets. Thanks to LMM, practi-
tioners can not only obtain consistent prices of ATM caps/floors and exotic
interest rate derivatives, but also hedge the exotic derivatives by using ATM
caps/floors as Vega hedging tools. Moreover, by joint calibration to cap/floor
and swaption markets, traders are able to execute relative value trading
between ATM caps/floors and ATM swaptions.

Thereafter, many researchers and practitioners have been trying to
develop extended LMMs in order to calibrate them to volatility smiles/skews
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that are observed in cap/floor and swaption markets. If an extended LMM
model can be calibrated to volatility smiles/skews perfectly, exotic deriva-
tives are evaluated consistently with market prices of caps/floors and
hedged by caps/floors at different strikes as hedging tools. Many papers
focusing on extended LMMs have been published; for instance, LMM with
jumps (Glasserman and Kou (2003)), LMM with local volatilities (Andersen
and Andreasen (2000)), and LMM with stochastic volatilities (Andersen and
Brotherton-Ratcliffe (2001), Piterbarg (2003), Wu and Zhang (2006)).

More recently, SABR-LMM developed by Labordere (2007), Rebonato and
White (2007), Rebonato (2007), Hagan and Lesniewski (2008), Mercurio and
Morini (2009), and Rebonato, et al. (2009) comes under the spotlight among
practitioners. While the original SABR proposed by Hagan, et al. (2002) is
a local-stochastic volatility model without the term structure of interest
rates, SABR-LMM is a unified model of LMM and SABR. SABR-LMM is gradu-
ally getting popularity in practice since the original SABR has been an
industry standard for interpolating and extrapolating the prices of plain-
vanilla caps/floors and swaptions, and with so called freezing techniques, the
well-known Hagan’s formula can be applied to pricing swaptions as well as
caps/floors.

Next, let us recall some features of existing researches for SABR-LMM: The
first one is on its volatility modeling. In SABR-LMM, the volatility process Vis
given by

avi(t) = wW(tdws,

where W2is a Brownian motion under the spot measure Q and v is constant.
However, the process might not be suitable for modeling volatility dynam-
ics because many empirical studies reported that the observed volatility
dynamics has mean-reverting property. For example, Rebonato, et al. (2009)
pointed out that for pricing exotic derivatives through Monte Carlo simula-
tions, there are some problems for numerical convergence and stability due
to the diffusion process of the SABR volatility.

The second one is on the freezing techniques used for derivation of
approximation formulas under SABR-LMM. In order to keep the SABR frame-
work even after the change of a numéraire, not only well-known freezing
techniques such as “drift-freezing”, but also some peculiar freezing tech-
niques are needed. For example, Mercurio and Morini (2009) starts with the
volatility process under the forward measure Q:

V() = —voly (1), k: VIVt + wrdw?,

where W2 is a Brownian motion under the forward measure Q*. Then, for the
application of the Hagan’s analytical pricing formula, it applies a new freez-
ing method such that V*(t) in the drift coefficient is changed to V(0)V(t). That
is, the volatility process is approximated as

AV(t) = —violy (t). k; VIVOWV(Bdt + wWitdw.

The third one is related to the flexibility of the existing methods. It
seems not easy for the same or similar methods to be applied to extensions
or modifications of SABR-LMM; some other special ideas seems necessary
for the applications to extended or modified models. For example, many
existing works highly rely on the Hagan’s SABR formula. On the other hand,
the Hagan’s formula cannot be directly applied to other types of local-
stochastic models such as CEV-Heston LMM and Quadratic-Heston LMM.
Also, Labordere (2007) proposed the heat kernel expansion approach to
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develop the approximation formula for pricing swaptions under SABR-LMM.
However, it seems not easy for this approach to be applied except to the one-
dimensional stochastic volatility model.

Comparing with the existing models and approximation techniques,
our extended LMMs and approximation scheme have the following features:

1. Volatility Modeling: appropriate volatility processes with a mean-
reverting property are introduced in the model.

2. Model Flexibility: all parameters are time-dependent, and multi-
dimensional stochastic volatility processes can be applied.

3. Generality of Approximation Techniques: a general approximation
scheme by an asymptotic expansion with standard freezing tech-
niques is proposed for pricing swaptions and caps/floors; it can be
applied to a broad class of the underlying models in a unified man-
ner.

4. Analytical Tractability: the same approximation formulas except
concrete specifications of the coefficients can be applied to different
models, which is very useful for testing various models, for example
in calibration.

The organization of the paper is as follows; the next section describes
the basic setup and LMM with the local and affine-type stochastic volatility.
It also presents an approximation of swap rate processes. After Section 3
briefly explains the framework of an asymptotic expansion method, Section
4 applies the method to deriving an approximation formula for swaption
prices. Section 5 gives numerical examples. Section 6 concludes. Appendix
lists up the conditional expectation formulas used in the approximation.

2 LIBOR Market Model with Local and Affine-type
Stochastic Volatility

This section introduces a LIBOR market model (LMM) of interest rates with
with the local and affine-type stochastic volatility after briefly describ-

ing basics on the framework of LMM. Then, it discusses on the changes of
numéraires among the equivalent martingale measure (EMM) to the spot,
forward and swap measures as well as on the swap rate processes. Moreover,
itshows that an appropriate approximation makes LMM with the local and
affine-type stochastic volatility included in the same class as before after the
changes of measure.

2.1 Basic Setup

This subsection defines basic concepts such as tenor structures, discount
bond prices, the money market account (MMA) and forward LIBOR rates.
First a tenor structure is given by a finite set of dates:

0=T0<T1<--~<TN,

whereT, (i=0,1, ..., N) are pre-specified dates. P(t) denotes the price of the
discount bond with maturity T, at time t, where P(T)) =1 and P(t) = 0 for
te(T,T,].

The forward LIBOR rate at time (< T) with the term [T,_,, T] is defined as

1 (Pia() .
F~(t)=—<J —1), forany j=1,2,...,N, 1
RN (1)

where 0:=T -T ..
) ] j-1
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On the other hand, P(T,) is expressed by the forward LIBOR as

1

Bl =1 I 5 mmy- .

13-

The money market account (MMA)’s price B, (t) is defined as

P (t)( V(t)
Bult) = g = {1+ 8T} 3
[ Bi1; 1) )
where y(t)=min{ie{1,2,...,N} : T >t}.

2.2 LMM with Affine-type Local-Stochastic Volatility Model
Let(Q, F. (F), 0. 0.1 Q) denote a complete probability space satisfying the
usual conditions where Q is the spot measure; it stands for uncertainty of
the market.

Under the spot measure Q, it is assumed that forward LIBORF, j =
1,2,..., N follows a SDE having a unique strong solution;

A1) = pdr + (. ooy ) (e, Viyaw @)
Fj(0) = fj € (0, 00),

where W%' is a D-dimensional Brownian motion under Q, each element of
D-dimensional stochastic volatility process V=(V,V,,..,V,) is given by

AVy(t) = {@1alt) + a2a(t) }dt+29,ﬂ S(t, Vi) aw, (5)

Vy0)=1,d=1,2,....D,

W= (We!, W) is a 2D-dimensional Brownian motion under Q (W%?is a
D-dimensional Brownian motion), and ,u]Qis an appropriate drift term' of F,
under Q. Here, x” denotes transpose of vector x.

The matrix (%, x) : [0, «o) x R” — R”*" is assumed to be a diagonal matrix
such thatits diagonal elements are given by

Yaa(t, x) =/ B1a(t) + Baa(t)yx, d=1,2,...,D,

where
B1a(t) : [0, 00) = R
Baalt) : [0, 00) > R”
B1a(t) + Ba(t)x > 0

@(t, %) : 0, ) X R~ Rrepresents a local volatility function.
In addition to ﬂj (t),j=1,2, all the other coefficients in the processes are
assumed to be deterministic functions of the time parameter:

aj(t) : [0, 00) > R”
ay4(t) : [0,
axq4(t) : [0,
6ai(t) : [0, 00) > RP,

o) — R
o0) — RP
I=1,2.

Therefore, our extended LMM has a D-dimensional and mean-reverting
stochastic volatility combined with a local volatility, and this model is
equipped with time-dependent parameters.
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Next, we apply the method of the change of a numéraire to our setting. First,
we recall the measure-change from the spot measure Q to a forward measure:
Under the forward measure Q* where the numéraire is the discount bond
P (t), W= (W*!, W*?)" is a 2D-dimensional Brownian motion given as

t
W =W [ Vit o s ©)

and

wi? =wit, (7)

where u(t, ¥(t), k) is a RP-valued process defined by

k

Sip(L. Fi
utyk= Y FEE o, @
i=y(t)+1 i

Next, we apply the measure-change from the spot measure Q to an annui-
ty measure: Under the annuity measure Q" where the numéraire is the annu-
ity Neo(t)=3"_ | JP(t), Wb = (Wt Wby is 3 2D-dimensional Brownian
motion given as

t
Wt =W [t v, o, )

and
Wit = w, (10)

Here, a RP-valued process u*? (t, }/(t))is defined by

W) = 3 Wt 0, 1)
k=a+1
(ab) S Pr(t)
w, () = 721 P (12)

We will derive a swap rate dynamics under the annuity measure. Note
first that a time-t forward swap rate S (t) with effective date T and terminate
dateT, is given by

8iP;(t)
Sap(t) = [ b A S
' j:;l Zib=a+1 iPi(t)

b

i)=Y wmF . (13)

j=a+1

Thus, under the annuity measure Q" its dynamics follows a stochastic
differential equation (SDE):
b

dSap(t) = $(E Sap(t) Y M (toy(t) D(t, VAW, (14)
j=a+1
where
(@) 3Sap(t) o[t Fit)
5= TR ol Sanlt) (15)
and
9Sap(t) (@.b) i = (a.b)
9F (1) =w; (1) + T4 850 [ng (O{F(t) Sab(t)}:|
a+1<j<b. (16)
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Also, under the annuity measure Q“?, each element of stochastic volatil-

ityV=(V,,V,, ..., V,)is given by
dva(t) = {nyy (1) + g O/ V(D)Ydt + Zedl AWM, gy,
V4(0)=1,d=1,2,...,D,
where
0 (0) = enalt) — [0ar (0 1Vt (1) Brat) (18)
Mhq (6) = aaalt) = [Bar (0 1P,y ()] Baalt) (19)

Although an asymptotic expansion technique introduced in the next
section can be directly applied to the above equations for an approximation
of swaption prices, this paper will derive a simpler analytical approximation
formula. Hence, before the application of the asymptotic expansion meth-
od, the so called freezing technique is used for the swap rate dynamics. That
is, the variation of A* (t) is so small that the standard freezing technique is
applied to 4 (t) such that

b ), 9Sa(0) ¢(t,F(0))
W)~ AP0 = : (20)
dF;(0) o(t, Sap(0))
More precisely, 4*" (t) is approximated as
(@.b).0,\ (a,b) (a, b
A0 = {wj O+ 1= 5} [Z W) sab(on“
» $(t. F;(0))
#(t. Sap(0)) (21)
Therefore, the approximated swap rate process is obtained as
dSap(t) ~ B(t, Sap ()T (t) B (e, ViE)aw, (22)
where o®?(t) is a RP>-valued deterministic process given by
b (a,b),0
t) )\. ()oi(t).
') Z (t)os(1) 23)

j=a+1

Moreover, the standard freezing technique is also applied to the stochas-
tic volatility process. Thatis, set

) b L il Fi(0)
O,y 0) ~ ey ) = S wi0) D i(”’ (24)
146 Fl
k=a+1 i=y(H)+1

and hence, ££? (t, ¥(t)) becomes a R’valued deterministic process. Then, the
approximated stochastic volatility process is obtained as
2

AVt )+ maal VOI+ 3 0altf B VIOAWE, g

where 7, A1), j=1,2 also become deterministic processes:
M1alt) = er1alt) — [ar (0) e, v (D)] Bralt) (26)
nalt) = a2a(t) = [0ar (6) 1™ (¢, ¥ (1)) Baa(t)- (27)
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In sum, the approximated swap rate process is re-written as follows:

dSap(t) = B(t. Sap(®)oMe) T(t, V)W, (28)
Sap(0) given,
dVa(t) = {n1a(t) + n2alt) V(£)}de
+ Z Oai(t) dW (29)
Va(0)=1,d=1,2,...,D.

In particular, when V(t) is one dimensional, we are able to re-express
the forward swap rate process by using a one-dimensional Brownian
motion W' independent of W®»2 and a one-dimensional deterministic
process o’ (t) as

dSap(t) = Bt Sap O/ Ar(t) + B2V (E)o P (AW, (30)

av(t) = {m(t) + n2(t)V(1)}dt
+ Bult) + Ba(t)V(1)[61()AW, + 6(t)AW?], (31)

where
I/ ——— / e e (32)
F s Jo b

Wt2 = Wt(a’b)’z, (33)
o) = 17" 1)) (34)

3 Asymptotic Expansion Method in a General
Markovian Setting

This section briefly describes an asymptotic expansion method in a general
Markovian setting, which will be applied to the derivation of swaption pric-
es under the approximated swap rate process above in the next section. See
Takahashi (1999), Kunitomo and Takahashi (2003) and references therein for
the detail of the theory and applications of the method from finance per-
spective. Also, see Takahashi, et al. (2009) for the detail of its computational
aspect.

Let (Z, P) be the r-dimensional Wiener space. We consider a d-dimensional
diffusion process X9 = (X|91,..., X\#¢) which is the solution to the following sto-
chastic differential equation:

dX\ = voxidt + ev(x\Ndzy; X = xo, te[0,T], (35)
where Z=(Z',..., Z")is a m-dimensional Brownian motion and €€0,1]isa
known parameter. Also, V :R?— R% V:R'> R ® R"satisfy some regularity
conditions.(e.g.V, and V are smooth functions with bounded derivatives of
all orders.)

Next, suppose that a function g : R/ R to be smooth and all derivatives
have polynomial growth orders. Then, a smooth Wiener functional g(X\¥) has

its asymptotic expansion;

g(Xt) = gor + egir + €2gar + €3 gar + o(€®). (36)

in L for every p > 1 (orin D*) as € 4 0. The coefficients in the expansion g, €
D~(n=0,1,...) can be obtained by Taylor’s formula and represented based on

51

TECHNICAL PAPER




multiple Wiener-It 6 integrals. Here, D~ denotes the set of smooth Wiener
functionals. See chapter V of Ikeda and Watanabe (1989) for the detail.

. (€) 22y€) 3yl€)
In particular, let D, = %Is:o’ E = _"32‘5 le—oand F, = 32; l—o- Then, g,
g,p &,,and g, are expressed as follows:
d
0 .
gor = 8X), gir = ) glX{")D}, 37)
i=1
14 1
0\ 1o 0\ i
gr=1). 3dg(Xy)DED) + 52 aig (XL, 38)
ij=1 i=1
1 < - 1< .
gor=¢ ) dakg(Xy IDDDE + o D aidyglXEDy
ij.k=1 ij=1
0
+ = 0;g(X7 F',
,Z; “ (39)

where D), E and F,, (i=1,...,d) denote the i-th element of D, E, and F,, respec-
tively. D, E, and F, are given by

D, = / vy, iz, (40)
E = / (Z 33 Vo(X D’ Dkdu +2 Z ;V( D’ dZu>, (41)
0
k=1 j=1

¢ d .
F = / vyt gaavo(x, 0)DLDED, du
0 .
jk]=1

d d
+3 ) 4aVolXi, 0)E,Dkdu +3 Y 33 V(XD Dkdz,
jk=1 jk=1

+3 Z FVX\HE, dz,
(42)
Here, Yis the solution to the following ordinary differential equation:
4y, = aVo(X\y,dr; Yo =1,
where JV is a d x d matrix whose (j, k) element is given by akvj (O = Bxk , V

denotes the] -th component of V). Also, I, represents the d X d identity matrix.
Next, normalize g(X: )) to

(©
Xr)) -
g = &%)~ gor. (43)
€

Moreover, let
(0) 1y7(x(0)
a; = a = (g Yy, V),
and make an assumption:

T
(Assumption 1) %7 = /0 aa,dt > 0. (44)

Note that . is the variance of a random variable g, following a normal
distribution. Thus, (Assumption 1) means that the distribution of g, does
not degenerate.
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Then, ¥ (&), the characteristic function of G is approximated as

Yo (§) = Elexp(i& G

= Elexp(i&gi7)] + €(i&)E[exp(i&g1T)g2r]
2

+ €2(i€)Blexp(ig girgar] + (i€ Elexpliggar)gi] + ofe?)

12
—exp ((15 )2 Zr

+ €%(i£)E [exp(i& g17)ElgsrIgir]]

%WE [expliégir)ElgdyIgu]] + ofe?), (45)

) + €(i&)E [exp(i& g171)E[g2r|g17]]

where E[g,r|g17], E[g2;/g17] and E[gsr|gir] become some polynomials of g, .
Hence, the inversion of the approximated characteristic function pro-
vides an approximation of the density function of G, f :

Joo =n[x; 0, 21| + € [—— hy(x)n[x; 0, ZT]}]
+ €2 [—%{hg(x)n[x; 0, ET]}]
2
+% |:83 3 hzz( )Tl[X 0, ET]}] +O( )

(46)

where hy(x) = E[gar|gir = &), haa(x) = E[gZ|g1r = ], h3(x) = E[gar|gir = x].
Also, n[a;‘; 0, ET] represents the density function of a normal distribution
with mean 0 and variance Y7:

;0,27 = —— -
o.m- e |52 .
Let ¢ : R — R asmooth function of which all derivatives have polyno-

mial growth orders. Then, the expectation E[#(G)I3(G'))| has an asymptotic
expansion with respect to e:

1
A/ 2w ET

E[¢(GI3(GY)] = ®g 4 €Dy + €Dy + 0(€?), (48)

where 3 stands for a Borel set on R. I3(G*)) = 1 when G) € B and I3(G')) = 0
otherwise.

Especially, @, ® , @, are obtained by
Dy = /B¢(x)n[x; 0, Xr]dx, (49)
~ [ #0Blgarlgsr = il 0. Zrfix, (50)
B
1 2 (R[o2
@, = | (5002} Elghigin = xnlx; 0, %1)

—o(x)0x{E[gsrIg1T = X|n[x; 0, Eﬂ})dx. (51)

Finally, when the underlying asset value at maturity T and the strike
price are given by g(X|?) and K= g(X!")) - ey for an arbitraryy € R, respectively
the payoffof the call option is expressed as

max{g(X\) — K, 0} = e(G)Iz(G*), (52)

WILMOTT magazine



where ¢(x) = (x +y)and B = (G > —y} .

Remark 1 E[gr|gir = &I, E[g5;121r = ], Elgsr|gir = ] are some polynomial
functions of x and those conditional expectations are evaluated by the formulas in
Appendix.

4 Approximation Formula of Swaption Price

Given the approximated swap rate process in Section 2, this section derives
an analytical approximation formula for swaption prices by using the
asymptotic expansion technique.

For simplicity, let us consider a swap rate process with parameter
€(€[0,1]) under one-dimensional stochastic volatility environment
described as the models (30) and (31) in Section 2. However, even for the case
of multi-dimensional stochastic volatility models, the swaption pricing for-
mula can be derived in the similar manner as in the one-dimensional model.

The forward swap rate model under our asymptotic expansion setting is
given as follows:

dsie) (1) = eg(t. S, )0 “P(t)y/ Bi(t) + B2V (AW, (53)
Avi(t) = {1 (t) + na(OV(t)}dr
+ € Z Oi(t)y Bi(t) + (VI (B)AW;, (54)

where (W, W,) is a two-dimensional Brownian motion, 6;(t) = 2@ (1)a(t),
2(t) = /1 — p@B(r)26(t) and p“?(t) € [~1,1] denotes the correlation
between S, (t) and V(t).
Then, based on the discussion in Section 3, the swap rate process Sf;‘_b)(T)
and variance process V€(T) described by (53) have asymptotic expansions;

0 2 3
SINT) ~ SOAT) + €S (T) + €2SE0(T) + STy + - -, (55)

VINT) ~ VOUT) 4 eVI(T) 4 €2V(T) 4 3VEI(T) +-
as € | 0, where the coefficients in the expansions are given by the next
proposition. SL‘?L(T), SS’L(T), SEEL(T) and SSL(T) correspond to X, D, E and F, in
Section 3, respectively.

Proposition 1 The coefficients 3(0) )(T), s(a”b(T) s( )(T) and 3(3 ) (T) in (55) are given by:

SunlT) = Sanl0 f fn(s)dw, (56)
= Z fo /0 Falu) AW, gl AV, 57)

o) Z / [ [ ratoraw, saraw, nagsraw.

T s s
+ ; /0 ( /O ga(u) qu) ( /0 Fa(w) qu) hads/dWe. (5,
Here, integrands f, g, h above are obtained as follows:
Ji1(t) = fo1(t) = f1(t) = faa (t) = gaa(t) = g42(t)

_ (o(t) CORTATE s<0))> , 59
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J2a(8) = f32(t) = f33(t) = faa(t) = faz(t) = Gas(t)
_ (rte o /B0 + BV 60)
ety om0 /g1 (0) + oV OID))
221(t) = g31(t) = h31(t) = 2hsa(t)
_ (a(wﬂl(t) T ROVOm, S(O»> 1)
o ,
()8a(0eld 72
2g22(t) = g32(t) = 4has(t) (vm +ﬁz(t)V‘° 950 ))) (62)
01(D)B2(t)
g33(t) = ( ﬂl(tlrﬁsz((t))v(o() , (63)
B1(0+B2(VO(1)
has(t) = (0“) et S(O”) : (64
0
(1) (t)el 129
hap(t) = (2 VBBt >v‘°<)a¢(t’ S(0) (65)
0
and
oo
has(t) = | s[pr+p0vO0* |,
0 (66)
where
t
VOp) = eJoms)ds (/ ni(s)e” Jomwdu gg V(O)) i
0
8¢(t X)
(L, 5(0)) := o lvsor
02¢(t, x)
2 .
0y (L, 5(0)) := promll N ©7)

and we use the abbreviated notation 5(0) for S ,(0) and o for o*".

Proof. We derive coefficients, s(a(?l)?(T), S(al,Z;(T) and ng} (T) explicitly. S(:TZ,(T) can
be derived in the similar manner and hence the detail is omitted. Also, we
use the abbreviated notation §% () for S () below.

First, we calculate SO(T).

SOT) = <5(0) +e€ / T¢ (t, (SO) + esVit) - - - ~))
0

(0 B1(0) + Ba(0) (VOID) + V1) 4 - -)dwg)

€=0
= 5(0).
Next, we calculate VO(T) and SY(T).

T
veom) = (vw) + f mt) + maOVO0) + eV + - )de
0

2 T
t+e IZ /0 6i(t)y B (1) + BaVOE) + V() + - -)dWl)
=1

e=0
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T
=Vi0)+ [ (matt) + ma0V) .

T
s(T) = / 6 (6.6 + €500 + )
0

o0/ B1(t) + Balt) (VD) + VO(t) + - - -)aw;

+e/ 8¢( (S(O()+es(1>(t)+-~)) (SV(t) + 2eSP(t) + - - )

0

(Oy/B1(0) + Ba(0) (VO1) + V(1) + - - ) AW

+€ /0 T¢ (t, (SOt) + esVt) 4 - - ~))

ot POV + 26V + - dw;>
\/ﬁl )+ Balt) (VIOUE) + €VI(E) + )

e=0

T
= [ 6 (15%0) ot/ a0+ patv 1w,

0

VO(T) can be solved as follows:
t
VIOt) = o nalos ( / 1 (s)e— o g V(0)> .
0

Then, substituting V(t) into S*(T), we obtain the coefficient f, (t).
In the similar manner, we get the following equations for calculation of
V(t) and SP(T).

VT) = BV;Z(T) .
T 2 T
= [ natewea+ 3 [ oo+ patovornawt,
0 = Jo
9%SlNT
ST = 862( ) €=0
=2 [ (150) U0 0t + BTG

T Dt
o Ba(VIU(E) aw;!
+ /0 ¢ (LS (t)) ol Pa(t) + B2tV O (1) "

Those equations are solved as follows:

2 t ¢ S
V(l)(t) — Z efo n2(s)ds (/ e Jo nz(u)duel(s) Brls) + ,BZ(S)V(O)(S)dWSI> ,

1=1 0

T
SP(T) = 2 / O (t,S“’)(t))o(t) Ba(t) + Ba(tVO(t)
0
t
x f ¢ (1.5909)) o (5)y/ Bi(s) + BalsV O W aw;
0

T Balt) T2 oo m(s)ds
t,591)) o(t =1
+/o o (15"0) o0 Bal0) + o OVOID)
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t
x / e~ om0 s). [ B1(5) + BasVIO (AW AW,
0

Thus, we obtain f2i (t) and g2i (t), i=1,2.
Therefore, applying the general result in the previous section to the cur-
rentsetting, the European payers-swaption price;

Swptn(a, b) := Nop(O)E“V[(Sap(T) — K)']
is obtained by
Swptn(a,b) o o
7/\/:”}(0) =€ <y /ﬂ/ n(x, X)dx + [y xn(x, E)dx>
e [T R [SAmystm = x| e, )
€ /7), [ ]nx X
+ 3( " gen SEUT)ISLHT) = x| nfx, D)dx
([ B [shmisim = s miax
1 ab (2
+ SE [P = y] 0o 2)) e
where /Tva,b(O): > 1 8iP(0), ¥ = {Sap(0) — K} /e and £ = [y fi;(t)fa(t)dt

We remark that g)M) corresponds to G in Section 3. Note also

that the equation (48} with (52) in Section 3 is applied. Then, the equation
(68) is obtained after some calculation of (49), (50) and (51).

Finally, the following theorem is obtained through evaluations of
the conditional expectations in the above equation by the formulas in
Appendix, as well as applications of formulas below:

o0 ) _ L
/;y nlx; 0, X|dx =N («/E) , (69)
foo xn[x; 0, X]dx = Zny; 0, X, (70)
-y
/;o xzn[x; 0,X]dx = £N (%) —yXnly; 0, X, (71)
/Oo X*nlx; 0, X)dx = (2% 4+ Zy?) nly; 0, T, (72)
-y

where N(x) denotes the distribution function of the standard normal distri-
bution, and

n[x; 0, 5] = leyr—zeXP{;; } (73)

Theorem 1. The European payers-swaption price Swptn(a, b) at time 0 with strike rate
Kand maturity T is evaluated by the following formula, where the underlying forward
swap’s effective date and terminate date are given by T and T,, respectively (T<T <T,
a,be{l,2,...,N}):

Swpin(a, b) = Na,b(O){e<yN (%) + Safy; 0, 2])

+€%¢, (_}’”DCEOE])
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_1 yz
2 [ — + = | n[y; 0, ] + Csnly; 0, X]
4 2 2
ytoeyr 3 v _ 1 :
+(C4(§‘§+§)+CS<§‘§ G )y 0. %]

(74)

where e(€ [0,1]) is a constant, N ;(0) = Zf’:aﬂ 8iPi(0), andy, ZandC(i=1,2,3, 4,
5, 6) are given as follows:

T
= / d .
pX /0f11(5)f11(5) S

2 .7 S
Gi1= ;/; f11(5)’g21(5)/0 fr1 () foi(u)duds,

3 T s ;
G = ;/O f11(3)/h3i(5)f0 f11(u)/g3i(u)f0 Fi1(v) fi(v)dvduds
3 T s ;
+ ;/0 f11(5)’h4i(5)/(; fn(u)’gzu(u)du/() Jia(u) fai(u)duds, (78)

Cs

3 . ]
;/(; fll(S)’h4i(5)/0 Zai (1) fai(u)duds, o

3 T s
Cq= % ; (/O f11(5)/g5i(5)/0 fll(s)/fSi(u)dUds>
T N
x (/0 fn(S)/ksi(S)/O f11(5)/h51(“)d“d5>’

G = _il( [ st [ sutwissto) [ onsonnauas
+ /0 Tfu(s)/gsi(s) /0 Sfu(u)/ka-(u) /0 ' fsi(v) hsi(v)dvduds
« g [ sstwrsto [t tvauas
+f gsksi [ vt [ it

T s u
+ /0 Fals)ksils) fo gilu) 1) fo fll(v)/fsl-(v)dvduds), (81)

3 T S
Ce = %Z/(; gSi(S)/ksi(S)/(; f5i(w)'hsi(u)duds. (82)
i=1

Here, f, (1), £,(1) (i=1,2), £,(t) (1=1,2,3), f, (1) (i=1,2,3), g,(t) (1=1,2), g, (1) (i= 1,
2,3),g, 0 (=1,2,3),h,(t)(i=1,2,3), and h (t) (i=1, 2, 3) are given as equations

(59)=(66) in Proposition 1. f, (), g, (t), h.(t), and k_(t)(i= 1, 2, 3) are defined as follows:
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Js1(t) = fs3(t) = hsa(t) = far(t),
J52(t) = hsa(t) = hs3(t) = f22(t),
g51(t) = gs3(t) = ks1(t) = g21(),

g52(t) = ksa(t) = %kss(t) = gn(t).

Remark 2. On the computational complexity and speed for the swaption
formula (74) in Theorem 12

First of all, note that €, N ,(0) and y are constants and that there are no problems
for evaluations of the standard normal distribution N(y) and the normal density func-
tion nly; 0, X], given X.

When X and C(i=1,..., 6) are obtained as closed-forms, we have obviously no
problems in terms of computational complexity and speed. Thus, let us discuss about the
cases that their closed-forms are not available and numerical integrations are necessary.

As f,(t) whose concrete expression is found in Proposition 1 is a D-dimensional vec-
tor given t, which is equal to the dimension of Brownian motion in the swap process (28),
I7,(8) £,,(£) is obtained by D-times addition. Hence, the order of the computational effort
Jorz = | OT f11(8)f11(t)dt is at most DM, where M is the number of time-steps for the dis-
cretization in the numerical integral.

Note also that all the multiple integrals appearing in C, (i=1,..., 6) are computed
by the program code with only one loop against the time parameter. For instance, look
at the following term in C_ in Theorem 1:

T s u
/ o/ ksits) / Fra(u) gsilu) / Fsilv) hsitv)dviuds.
0 0 0

Let f(s) = f11(s)ksi(s), g(u) = f1,(u)gsi(u) and h(v) = fZ;(v)hsi(v). Then, the above
integral is approximated for the numerical integration as follows:

/on s /Otgw fo hiv)dvauds

M i j
~ Y A Aygll) Y Aghit)
i=1 j=1 k=1

M
= Z Apf(ti) (Gltio1) + Ayg(t) (H(tio1) + Agh(t)) ,
i—1

where Ati = (ti — ti—l); H(tz) = H(ti_1) + Ati h(tj) and
G(ti) = G(tim1) + Ay, g(ti) H (),

Here, each of h(t), g(t) and f(t) is obtained by at most 2D-times addition since the
dimension of each vector is equal to 2D, the Brownian motion’s dimension under our
setting. Hence, the order of the computational effort is at most (2D)M, where M is the
number of time-steps for the discretization in the numerical integral. Note that we
have no problems in terms of computational complexity and speed since various fast
numerical integration methods are available such as the extrapolation method: In fact,
we enjoy pretty much fast calibrations and pricings such as within 1/1000 seconds per
pricing a swaption for numerical examples reported in Section 6.

5 Applications

This section provides concrete applications of the general approxima-
tion formula developed in the previous section to CEV-Heston LMM and
Quadratic-Heston LMM.
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Let us start with the stochastic volatility process specified by the Heston
model (Heston (1993)):

Av(t) = £(n — V(H)dt + 6/ V(AW (83)
where £>0, 77>0and 6= 0 are some constants satisfying 7> 62/2.

Applying this model, we describe the forward LIBOR process as in
Section 2:

dF(t) = (¢, Fe(t)o(t)y/ V(D) dW,", (84)
avie) = & (n - M) dt + Oy VBIWE?

+ 0,/1 — p2/V(t)aw?, (@5)

where,

8 pjoj(t)(t, Fi(t))

k
ult, y (). k) = Z 1+ §;F(t)

’ 86
J=r)+1 (86)

and p, denotes the correlation between j-th forward LIBOR and the stochastic
volatility. After applying the change of a numéraire and the freezing tech-
nique discussed in Section 2.2, the forward swap rate process is expressed as
follows:

dSap(t) = o “(t)/V()p(t, Sap(t) AW, (87)
Av(t) = £(n — vEV(D)dE + 01(0)y/V(E)AW,!
+ 62(t)y/V(t)dW2. (88)

where 6;(t) = 0p*V(t), 62(t) = /1 — (p@V(1))2, and W}, 1 = 1,2 are inde-
pendent Brownian motions. By (23), (27), (32), (33), (34) and (85), the param-
eters o @P(t), p@P)(t) and v(t) are expressed as follows:

b b
U(a,b)(t):\] Z Z )\;Cu,b),o(O)Uk(t))\(hu,b),o(t)oh(t);ok,h’ (89)

k=a+1 h=a+1

b .b),0
 Than i Wil

) o ab)(p) (0)
0 @
() =1+ : 1, (1)), (91)
b k
a, a. 8;pjoi(t)g(t. F;(0))
e,y (1) = | D D e VTR (92)
k=a+1 j=y(t)+1

w*P(0) = Lk(o)
¢ Y i1 8iPi(0) ©3)
y(t)=minfi € {1,2,...,N}: T; > t}, (94)

where p, , represents the correlation between k-th forward LIBOR and h-th
forward LIBOR.

5.1 CEV-Heston LMM

The first example is the CEV-Heston LMM, where the local volatility function
is given by the constant elasticity of variance (CEV) form and the stochastic
volatility process is specified by the Heston model (83). That is, ¢(t, F) = F~.
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Based on the discussion in Section 2, in the CEV-Heston LMM the dynamics
of a forward swap rate S_,(t) under the swap measure is given as

dSep(t) = o “Pt)V(D)Sap () dW}, (95)
Av(t) = &(n — v(E)V(E)dt + 01(0)y/V(E)dW;
+ 05(t)/V(t)dw?. (96)

An approximation formula for the swaption price in the CEV-Heston
LMM is obtained by the formula (74) where f, (1), f,(t) (i=1, 2). f,(t) (i=1, 2, 3),
f0(=1,2,3),g,0(0=1,2),g,()(i=1,2,3),g,(t)(i=1,2,3), h () (i=1, 2, 3),and
h,(t)(i=1, 2, 3) appearing in the equations (76)-(82) are specified as follows:

J11(t) = f21(t) = f31(t) = fa1(t) = gaa(t) = ga2(t)
_ (o(t)(S(onﬂ vw)(r))

o (97)
faa(t) = faa(t) = faa(t) = faa(t) = faz(t) = gas(t)
_ (a0 fo 0 O o08)
B (0)et Jo voks V01 )
221(1) = g31(t) = hz1(t) = 2h32(t)
_ (o®B(S(0)P 1/ VOI)
0 ’ (99)
a(t)(s(o))ﬂ (E_E fé V(S)ds)
2g22(t) = g32(t) = 4hs3(t) = ) ; (100)
0
01(t)
©)
833(t) = ( e‘;mm) ’ (101)
V)
a®BB-1)(S(0)/ 2/ VOI)
haa(t) = 2 ; (102)
0
o()B(s(0)F~1 (¢ 6 160%)
haa(t) = 2/VO (1) , (103)
0
~ olmisio)? (=% o)
has(t) = 8(vO) 2 (104)
0
where 5(0) stands for S, ,(0), o (t) stands for o*"(t) and
t t 'S
V() = e Jo ok ( / gnet Jo Vs 4 vm)) : (105)
0
Moreover, fs;(t), gsi(t), hsi(t), and ks;(t) (i = 1, 2, 3) in the equations
(76)—(82) are given as follows:
F51(t) = fs3(t) = hsa(t) = fa(t),
J52(t) = hs2(t) = hs(t) = faa(t),
gs1(t) = gsa(t) = ks1(t) = ga1(t),
1
gs2(t) = ksa(t) = 5k53(t) = gaa(t)- (106)

WILMOTT magazine



TECHNICAL PAPER

We remark that in this approximation, the parameter v(t) standing for the
mean-reversion seed of the volatility is made time-dependent for the reduction
of the approximation error as much as possible; the effect of this parameter
seems large for a long-tenor swap while it seems small for a short-tenor swap.

5.2 Quadratic-Heston LMM
The second example is the Quadratic-Heston LMM, where the stochastic volatil-
ity process is given by the Heston model and the local volatility function is
specified as a quadratic function:
6(t.F) = (1 — BO)F(O) + BOF + 0 (F — F(0),
2F(0) (107)

where b(t) and c(t) are some (deterministic) functions of the time-parameter t.

Based on the discussion in Section 2, in the Quadratic-Heston LMM the
dynamics of a forward swap rate § (t) under the swap measure is given as

dSap(t) = o (1) V(1) ((1 — B(t))Sap(0) + b(t)Sap(t)

+ %(Sa,b(t) - Sa,b(o))2>dwtl’ (108)
Av(t) = £(n — v(OV(E)dE + 01(0)y/V(O)dW;
+ 6,(t)y/V(HAW?2. (109)

Next, set Xa(t) = Sap(t)/Sap(0), and then the swaption price is expressed
as

Swptn(a, b) = Nyp(0)E [max {Sq(T) — K, 0}]

= Naup(0)Sap(0)E [maX {Xa,b(T) —3 I;(O) , 0” ,

(110)
and the dynamics of X ,(t) is given by
aXap(t) = otV (1 = blt) + BOXas (1)
+ %C(t)(Xa,b(t) - 1)2)dW1(t). (11)

We note that as the local volatility function in (111) can be regarded as
an approximation by the second-order Taylor expansion around the initial
valueX  (0)=1 of an arbitrary twice differentiable function, this quadratic
form is considered as a rather general local volatility function.?

An approximation formula for the swaption price in the Quadratic-Heston
LMM is obtained by the formula (74) where f,, (¢), f,(t) (i=1, 2). f,(t) (i=1, 2, 3),
f0(i=1,2,3),8,(0)(i=1,2),g,(t)(i=1,2,3),g,(0) (i=1,2,3),h,(t) (i=1,2,3),and
h,(t)(i=1, 2, 3) appearing in the equations (76)~(82) are specified as follows:

J21() = f31(t) = far (t) = gaa(t) = gaalt)

[ty VO
= o i

(112)
fao(t) = fa(t) = faz(t) = faz(t) = faz(t) = gas(t)
(6n ()t Jovoks /0Ny
— Gy (t)et fors /vy ) (113)
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fua(t) = S(0)f1 (1), (114)
_ (bt} V)
231(t) = 0 (115)
221(t) = h31(t) = 2h32(t) = S(0)gz1(t) (116)
U(t)eis jO v(s)ds
ga(t) = vOm |, (117)
0
2822(t) = 4h33(t) = S(0)g32(t) (118)
01(t)
N
833(t) = ( 9Z(r)(t)) : (119)
VO (r)
S(0)a (t)c(t)a/ VO (t)
hay(t) = 2 (120)
0
S(0)o (b(t)e% J6 v
h42(t) = 2 V(O)(t) 5 (121)
0
. S(O)a(t)e_zé fé v(s)ds
3
has(t) = s(vgm)) 2 (122)

where 5(0) stands for S, ,(0) and ostands for o'". Moreover, f,(t), g,(t), hy(t),
and k_(t) (i=1, 2, 3) in the equations (76)-(82) are given as follows:

J51(t) = fs3(t) = hs1(t) = f21(t),
Jsa(t) = hsa(t) = hs3(t) = faalt),
gs1(t) = gs3(t) = ks1(t) = ga1(t),

g52(0) = ksalt) = ksl = gaalt) -

6 Numerical Examples

This section provides two numerical examples: the calibration test and

the accuracy test. First, let us set LSV-LMM as the CEV-Heston LMM and the
Quadratic-Heston LMM for the numerical examples. Under the spot measure
Q, the local volatility functions of CEV-Heston LMM and Quadratic-Heston
LMM are given by

(F — F(0)?

_ b
oF)=F 2F(0)

and  ¢(t.F) = (1 — )F(0) + bF + ¢ (124)

respectively, where b, cand o are some constants. Then the one-dimensional
Heston-type stochastic volatility in (83) is equipped with the two models.

All model parameters are assumed to be constant for simplicity. We set the
parametere =1.

6.1 Calibration Test

This subsection examines the calibration ability of the CEV-Heston LMM and
the Quadratic-Heston LMM with our approximation formula. In particu-

lar, because a caplet is regarded as a special case of a swaption*,Theorem 1
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with specifications in Section 5.1 or 5.2 is applied to the evaluation of cap
prices in calibration of each model: Formula (74) with equations (97)-(106)
is applied to CEV-Heston LMM, while the one with equations (112)-(123) is
applied to Quadratic-Heston LMM.

The US cap market data® as of April 1, 2008 downloaded from Bloomberg
are employed for the calibration test. The two models are calibrated to the
market caplet implied volatilities with 1, 2, 3, 5, 7, 10, 15, and 20-year maturi-
ties, simultaneously.

The parameters V(0) and 77are fixed as 1. The other parameters of the
local stochastic volatilities and the correlations between LIBORs and the
volatilities are obtained by calibration. The calibrated parameters of the
local stochastic volatilities are listed in Table 1. The number of parameters,
o,, p,and forward LIBORs is so many that those values are not reported
here.®

Figure 1 and 2 plot the market and model-based caplet implied
volatilities.

These figures show that the model-based caplet implied volatilities
generated by both the CEV-Heston LMM and the Quadratic-Heston LMM
are fitted into the market ones very well. This calibration test implies that
the CEV-Heston LMM and the Quadratic-Heston LMM have sufficient cali-
bration ability to cap markets, and that our approximation formulaisa
very powerful tool because such a fast caplet pricing scheme is necessary
for implementing the calibration. In fact, it only takes less than 1/1000
seconds with core i7-870 processor to evaluate each caplet by applying our
formula.

Table 1: Local Stochastic Volatility Parameters.

£ 7] g b c
CEV-Heston 0.0987 0.4442 0.0100 = =
Quadratic-Heston 0.0488 0.3124 = 0.2438 1.2919

Figure 1: Caplet Implied Volatilities with 1, 2, 3, and 5-Year Maturities.

1Y—Caplet Implied Volatility 2Y-Caplet Implied Volatility

70 70
—A— Market by
< 604 —=— CEV—Heston LMM 60
; 50 . —®&— Quadratic—Heston LMM 50
E 40 40
o 3
> 30 30
B R
= 20 20
£
= 10 10
0 0
1 2 3 4 1 2 3 4 5 6 7
Strike Rate (%)
3Y-Caplet Implied Volatility 5Y—-Caplet Implied Volatility
70 70
60 60
501 50,
40 40
30 30
20 120 X
10 10
0 0
2 4 6 8 2 4 6 8

58

Figure 2: Caplet Implied Volatilities with 7, 10, 15, and 20-Year Maturities.
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6.2 Accuracy Test

This subsection provides the accuracy test of our approximate swaption
pricing formula in Theorem 1. Setting the calibrated parameters in section
5.1 and historically estimated correlations among forward LIBOR rates in
the CEV-Heston LMM and the Quadratic-Heston LMM, we compute 5-year X
5-year and 10-year x 10-year payers swaption prices by our formula. In order
to calculate oY, the total correlation structure in LMM with the stochastic
volatility should remain positive semi-definite. For that reason, we use the
parameterization method proposed by Mercurio and Morini (2007) for the
correlation matrix. Then, we compare our approximate swaption prices
with exact ones.

The parameters used for calculating swaption price are reported in
Table 1 to 3, where C-H and Q-H stand for CEV-Heston and Quadratic-Heston,
respectively.

Table 4 to 7 display the prices of 5-year X 5-year and 10-year X 10-year
payers swaption under the CEV-Heston LMM and the Quadratic-Heston
LMM, respectively. In the tables, the values of (a) Full MC denote swaption
prices computed by the Monte Carlo simulation with 1,000,000 sample
paths without any approximation techniques. We consider these prices as
the exact values of swaption prices. The values of (b) FT + MC are the Monte
Carlo prices with the freezing techniques. The values of (c) FT + AE are the
swaption prices by the asymptotic expansion scheme with the freezing tech-
niques, thatis, our pricing formula: Formula (74) with equations (97)-(106)
is applied to CEV-Heston LMM, while the one with equations (112)—(123) is
applied to Quadratic-Heston LMM. The value in the round bracket denotes
the implied volatility corresponding to each swaption price. As explained in
Remark 2, we have no problems in computation, which is very fast: It only
takes less than 1/1000 seconds with core i7-870 processor to evaluate a 10 X 10
swaption, (although we partially rely on numerical integrations since we make
the parameter v(t) time-dependent for the reduction of the approximation
errors as much as possible.)
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Table 2: The Value of v(t).

Table 5: 5y x 5y Payers Swaption Prices under CEV-Heston LMM.

C-H Q-H C-H Q-H C-H Q-H

t 5x5 5x5 10x10 10x10 t 10x10 10x10
0.25 1.035 0.853 1.000 0.716 5.25 0.998 0.811
0.5 1.029 0.851 1.000 0.714 55 0.998 0.817
0.75 1.023 0.850 1.000 0.713 5.75 0.998 0.822
1 1.018 0.850 1.000 0.713 6 0.998 0.827
125 1.012 0.850 0.999 0.714  6.25 0.998 0.831
1.5 1.009 0.855 0.999 0.718 6.5 0.998 0.836
1.75 1.007 0.862 0.999 0.725  6.75 0.998 0.841
2 1.006 0.870 0.999 0.733 7 0.998 0.846
225 1.006 0.879 0.999 0.743 7.25 0.998 0.850
2.5 1.004 0.885 1.000 0.749 75 0.998 0.858
2.75 1.003 0.892 0.999 0.755  7.75 0.999 0.866
3 1.002 0.899 0.999 0762 8 0.999 0.874
3.25 1.002 0.906 0.999 0.770 8.25 0.999 0.883
35 1.000 0.912 0.999 0.775 85 0.999 0.889
3.75 0.999 0.918 0.999 0.781 8.75 0.999 0.895
4 0.999 0.924 0.999 0.787 9 0.999 0.902
425 0.998 0.929 0.999 0.793 9.25 0.999 0.908
45 0.997 0.934 0.999 0.798 9.5 0.999 0.915
475 0.996 0.939 0.998 0.803 9.75 0.999 0.921
5 0.995 0.944 0.998 0.807 10 0.999 0.928

Table 3: Other parameters.

Forward paD peb oab oah

Swap  Annuity  (C-H) (Q-H) (C-H) (Q-H)

10x 10 5.413% 5.037 —0.1535 -0.5239 0.0048 0.0877
5x5 5.049% 3.720 -0.1378  -0.5443 0.0068 0.1370

Table 4: 10y x 10y Payers Swaption Prices under CEV-Heston LMM.

Strike Rate (%) 3.00 4.00 5.00 6.00 7.00

(@) Full MC 0.1236 0.0779 0.0400 0.0157 0.0048
(12.07) (10.04) (8.62) (7.75) (7.34)

(b) FT + MC 0.1239 0.0783 0.0403 0.0158 0.0048
(12.51) (10.26) (8.72) (7.77) 7.31)

(c) FT + AE 0.1241 0.0784 0.0403 0.0156 0.0047
(12.74) (10.29) (8.69) (7.74) (7.25)

(b) - (@ 0.0003 0.0004 0.0003 0.0001 -0.0001
(0.44) (0.22) (0.10) (0.02) (-0.03)

(O] 0.0002 0.0001 -0.0001 -0.0001 -0.0001
(0.24) (0.03) (-0.03) (-0.03) (-0.06)

@©-@ 0.0005 0.0005 0.0002 0.0000 -0.0002
(0.68) (0.25) (0.07) (-0.01) (-0.09)

Strike Rate (%) 3.00 4.00 5.00 6.00 7.00

(@) Full MC 0.0786 0.0467 0.0222 0.0080 0.0023
(17.48) (14.67) (12.77) (11.62) (10.98)

(b) FT + MC 0.0787 0.0468 0.0222 0.0080 0.0022
(17.72) (14.75) (12.78) (11.57) (10.90)

(c) FT + AE 0.0788 0.0467 0.0221 0.0079 0.0022
(17.84) (14.74) (12.76) (11.54) (10.86)

() - (@ 0.0001 0.0001 0.0000 0.0000  -0.0001
0.24) (0.09) (0.00) (-0.05) (-0.07)

@ - 0.0001 -0.0001 -0.0001 -0.0001 0.0000
0.13) (=0.01) (-0.01) (=0.03) (-0.04)

@-@ 0.0002 0.0001 0.0000  -0.0001 -0.0001
(0.36) (0.07) (-0.01) (-0.08) (-0.12)

Table 6: 10y x 10y Payers Swaption Prices under Quadratic-Heston LMM.

Strike Rate (%) 3.00 4.00 5.00 6.00 7.00
(@) Full MC 0.1258 0.0812 0.0437 0.0182 0.0058
(14.47) (11.70) (9.80) (8.51) (7.78)
(b) FT + MC 0.1252 0.0803 0.0425 0.0169 0.0049
(13.91) (11.26) (9.42) (8.13) (7.36)
(o) FT + AE 0.1249 0.0799 0.0422 0.0168 0.0046
(13.55) (11.06) (9.32) (8.09) (7.20)
() - (@) -0.0006 -0.0009 -0.0012  -0.0012  -0.0009
(=0.56) (-0.44) (-0.38) (=0.37) (-0.42)
O -0.0003  -0.0004 -0.0003  -0.0002  -0.0003
(-0.35) (-0.20) (-0.10) (-0.05) (-0.16)
©-@ -0.0009 -0.0013  -0.0015 -0.0014 -0.0012
(=0.91) (-0.64) (-0.48) (-0.42) (-0.58)

Table 7: 5y x 5y Payers Swaption Prices under Quadratic-Heston LMM.

Strike Rate (%) 3.00 4.00 5.00 6.00 7.00
(@) Full MC 0.0802 0.0489 0.0245 0.0096 0.0030
(20.14) (16.58) (14.21) (12.65) (1.74)
(b) FT + MC 0.0798 0.0482 0.0236 0.0087 0.0024
(19.50) (15.99) (13.63) (12.05) (11.08)
(c) FT + AE 0.0796 0.0482 0.0237 0.0089 0.0024
(19.17) (15.95) (13.74) (12.18) (11.07)
(b) - (a) -0.0004 -0.0007 -0.0010  -0.0009  -0.0006
(-0.64) (-0.59) (-0.58) (-0.60) (-0.67)
© - ) -0.0002  -0.0001 0.0002 0.0002  -0.0000
(-0.33) (-0.04) 0.11) (0.12) (-0.01)
(©-(@ -0.0006 -0.0008  -0.0008 -0.0007  -0.0006
(-0.97) (-0.63) (-0.47) (-0.48) (-0.68)

Next, we note that the values in the lower layers of Table 4, 5, 6 and 7
denote the approximation errors caused by the freezing techniques and/or
the asymptotic expansion.
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It can be seen that significantly accurate prices are obtained by our swap-
tion pricing formula under the CEV-Heston LMM in Table 4 and 5, while the
prices under the Quadratic-Heston LMM in Table 6 and 7 are less accurate

59



than the ones under the CEV-Heston LMM. However, even when pricing

deep in-the-money swaptions in Table 6 and 7, the approximation errors in
terms of the implied volatilities are less than 1%. Therefore, the level of these
errors seems acceptable in practice.

7 Conclusion

This paper proposed the LSV-LMM with affine-type stochastic volatility
models combined with local volatility models, where all parameters in the
LSV-LMM can be time-dependent. In particular, applying standard freezing
techniques and an asymptotic expansion method, it provided a new analytic
approximation formula for pricing swaptions under the model. To demon-
strate effectiveness of our approach, the paper took CEV-Heston LMM and
Quadratic-Heston LMM as examples and confirmed sufficient accuracies of
our approach for calibration to a caplet market and numerical evaluation of
swaptions under the models.

Our future research topics are as follows: Fist, in order to improve the accu-
racy of our current approximation formula, the higher order computational
scheme of the asymptotic expansion developed by Takahashi, et al. (2009)
has to be applied. Alternatively or at the same time, the full application of
the asymptotic expansion might be necessary without freezing techniques.
Second, for more accurate calibration, we may need to implement a pricing
formula for swaptions under the LSV-LMM with a multi-dimensional stochas-
tic volatility. Finally, in order to compute exotic interest rate derivatives and
their Greeks, we have to develop efficient Monte Carlo simulation techniques.

Appendix

A Formulas for the conditional expectations of the

Wiener-Ito integrals

This appendix summarizes conditional expectation formulas useful for
explicit computation of the asymptotic expansions. In the following, g,
€l?[0,1],i=1,2,...,5. Also, H (x; Z) denotes the Hermite polynomial of degree
nand ¥ = fo |q1t|2dt For the derivation and more general results, see
Section 3 in Takahashi, Takehara and Toda(2009).

1.
T T T Hi(x; ©
E [/ QthWt|/ q1,dWy = x] = (/ ‘ht‘htdt) %
0 0 0

T t T
2. E[ / / @y AW, g, AW, | / q;vdwv:x]
Hj(x; E
(/ /qZMqluquthltdt> Halt: 2)

3 T T T
) E [(/ q/zuqu> </ qgdeS> |/ q3,dW, = x]
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0
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ENDNOTES

1. Hereafter, the drift terms MJ-Q, J=12000
of numéraires.

2. This remark discusses about the multi-dimensional case that is the model described by
the equations (28) and (29), because the same formula (74) is applied to the case.

3. The asymptotic expansion of X_, (¢) gives the simpler expression than that of S_,(£).

will not appear explicitly due to the changes
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4. For a caplet, the underlying forward rate’s effective and terminal dates are given by T_
and T (T<T,ae{l,2,...,N—1}), respectively. Hence, setting b = a + 1 in the formula
(74) provides the formula for the caplet.

5. In our calibration test, we calibrated the models to the cap market data solely, because
suitable swaption data are not available in our circumstance.

6. They will be given upon request.
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