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Abstract
This paper presents a new approximation formula for pricing swaptions and 
caps/floors under the LIBOR market model of interest rates (LMM) with the 
local and affine-type stochastic volatility.

In particular, two approximation methods are applied in pricing, one of 
which is so called “drift-freezing” that fixes parts of the underlying stochas-
tic processes at their initial values. Another approximation is based on an 
asymptotic expansion approach. An advantage of our method is that those 
approximations can be applied in a unified manner to a general class of 
local-stochastic volatility models of interest rates.

To demonstrate effectiveness of our method, the paper takes CEV-Heston 
LMM and Quadratic-Heston LMM as examples; it confirms sufficient flexibil-
ity of the models for calibration in a caplet market and enough accuracies 
of the approximation method for numerical evaluation of swaption values 
under the models. 
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1 Introduction
This paper proposes a new analytical approximation method for pricing 
swaptions under the LIBOR market model of interest rates (LMM) with the 
local and affine-type stochastic volatility. Especially, our scheme is general 
enough to be applied in a unified way to a general class of local-stochastic 
volatility models of interest rates, which is distinct from other existing 
methods.

After the epoch making papers such as Brace, Gatarek and Musiela (1997) 
and Jamshidian (1997), LMM with deterministic volatilities has become a 
standard model in interest rate derivative markets. Thanks to LMM, practi-
tioners can not only obtain consistent prices of ATM caps/floors and exotic 
interest rate derivatives, but also hedge the exotic derivatives by using ATM 
caps/floors as Vega hedging tools. Moreover, by joint calibration to cap/floor 
and swaption markets, traders are able to execute relative value trading 
between ATM caps/floors and ATM swaptions.

Thereafter, many researchers and practitioners have been trying to 
develop extended LMMs in order to calibrate them to volatility smiles/skews 
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develop the approximation formula for pricing swaptions under SABR-LMM. 
However, it seems not easy for this approach to be applied except to the one-
dimensional stochastic volatility model.

Comparing with the existing models and approximation techniques, 
our extended LMMs and approximation scheme have the following features: 

 1. Volatility Modeling: appropriate volatility processes with a mean-
reverting property are introduced in the model. 

 2. Model Flexibility: all parameters are time-dependent, and multi-
dimensional stochastic volatility processes can be applied. 

 3. Generality of Approximation Techniques: a general approximation 
scheme by an asymptotic expansion with standard freezing tech-
niques is proposed for pricing swaptions and caps/floors; it can be 
applied to a broad class of the underlying models in a unified man-
ner. 

 4. Analytical Tractability: the same approximation formulas except 
concrete specifications of the coefficients can be applied to different 
models, which is very useful for testing various models, for example 
in calibration. 

The organization of the paper is as follows; the next section describes 
the basic setup and LMM with the local and affine-type stochastic volatility. 
It also presents an approximation of swap rate processes. After Section 3 
briefly explains the framework of an asymptotic expansion method, Section 
4 applies the method to deriving an approximation formula for swaption 
prices. Section 5 gives numerical examples. Section 6 concludes. Appendix 
lists up the conditional expectation formulas used in the approximation.

2 LIBOR Market Model with Local and Affine-type 
Stochastic Volatility
This section introduces a LIBOR market model (LMM) of interest rates with 
with the local and affine-type stochastic volatility after briefly describ-
ing basics on the framework of LMM. Then, it discusses on the changes of 
numéraires among the equivalent martingale measure (EMM) to the spot, 
forward and swap measures as well as on the swap rate processes. Moreover, 
it shows that an appropriate approximation makes LMM with the local and 
affine-type stochastic volatility included in the same class as before after the 
changes of measure.

2.1 Basic Setup
This subsection defines basic concepts such as tenor structures, discount 
bond prices, the money market account (MMA) and forward LIBOR rates. 
First a tenor structure is given by a finite set of dates: 

0 = T0 < T1 < · · · < TN,

where T
i
 (i = 0, 1, …, N) are pre-specified dates. P

j
(t) denotes the price of the 

discount bond with maturity T
j
 at time t, where P

j
(T

j
) = 1 and P

j
(t) = 0 for 

t ∈(T
j
, T

N
].

The forward LIBOR rate at time t(≤ T
j
) with the term [T

j − 1, Tj
] is defined as 

 
Fj(t) = 1

δj

(
Pj−1(t)

Pj(t)
− 1

)
, for any j = 1, 2, . . . , N,  (1)

where d
j
 := T

j 
- T

j−1.

that are observed in cap/floor and swaption markets. If an extended LMM 
model can be calibrated to volatility smiles/skews perfectly, exotic deriva-
tives are evaluated consistently with market prices of caps/floors and 
hedged by caps/floors at different strikes as hedging tools. Many papers 
focusing on extended LMMs have been published; for instance, LMM with 
jumps (Glasserman and Kou (2003)), LMM with local volatilities (Andersen 
and Andreasen (2000)), and LMM with stochastic volatilities (Andersen and 
Brotherton-Ratcliffe (2001), Piterbarg (2003), Wu and Zhang (2006)).

More recently, SABR-LMM developed by Labordere (2007), Rebonato and 
White (2007), Rebonato (2007), Hagan and Lesniewski (2008), Mercurio and 
Morini (2009), and Rebonato, et al. (2009) comes under the spotlight among 
practitioners. While the original SABR proposed by Hagan, et al. (2002) is 
a local-stochastic volatility model without the term structure of interest 
rates, SABR-LMM is a unified model of LMM and SABR. SABR-LMM is gradu-
ally getting popularity in practice since the original SABR has been an 
industry standard for interpolating and extrapolating the prices of plain-
vanilla caps/floors and swaptions, and with so called freezing techniques, the 
well-known Hagan’s formula can be applied to pricing swaptions as well as 
caps/floors.

Next, let us recall some features of existing researches for SABR-LMM: The 
first one is on its volatility modeling. In SABR-LMM, the volatility process V is 
given by 

dV(t) = vV(t)dWQ
t ,

where WQ is a Brownian motion under the spot measure Q and v is constant. 
However, the process might not be suitable for modeling volatility dynam-
ics because many empirical studies reported that the observed volatility 
dynamics has mean-reverting property. For example, Rebonato, et al. (2009) 
pointed out that for pricing exotic derivatives through Monte Carlo simula-
tions, there are some problems for numerical convergence and stability due 
to the diffusion process of the SABR volatility.

The second one is on the freezing techniques used for derivation of 
approximation formulas under SABR-LMM. In order to keep the SABR frame-
work even after the change of a numéraire, not only well-known freezing 
techniques such as “drift-freezing”, but also some peculiar freezing tech-
niques are needed. For example, Mercurio and Morini (2009) starts with the 
volatility process under the forward measure Qk: 

dV(t) = −vμ0(γ (t), k; V)V2(t)dt + vV(t)dWQ k

t ,

where WQk is a Brownian motion under the forward measure Qk. Then, for the 
application of the Hagan’s analytical pricing formula, it applies a new freez-
ing method such that V2(t) in the drift coefficient is changed to V(0)V(t). That 
is, the volatility process is approximated as 

dV(t) = −vμ0(γ (t), k; V)V(0)V(t)dt + vV(t)dWQ k

t .

The third one is related to the flexibility of the existing methods. It 
seems not easy for the same or similar methods to be applied to extensions 
or modifications of SABR-LMM; some other special ideas seems necessary 
for the applications to extended or modified models. For example, many 
existing works highly rely on the Hagan’s SABR formula. On the other hand, 
the Hagan’s formula cannot be directly applied to other types of local-
stochastic models such as CEV-Heston LMM and Quadratic-Heston LMM. 
Also, Labordere (2007) proposed the heat kernel expansion approach to 
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On the other hand, P
j
(T

k
) is expressed by the forward LIBOR as 

 
Pj(Tk) =

j∏
i=k

1

1 + δiFi(Tk)
.  (2)

The money market account (MMA)’s price B
d
(t) is defined as 

 

Bd(t) = Pγ (t)(t)∏γ (t)
j=1 Pj(Tj−1)

= Pγ (t)(t)
γ (t)∏
j=1

{
1 + δjFj(Tj−1)

}
, (3)

where g (t) = min{i ∈{1,2,…,N} : T
i
 ≥ t}.

2.2 LMM with Affine-type Local-Stochastic Volatility Model
Let (Ω, F, (F

t
)
t ∈[0, TN], Q ) denote a complete probability space satisfying the 

usual conditions where Q is the spot measure; it stands for uncertainty of 
the market.

Under the spot measure Q, it is assumed that forward LIBOR F
j
, j = 

1,2,…, N follows a SDE having a unique strong solution; 

 

dFj(t) = μ
Q
j dt + φ(t, Fj(t))σj(t)

′�(t, V(t))dWQ ,1
t

Fj(0) = fj ∈ (0, ∞),

 (4)

where  W 
t
  Q,1  is a D-dimensional Brownian motion under Q, each element of 

D-dimensional stochastic volatility process V = (V
1
, V

2
,…, V

D
)′ is given by 

 

dVd(t) = {α1d(t) + α2d(t)′V(t)}dt +
2∑

l=1

θdl(t)
′�(t, V(t))dWQ ,l

t ,

Vd(0) = 1, d = 1, 2, . . . , D,

 (5)

WQ = (WQ,1, WQ,2)′ is a 2D-dimensional Brownian motion under Q (WQ,2 is a 
D-dimensional Brownian motion), and  m

j
   Q  is an appropriate drift term1 of F

j
 

under Q. Here, x′ denotes transpose of  vector x.
The matrix ∑(t, x) : [0, ∞) × RD → RD × D is assumed to be a diagonal matrix 

such that its diagonal elements are given by 

�dd(t, x) :=
√

β1d(t) + β2d(t)′x, d = 1, 2, . . . , D,

where 

β1d(t) : [0, ∞) �→ R

β2d(t) : [0, ∞) �→ RD

β1d(t) + β2d(t)′x > 0

f (t, x) : [0, ∞) × R �→R represents a local volatility function.
In addition to b

jd
(t), j = 1,2, all the other coefficients in the processes are 

assumed to be deterministic functions of the time parameter: 

σj(t) : [0, ∞) �→ RD

α1d(t) : [0, ∞) �→ R

α2d(t) : [0, ∞) �→ RD

θdl(t) : [0, ∞) �→ RD, l = 1, 2.

Therefore, our extended LMM has a D-dimensional and mean- reverting 
stochastic volatility combined with a local volatility, and this model is 
equipped with time-dependent parameters.

Next, we apply the method of the change of a numéraire to our setting. First, 
we recall the measure-change from the spot measure Q to a forward measure: 
Under the forward measure Qk where the numéraire is the discount bond 
P

k
(t), Wk = (Wk,1, Wk,2)′ is a 2D-dimensional Brownian motion given as 

 
Wk,1

t = WQ ,1
t +

∫ t

0
�(s, Vs)μ(s, γ (s), k)ds,  (6)

and

 Wk,2
t = WQ ,2

t , (7)

where m (t, g (t), k) is a RD-valued process defined by 

 

μ(t, γ (t), k) :=
k∑

i=γ (t)+1

δiφ(t, Fi(t))

1 + δiFi(t)
σi(t). (8)

Next, we apply the measure-change from the spot measure Q to an annui-
ty measure: Under the annuity measure Q(a,b) where the numéraire is the annu-
ity N (a,b)(t) =  ∑  

i = a + 1  
b
   d

i 
P

i
(t), W (a,b) = (W (a,b),1 W (a,b),2)′ is a 2D-dimensional Brownian 

motion given as 

 
W (a,b),1

t = WQ ,1
t +

∫ t

0
�(s, Vs)μ

(a,b)(s, γ (s))ds, (9)

and

 W (a,b),2
t = WQ ,2

t .  (10)

Here, a RD-valued process m (a, b) (t, g (t))is defined by 

 

μ(a,b)(t, γ (t)) :=
b∑

k=a+1

w(a,b)
k (t)μ(t, γ (t), k), (11)

 

w(a,b)
k (t) := δkPk(t)∑b

i=a+1 δiPi(t)
.  (12)

We will derive a swap rate dynamics under the annuity measure. Note 
first that a time-t forward swap rate S

a,b
(t) with effective date T

a
 and terminate 

date T
b
 is given by 

 

Sa,b(t) =
b∑

j=a+1

δjPj(t)∑b
i=a+1 δiPi(t)

Fj(t) =
b∑

j=a+1

w(a,b)
j (t)Fj(t), (13)

Thus, under the annuity measure Q(a,b) its dynamics follows a stochastic 
differential equation (SDE): 

 

dSa,b(t) = φ(t, Sa,b(t))
b∑

j=a+1

λ
(a,b)
j (t)σj(t)

′�(t, V(t))dW (a,b),1
t , (14)

where 

 
λ

(a,b)
j (t) := ∂Sa,b(t)

∂Fj(t)

φ(t, Fj(t))

φ(t, Sa,b(t))
,  (15)

and

 

∂Sa,b(t)

∂Fj(t)
= w(a,b)

j (t) + δj

1 + δjFj(t)

[ j−1∑
l=a

w(a,b)
l (t){Fl(t) − Sa,b(t)}

]
,

a + 1 ≤ j ≤ b.  (16)
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Also, under the annuity measure Q(a,b), each element of stochastic volatil-
ity V = (V

1
, V

2
, …, V

D
) is given by 

 

dVd(t) = {η(a,b)
1d (t) + η

(a,b)
2d (t)′V(t)}dt +

2∑
l=1

θdl(t)
′�(t, V(t))dW (a,b),l

t ,

Vd(0) = 1, d = 1, 2, . . . , D,

 (17)

where 

 η
(a,b)
1d (t) := α1d(t) − [θd1(t)′μ(a,b)(t, γ (t))] β1d(t)  (18)

 η
(a,b)
2d (t) := α2d(t) − [θd1(t)′μ(a,b)(t, γ (t))] β2d(t). (19)

Although an asymptotic expansion technique introduced in the next 
section can be directly applied to the above equations for an approximation 
of swaption prices, this paper will derive a simpler analytical approximation 
formula. Hence, before the application of the asymptotic expansion meth-
od, the so called freezing technique is used for the swap rate dynamics. That 
is, the variation of  l

j
  (a,b)  (t) is so small that the standard freezing technique is 

applied to l
j
 (t) such that 

 
λ

(a,b)
j (t) ≈ λ

(a,b),0
j (t) := ∂Sa,b(0)

∂Fj(0)

φ(t, Fj(0))

φ(t, Sa,b(0))
. (20)

More precisely,  l
j
  (a,b)  (t) is approximated as 

 

λ
(a,b),0
j (t) =

{
w(a,b)

j (0) + δj

1 + δjFj(0)

[ j−1∑
l=a

w(a,b)
l (0){Fl(0) − Sa,b(0)}

]}

× φ(t, Fj(0))

φ(t, Sa,b(0))
.

 (21)

Therefore, the approximated swap rate process is obtained as 

 dSa,b(t) ≈ φ(t, Sa,b(t))σ
(a,b)(t)′�(t, V(t))dW (a,b),1

t ,  (22)

where s (a,b)(t) is a RD-valued deterministic process given by 

 

σ (a,b)(t) :=
b∑

j=a+1

λ
(a,b),0
j (t)σj(t). (23)

Moreover, the standard freezing technique is also applied to the stochas-
tic volatility process. That is, set 

 

μ(a,b)(t, γ (t)) ≈ μ
(a,b)
0 (t, γ (t)) =

b∑
k=a+1

w(a,b)
k (0)

k∑
i=γ (t)+1

δiφ(t, Fi(0))

1 + δiFi(0)
σi(t),  (24)

and hence,  m
0
  (a, b)  (t, g (t)) becomes a RD-valued deterministic process. Then, the 

approximated stochastic volatility process is obtained as 

 

dVd(t) ≈ {η1d(t) + η2d(t)′V(t)}dt +
2∑

l=1

θdl(t)
′�(t, V(t))dW (a,b),l

t , (25)

where h
jd
(t), j = 1,2 also become deterministic processes: 

 η1d(t) := α1d(t) − [θd1(t)′μ(a,b)
0 (t, γ (t))] β1d(t)  (26)

 η2d(t) := α2d(t) − [θd1(t)′μ(a,b)
0 (t, γ (t))] β2d(t). (27)

In sum, the approximated swap rate process is re-written as follows: 

 

dSa,b(t) = φ(t, Sa,b(t))σ
(a,b)(t)′�(t, V(t))dW (a,b),1

t ,

Sa,b(0) given,

 (28)

 

dVd(t) = {η1d(t) + η2d(t)′V(t)}dt

+
2∑

l=1

θdl(t)
′�(t, V(t))dW (a,b),l

t ,

Vd(0) = 1, d = 1, 2, . . . , D.

 (29)

In particular, when V(t) is one dimensional, we are able to re-express 
the forward swap rate process by using a one-dimensional Brownian 
motion W1 independent of W(a,b),2 and a one-dimensional deterministic 
process s a,b (t) as 

 dSa,b(t) = φ(t, Sa,b(t))
√

β1(t) + β2(t)V(t)σ (a,b)(t)dW1
t  (30)

 

dV(t) = {η1(t) + η2(t)V(t)}dt

+
√

β1(t) + β2(t)V(t)[θ1(t)dW1
t + θ2(t)dW2

t ],  (31)

where

 
W1

t = 1

‖σ (a,b)(t)‖2

∫ t

0
σ (a,b)(t)′dW (a,b),1

t ,  (32)

 W2
t = W (a,b),2

t ,  (33)

 σ (a,b)(t) = ‖σ (a,b)(t)‖.  (34)

3 Asymptotic Expansion Method in a General 
Markovian Setting
 This section briefly describes an asymptotic expansion method in a general 
Markovian setting, which will be applied to the derivation of swaption pric-
es under the approximated swap rate process above in the next section. See 
Takahashi (1999), Kunitomo and Takahashi (2003) and references therein for 
the detail of the theory and applications of the method from finance per-
spective. Also, see Takahashi, et al. (2009) for the detail of its computational 
aspect.

Let (Z, P) be the r-dimensional Wiener space. We consider a d-dimensional 
diffusion process  X 

t
  (e)  = ( X 

t
  (e),1 ,…,  X 

t
  (e),d ) which is the solution to the following sto-

chastic differential equation: 

 dX(ε)
t = V0(X(ε)

t )dt + εV(X(ε)
t )dZt; X(ε)

0 = x0, t ∈ [0, T], (35)

where Z = (Z1,…, Zm) is a m-dimensional Brownian motion and e ∈[0,1] is a 
known parameter. Also, V

0
 : Rd → Rd, V : Rd → Rd ⊗ Rm satisfy some regularity 

conditions.(e.g. V
0
 and V are smooth functions with bounded derivatives of 

all orders.)
Next, suppose that a function g : Rd → R to be smooth and all derivatives 

have polynomial growth orders. Then, a smooth Wiener functional g( X 
T
  (e) ) has 

its asymptotic expansion; 

 g(X(ε)
T ) = g0T + εg1T + ε2g2T + ε3g3T + o(ε3). (36)

in Lp for every p > 1 (or in D∞) as ε ↓ 0. The coefficients in the expansion g
nT

 ∈ 
D∞ (n = 0,1,…) can be obtained by Taylor’s formula and represented based on 
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multiple Wiener-It ô integrals. Here, D∞ denotes the set of smooth Wiener 
functionals. See chapter V of Ikeda and Watanabe (1989) for the detail.

In particular, let Dt = ∂X(ε)
t

∂ε
|ε=0, Et = ∂2X(ε)

t
∂ε2 |ε=0 and Ft = ∂3X(ε)

t
∂ε3 |ε=0. Then, g

0T
, 

g
1T

, g
2T

 and g
3T

 are expressed as follows: 

 

g0T = g(X(0)
T ), g1T =

d∑
i=1

∂ig(X(0)
T )Di

T ,  (37)

 

g2T = 1

2

d∑
i,j=1

∂i∂jg(X(0)
T )Di

TDj
T + 1

2

d∑
i=1

∂ig(X(0)
T )Ei

T ,  (38)

 

g3T = 1

6

d∑
i,j,k=1

∂i∂j∂kg(X(0)
T )Di

TDj
TDk

T + 1

2

d∑
i,j=1

∂i∂jg(X(0)
T )Ei

TDj
T

+ 1

6

d∑
i=1

∂ig(X(0)
T )Fi

T ,
 (39)

where  D 
t
  i  , E  

t
  i   and F  

t
  i  , (i = 1,…,d) denote the i-th element of D

t
, E

t
 and F

t
, respec-

tively. D
t
, E

t
 and F

t
 are given by 

 
Dt =

∫ t

0
YtY

−1
u V(X(0)

u )dZu,  (40)

 

Et =
∫ t

0
YtY

−1
u

(
d∑

j,k=1

∂j∂kV0(X(0)
u )Dj

uDk
udu + 2

d∑
j=1

∂jV(X(0)
u )Dj

udZu

)
,  (41)

 

Ft =
∫ t

0
YtY

−1
u

⎛
⎝ d∑

j,k,l=1

∂j∂k∂lV0(X(0)
u , 0)Dj

uDk
uDl

udu

+ 3
d∑

j,k=1

∂j∂kV0(X(0)
u , 0)Ej

uDk
udu + 3

d∑
j,k=1

∂j∂kV(X(0)
u )Dj

uDk
udZu

+3
d∑

j=1

∂jV(X(0)
u )Ej

udZu

⎞
⎠ .

 (42)

Here, Y is the solution to the following ordinary differential equation: 

dYt = ∂V0(X(0)
t )Ytdt; Y0 = Id,

where îV
0
 is a d × d matrix whose (j, k) element is given by ∂kVj

0. (∂k = ∂
∂xk

, Vj
0
 

denotes the j-th component of V
0
). Also, I

d
 represents the d × d identity matrix.

Next, normalize g(X(ε)
T ) to 

 
G(ε) = g(X(ε)

T ) − g0T

ε
.  (43)

 Moreover, let 

at = a(0)
t = (∂g(X(0)

T ))′[YTY−1
t V(X(0)

t )],

and make an assumption: 

 
(Assumption 1) �T =

∫ T

0
ata

′
tdt > 0. (44)

Note that ∑
T
 is the variance of a random variable g

1T
 following a normal 

distribution. Thus, (Assumption 1) means that the distribution of g
1T

 does 
not degenerate.

Then, ψG(ε) (ξ ), the characteristic function of G(ε) is approximated as 

 

ψG(ε) (ξ ) = E[exp(iξG(ε))]

= E[exp(iξg1T )] + ε(iξ )E[exp(iξg1T )g2T ]

+ ε2(iξ )E[exp(iξg1T )g3T ] + ε2

2
(iξ )2E[exp(iξg1T )g2

2T ] + o(ε2)

= exp

(
(iξ )2�T

2

)
+ ε(iξ )E [exp(iξg1T )E[g2T|g1T ]]

+ ε2(iξ )E [exp(iξg1T )E[g3T|g1T ]]

+ ε2

2
(iξ )2E

[
exp(iξg1T )E[g2

2T|g1T ]
] + o(ε2),  (45)

where E[g2T|g1T ], E[g2
2T|g1T ] and E[g3T|g1T ]  become some polynomials of g

1T
.

Hence, the inversion of the approximated characteristic function pro-
vides an approximation of the density function of G(ε), f

G(ε): 

 

fG(ε) = n[x; 0, �T ] + ε

[
− ∂

∂x
{h2(x)n[x; 0, �T ]}

]

+ ε2
[
− ∂

∂x
{h3(x)n[x; 0, �T ]}

]

+ 1

2
ε2

[
∂2

∂x2
{h22(x)n[x; 0, �T ]}

]
+ o(ε2),

 (46)

where h2(x) = E[g2T|g1T = x], h22(x) = E[g2
2T|g1T = x], h3(x) = E[g3T|g1T = x]. 

Also, n[x; 0,ΣT ] represents the density function of a normal distribution 
with mean 0 and variance ΣT : 

 
n[x; 0, �T ] = 1√

2π�T
exp

{−x2

2�T

}
.  (47)

Let φ : R �→ R a smooth function of which all derivatives have polyno-
mial growth orders. Then, the expectation E[φ(G(ε))IB(G(ε))]  has an asymptotic 
expansion with respect to ε:

 E[φ(G(ε))IB(G(ε))] = �0 + ε�1 + ε2�2 + o(ε2), (48)

 where B stands for a Borel set on R. IB(G(ε)) = 1 when G(ε) ∈ B and IB(G(ε)) = 0  
otherwise.

Especially, Φ0, Φ1, Φ2 are obtained by 

 
�0 =

∫
B
φ(x)n[x; 0, �T ]dx,  (49)

 
�1 = −

∫
B
φ(x)∂x{E[g2T|g1T = x]n[x; 0, �T ]}dx,  (50)

 

�2 =
∫

B

(1

2
φ(x)∂2

x {E[g2
2T|g1T = x]n[x; 0, �T ]}

−φ(x)∂x{E[g3T|g1T = x]n[x; 0, �T ]}
)

dx.  (51)

Finally, when the underlying asset value at maturity T and the strike 
price are given by g( X 

T
  (ε)  ) and K = g( X 

T
  (0) ) − εy for an arbitrary y ε R, respectively 

the payoff of the call option is expressed as 

 max{g(X(ε)
T ) − K, 0} = εφ(G(ε))IB(G(ε)),  (52)

48-61_Yamazaki_TP_Sept_2012_Fina52   5248-61_Yamazaki_TP_Sept_2012_Fina52   52 10/4/12   5:19:07 PM10/4/12   5:19:07 PM



TECHNICAL PAPER

^

Wilmott magazine 53

where φ(x) = (x + y) and B = {G(ε) ≥ −y} .

Remark 1 E[g2T|g1T = x], E[g2
2T|g1T = x], E[g3T|g1T = x]  are some polynomial 

functions of x and those conditional expectations are evaluated by the formulas in 
Appendix. 

4 Approximation Formula of Swaption Price
Given the approximated swap rate process in Section 2, this section derives 
an analytical approximation formula for swaption prices by using the 
asymptotic expansion technique.

For simplicity, let us consider a swap rate process with parameter 
ε(∈[0,1]) under one-dimensional stochastic volatility environment 
described as the models (30) and (31) in Section 2. However, even for the case 
of multi-dimensional stochastic volatility models, the swaption pricing for-
mula can be derived in the similar manner as in the one-dimensional model.

The forward swap rate model under our asymptotic expansion setting is 
given as follows: 

 
dS(ε)

a,b(t) = εφ(t, S(ε)
a,b(t))σ

(a,b)(t)
√

β1(t) + β2(t)V (ε)(t)dW1
t ,  (53)

 

dV (ε)(t) = {η1(t) + η2(t)V (ε)(t)}dt

+ ε

2∑
l=1

θl(t)
√

β1(t) + β2(t)V (ε)(t)dWl
t ,  (54)

where (W
1
, W

2
) is a two-dimensional Brownian motion, θ1(t) = ρ (a,b)(t)θ (t),  

θ2(t) =
√

1 − ρ (a,b)(t)2θ (t)
( )

 and ρ (a,b)(t) ∈ [−1, 1] denotes the correlation 
between  S 

(a,b)
  (ε)

  (t) and V(t).
Then, based on the discussion in Section 3, the swap rate process  S 

(a,b)
  (ε)

  (T) 
and variance process V(ε)(T) described by (53) have asymptotic expansions; 

 

S(ε)
a,b(T) ∼ S(0)

a,b(T) + εS(1)
a,b(T) + ε2S(2)

a,b(T) + ε3S(3)
a,b(T) + · · · ,

V (ε)(T) ∼ V (0)(T) + εV (1)(T) + ε2V (2)(T) + ε3V (3)(T) + · · · ,

 (55)

 as ε ↓ 0, where the coefficients in the expansions are given by the next 
proposition. S(0)

a,b(T), S(1)
a,b(T), S(2)

a,b(T) and S(3)
a,b(T) correspond to  X 

T
  (0) , D

T
, E

T
 and F

T
 in 

Section 3, respectively. 

Proposition 1 The coefficients S(0)
a,b(T), S(1)

a,b(T), S(2)
a,b(T) and S(3)

a,b(T) in (55) are given by: 

 
S(0)

a,b(T) = Sa,b(0), S(1)
a,b(T) =

∫ T

0
f11(s)′dWs,  (56)

 
S(2)

a,b(T) =
2∑

k=1

∫ T

0

∫ s

0
f2k(u)′dWu g2k(s)

′dWs,  (57)
 

 

S(3)
a,b(T) =

3∑
k=1

∫ T

0

∫ s

0

∫ u

0
f3k(v)′dWv g3k(u)′dWu h3k(s)

′dWs

+
3∑

k=1

∫ T

0

(∫ s

0
g4k(u)′dWu

) (∫ s

0
f4k(u)′dWu

)
h4k(s)

′dWs.  (58)

 Here, integrands f, g, h above are obtained as follows: 

f11(t) = f21(t) = f31(t) = f41(t) = g41(t) = g42(t)

=
(

σ (t)
√

β1(t) + β2(t)V (0)(t)φ(t, S(0))
0

)
, (59)

f22(t) = f32(t) = f33(t) = f42(t) = f43(t) = g43(t)

=
(

θ1(t)e− ∫ t
0 η2(s)ds

√
β1(t) + β2(t)V (0)(t)

θ2(t)e− ∫ t
0 η2(s)ds

√
β1(t) + β2(t)V (0)(t)

)
, (60)

g21(t) = g31(t) = h31(t) = 2h32(t)

=
(

σ (t)
√

β1(t) + β2(t)V (0)(t)∂φ(t, S(0))
0

)
, (61)

2g22(t) = g32(t) = 4h33(t) =
⎛
⎝ σ (t)β2(t)e

∫ t
0 η2(s)ds√

β1(t)+β2(t)V(0) (t)
φ(t, S(0))

0

⎞
⎠ , (62)

 

g33(t) =
⎛
⎝ θ1(t)β2(t)√

β1(t)+β2(t)V(0)(t)
θ2(t)β2(t)√

β1(t)+β2(t)V(0)(t)

⎞
⎠ , (63)

h41(t) =
(

σ (t)
√

β1(t)+β2(t)V(0) (t)
2 ∂2φ(t, S(0))

0

)
, (64)

h42(t) =
⎛
⎝ σ (t)β2(t)e

∫ t
0 η2(s)ds

2
√

β1(t)+β2(t)V(0)(t)
∂φ(t, S(0))

0

⎞
⎠ , (65)

 and 

 

h43(t) =
⎛
⎝− σ (t)β2(t)2e2

∫ t
0 η2(s)ds

8[β1(t)+β2(t)V(0) (t)]3/2

0

⎞
⎠ ,  (66)

 where 

 

V (0)(t) := e
∫ t
0 η2(s)ds

(∫ t

0
η1(s)e− ∫ s

0 η2(u)duds + V(0)

)
,

∂xφ(t, S(0)) := ∂φ(t, x)

∂x

∣∣∣
x=S(0)

,

∂2
x φ(t, S(0)) := ∂2φ(t, x)

∂x2

∣∣∣
x=S(0)

,
 (67)

and we use the abbreviated notation S(0) for S
a,b

(0) and s  for s (a,b). 

Proof. We derive coefficients, S(0)
a,b(T), S(1)

a,b(T) and S(2)
a,b(T) explicitly. S(3)

a,b(T) can 
be derived in the similar manner and hence the detail is omitted. Also, we 
use the abbreviated notation S(i) (·) for  S 

a,b
  (i)
   (·) below.

First, we calculate S(0)(T). 

S(0)(T) =
(

S(0) + ε

∫ T

0
φ

(
t, (S(0)(t) + εS(1)(t) + · · ·)

)

× σ (t)
√

β1(t) + β2(t)
(
V (0)(t) + εV (1)(t) + · · ·)dW1

t

)∣∣∣∣∣
ε=0

= S(0).

Next, we calculate V(0)(T) and S(1)(T). 

V (0)(T) =
(

V(0) +
∫ T

0
η1(t) + η2(t)(V (0)(t) + εV (1)(t) + · · ·)dt

+ ε

2∑
l=1

∫ T

0
θl(t)

√
β1(t) + β2(t)(V (0)(t) + εV (1)(t) + · · ·)dWl

t

)∣∣∣∣∣
ε=0
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= V(0) +
∫ T

0

(
η1d(t) + η2(t)V (0)(t)

)
dt,

S(1)(T) =
(∫ T

0
φ

(
t, (S(0)(t) + εS(1)(t) + · · ·)

)

× σ (t)
√

β1(t) + β2(t)
(
V (0)(t) + εV (1)(t) + · · ·)dW1

t

+ ε

∫ T

0
∂φ

(
t, (S(0)(t) + εS(1)(t) + · · ·)

)
(S(1)(t) + 2εS(2)(t) + · · ·)

× σ (t)
√

β1(t) + β2(t)
(
V (0)(t) + εV (1)(t) + · · ·)dW1

t

+ ε

∫ T

0
φ

(
t, (S(0)(t) + εS(1)(t) + · · ·)

)

× σ (t)
β2(t)(V (1)(t) + 2εV (2)(t) + · · ·)√

β1(t) + β2(t)
(
V (0)(t) + εV (1)(t) + · · ·)dW1

t

)∣∣∣∣∣
ε=0

=
∫ T

0
φ

(
t, S(0)(t)

)
σ (t)

√
β1(t) + β2(t)V (0)(t)dW1

t .

 V(0)(T) can be solved as follows:

V (0)(t) = e
∫ t
0 η2(s)ds

(∫ t

0
η1(s)e− ∫ s

0 η2(u)duds + V(0)

)
.

Then, substituting V(0)(t) into S(1)(T), we obtain the coefficient f
11

(t).
In the similar manner, we get the following equations for calculation of 

V(1)(t) and S(2)(T). 

V (1)(T) = ∂V (ε)(T)

∂ε

∣∣∣
ε=0

=
∫ T

0
η2(t)V (1)(t)dt +

2∑
l=1

∫ T

0
θl(t)

√
β1(t) + β2(t)V (0)(t)dWl

t ,

S(2)(T) = ∂2S(ε)(T)

∂ε2

∣∣∣
ε=0

= 2
∫ T

0
∂xφ

(
t, S(0)(t)

)
S(1)(t)σ (t)

√
β1(t) + β2(t)V (0)(t)dW1

t

+
∫ T

0
φ

(
t, S(0)(t)

)
σ (t)

β2(t)V (1)(t)√
β1(t) + β2(t)V (0)(t)

dW1
t .

 Those equations are solved as follows: 

 

V (1)(t) =
2∑

l=1

e
∫ t
0 η2(s)ds

(∫ t

0
e− ∫ s

0 η2(u)duθl(s)
√

β1(s) + β2(s)V (0)(s)dWl
s

)
,

S(2)(T) = 2
∫ T

0
∂xφ

(
t, S(0)(t)

)
σ (t)

√
β1(t) + β2(t)V (0)(t)

×
∫ t

0
φ

(
t, S(0)(s)

)
σ (s)

√
β1(s) + β2(s)V (0)(s)dW1

s dW1
t

+
∫ T

0
φ

(
t, S(0)(t)

)
σ (t)

β2(t)
∑2

l=1 e
∫ t
0 η2(s)ds√

β1(t) + β2(t)V (0)(t)

×
∫ t

0
e− ∫ s

0 η2(u)duθl(s)
√

β1(s) + β2(s)V (0)(s)dWl
sdW1

t .

 Thus, we obtain f2i (t) and g2i (t), i = 1,2. 
Therefore, applying the general result in the previous section to the cur-

rent setting, the European payers-swaption price; 

Swptn(a, b) := Na,b(0)E(a,b)[(Sa,b(T) − K)+]

 is obtained by 

 

Swptn(a, b)

Na,b(0)
= ε

(
y
∫ ∞

−y
n(x, �)dx +

∫ ∞

−y
xn(x, �)dx

)

+ ε2
∫ ∞

−y
E(a,b)

[
S(2)

a,b(T)|S(1)
a,b(T) = x

]
n(x, �)dx

+ ε3
(∫ ∞

−y
E(a,b)

[
S(3)

a,b(T)|S(1)
a,b(T) = x

]
n(x, �)dx

+ 1

2
E(a,b)

[
(S(2)

a,b(T))2|S(1)
a,b(T) = y

]
n(y, �)

)
+ o(ε3),

 (68)

 where Na,b(0) = ∑b
i=a+1 δiPi(0), y := {Sa,b(0) − K}/ε

T
 and � := ∫ T

0 f ′
11(t)f11(t)dt.

We remark that 
(

S(ε)
a,b (T)−S(0)

a,b (T)

ε

)
h

 corresponds to G(ε) in Section 3. Note also 

that the equation (48) with (52) in Section 3 is applied. Then, the equation 
(68) is obtained after some calculation of (49), (50) and (51).

Finally, the following theorem is obtained through evaluations of 
the conditional expectations in the above equation by the formulas in 
Appendix, as well as applications of formulas below: 

 

∫ ∞

−y
n[x; 0, �]dx = N

(
y√
�

)
,  (69)

 

∫ ∞

−y
xn[x; 0, �]dx = �n[y; 0, �],  (70)

 

∫ ∞

−y
x2n[x; 0, �]dx = �N

(
y√
�

)
− y�n[y; 0, �],  (71)

 

∫ ∞

−y
x3n[x; 0, �]dx = (

2�2 + �y2) n[y; 0, �],   (72)

where N(x) denotes the distribution function of the standard normal distri-
bution, and 

 
n[x; 0, �] = 1√

2π�
exp

{−x2

2�

}
.  (73)

Theorem 1. The European payers-swaption price Swptn(a, b) at time 0 with strike rate 
K and maturity T is evaluated by the following formula, where the underlying forward 
swap’s effective date and terminate date are given by T

a
 and T

b
, respectively (T ≤ T

a
 < T

b
, 

a, b ∈{1,2, …, N}): 

Swptn(a, b) = Na,b(0)

{
ε

(
yN

(
y√
�

)
+ �n[y; 0, �]

)

+ ε2C1

(
− yn[y; 0�]

�

)
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+ ε3
(

C2

(−1

�
+ y2

�2

)
n[y; 0, �] + C3n[y; 0, �]

+
(

C4

(
y4

�4
− 6y2

�3
+ 3

�2

)
+ C5

(
y2

�2
− 1

�

)
+ C6

)
n[y; 0, �]

)}

+ o(ε3).

 (74)

where ε(∈[0,1]) is a constant, Na,b(0) = ∑b
i=a+1 δiPi(0),  and y, Σ and C

i
(i = 1, 2, 3, 4, 

5, 6) are given as follows: 

 
y = Sa,b(0) − K

ε
,  (75)

 
� =

∫ T

0
f11(s)′f11(s)ds,  (76)

 
C1 =

2∑
i=1

∫ T

0
f11(s)′g2i(s)

∫ s

0
f11(u)′f2i(u)duds,  (77)

 

C2 =
3∑

i=1

∫ T

0
f11(s)′h3i(s)

∫ s

0
f11(u)′g3i(u)

∫ u

0
f11(v)′f3i(v)dvduds

+
3∑

i=1

∫ T

0
f11(s)′h4i(s)

∫ s

0
f11(u)′g4i(u)du

∫ s

0
f11(u)′f4i(u)duds,  (78)

 
C3 =

3∑
i=1

∫ T

0
f11(s)′h4i(s)

∫ s

0
g4i(u)′f4i(u)duds,  (79)

 

C4 = 1

2

3∑
i=1

(∫ T

0
f11(s)′g5i(s)

∫ s

0
f11(s)′f5i(u)duds

)

×
(∫ T

0
f11(s)′k5i(s)

∫ s

0
f11(s)′h5i(u)duds

)
,  (80)

 

C5 = 1

2

3∑
i=1

(∫ T

0
f11(s)′k5i(s)

∫ s

0
f11(u)′g5i(u)

∫ u

0
f5i(v)′h5i(v)dvduds

+
∫ T

0
f11(s)′g5i(s)

∫ s

0
f11(u)′k5i(u)

∫ u

0
f5i(v)′h5i(v)dvduds

+
∫ T

0
f11(s)′g5i(s)

∫ s

0
f5i(u)′k5i(u)

∫ u

0
f11(v)′h5i(v)dvduds

+
∫ T

0
g5i(s)

′k5i(s)
∫ s

0
f11(u)′h5i(u)du

∫ s

0
f11(u)′f5i(u)duds

+
∫ T

0
f11(s)′k5i(s)

∫ s

0
g5i(u)′h5i(u)

∫ u

0
f11(v)′f5i(v)dvduds

)
,  (81)

 

C6 = 1

2

3∑
i=1

∫ T

0
g5i(s)

′k5i(s)
∫ s

0
f5i(u)′h5i(u)duds.

 (82)

Here, f
11

(t), f
2i
(t) (i = 1, 2), f

3i
(t) (i = 1, 2, 3), f

4i
(t) (i = 1, 2, 3), g

2i
(t) (i = 1, 2), g

3i
(t) (i = 1, 

2, 3), g
4i
(t) (i = 1, 2, 3), h

3i
(t) (i = 1, 2, 3), and h

4i
(t) (i = 1, 2, 3) are given as equations 

(59)–(66) in Proposition 1. f
5i
(t), g

5i
(t), h

5i
(t), and k

5i
(t)(i = 1, 2, 3) are defined as follows: 

f51(t) = f53(t) = h51(t) = f21(t),

f52(t) = h52(t) = h53(t) = f22(t),

g51(t) = g53(t) = k51(t) = g21(t),

g52(t) = k52(t) = 1

2
k53(t) = g22(t).

Remark 2. On the computational complexity and speed for the swaption 
formula (74) in Theorem 12

First of all, note that ε, N
a,b

(0) and y are constants and that there are no problems 
for evaluations of the standard normal distribution N(y) and the normal density func-
tion n[y; 0, Σ], given Σ.

When Σ and C
i
(i = 1,…, 6) are obtained as closed-forms, we have obviously no 

problems in terms of computational complexity and speed. Thus, let us discuss about the 
cases that their closed-forms are not available and numerical integrations are necessary.

As f
11

(t) whose concrete expression is found in Proposition 1 is a D-dimensional vec-
tor given t, which is equal to the dimension of Brownian motion in the swap process (28), 
f ′

11
(t) f

11
(t) is obtained by D-times addition. Hence, the order of the computational effort 

for 
y

� = ∫ T
0 f ′

11(t)f11(t)dt is at most DM, where M is the number of time-steps for the dis-
cretization in the numerical integral.

Note also that all the multiple integrals appearing in C
i
, (i = 1,…, 6) are computed 

by the program code with only one loop against the time parameter. For instance, look 
at the following term in C

5
 in Theorem 1: ∫ T

0
f11(s)′k5i(s)

∫ s

0
f11(u)′g5i(u)

∫ u

0
f5i(v)′h5i(v)dvduds.

Let t f (s) = f ′
11(s)k5i(s), g(u) = f ′

11(u)g5i(u) and h(v) = f ′
5i(v)h5i(v). Then, the above 

integral is approximated for the numerical integration as follows: ∫ T

0
f (s)

∫ t

0
g(u)

∫ s

0
h(v)dvduds

≈
M∑

i=1

�ti f (ti)
i∑

j=1

�tj g(tj)
j∑

k=1

�tk h(tk)

=
M∑

i=1

�ti f (ti)
(
G(ti−1) + �ti g(ti)

(
H(ti−1) + �ti h(ti)

))
,

where Δti = (ti − ti−1), H(ti) = H(ti−1) + Δtih(tj) and 
G(ti) = G(ti−1) + 

i

Δtig(ti)H(ti).
Here, each of h(t

i
), g(t

i
) and f (t

i
) is obtained by at most 2D-times addition since the 

dimension of each vector is equal to 2D, the Brownian motion’s dimension under our 
setting. Hence, the order of the computational effort is at most (2D)M, where M is the 
number of time-steps for the discretization in the numerical integral. Note that we 
have no problems in terms of computational complexity and speed since various fast 
numerical integration methods are available such as the extrapolation method: In fact, 
we enjoy pretty much fast calibrations and pricings such as within 1/1000 seconds per 
pricing a swaption for numerical examples reported in Section 6. 

5 Applications
This section provides concrete applications of the general approxima-
tion formula developed in the previous section to CEV-Heston LMM and 
Quadratic-Heston LMM.
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Let us start with the stochastic volatility process specified by the Heston 
model (Heston (1993)): 

 dV(t) = ξ (η − V(t))dt + θ
√

V(t)dWQ
t ,  (83)

where x ≥ 0, h > 0 and q ≥ 0 are some constants satisfying xh ≥ q 2/2.
Applying this model, we describe the forward LIBOR process as in 

Section 2: 

 dFk(t) = φ(t, Fk(t))σk(t)
√

V(t)dWk,1
t ,  (84)

 

dV(t) = ξ

(
η − ξ + θμ(t, γ (t), k)

ξ

)
dt + θρk

√
V(t)dWk,1

t

+ θ

√
1 − ρ2

k

√
V(t)dWk,2

t ,
 (85)

where, 

 

μ(t, γ (t), k) =
k∑

j=γ (t)+1

δjρjσj(t)φ(t, Fj(t))

1 + δjFj(t)
,  (86)

and r
j
 denotes the correlation between j-th forward LIBOR and the stochastic 

volatility. After applying the change of a numéraire and the freezing tech-
nique discussed in Section 2.2, the forward swap rate process is expressed as 
follows: 

 dSa,b(t) = σ (a,b)(t)
√

V(t)φ(t, Sa,b(t))dW1
t ,  (87)

 

dV(t) = ξ (η − ν(t)V(t))dt + θ1(t)
√

V(t)dW1
t

+ θ2(t)
√

V(t)dW2
t .  (88)

where θ1(t) = θρ (a,b)(t), θ2(t) = θ
√

1 − (ρ (a,b)(t))2, and Wl
t , l = 1, 2 are inde-

pendent Brownian motions. By (23), (27), (32), (33), (34) and (85), the param-
eters σ (a,b)(t), ρ (a,b)(t) and ν(t) are expressed as follows: 

 

σ (a,b)(t) =
√√√√ b∑

k=a+1

b∑
h=a+1

λ
(a,b),0
k (0)σk(t)λ

(a,b),0
h (t)σh(t)ρk,h,

 (89)

 
ρ (a,b)(t) =

∑b
j=a+1 λ

(a,b),0
j (t)σj(t)ρj

σ (a,b)(t)
,  (90)

 
ν(t) = 1 + θ

ξ
μ

(a,b)
0 (t, γ (t)),  (91)

 

μ
(a,b)
0 (t, γ (t)) =

b∑
k=a+1

w(a,b)
k (0)

k∑
j=γ (t)+1

δjρjσj(t)φ(t, Fj(0))

1 + δjFj(0)
,  (92)

 
w(a,b)

k (0) = δkPk(0)∑b
i=a+1 δiPi(0)

,  (93)

 γ (t) = min{i ∈ {1, 2, . . . , N} : Ti ≥ t},  (94)

where r
k,h

 represents the correlation between k-th forward LIBOR and h-th 
forward LIBOR.

5.1 CEV-Heston LMM
The first example is the CEV-Heston LMM, where the local volatility function 
is given by the constant elasticity of variance (CEV) form and the stochastic 
volatility process is specified by the Heston model (83). That is, f(t, F) = Fb. 

Based on the discussion in Section 2, in the CEV-Heston LMM the dynamics 
of a forward swap rate S

a,b
(t) under the swap measure is given as 

 dSa,b(t) = σ (a,b)(t)
√

V(t)Sa,b(t)
βdW1

t ,  (95)

 

dV(t) = ξ (η − ν(t)V(t))dt + θ1(t)
√

V(t)dW1
t

+ θ2(t)
√

V(t)dW2
t .  (96)

An approximation formula for the swaption price in the CEV-Heston 
LMM is obtained by the formula (74) where f

11
(t), f

2i
(t) (i = 1, 2), f

3i
(t) (i = 1, 2, 3), 

f
4i
(t) (i = 1, 2, 3), g

2i
(t) (i = 1, 2), g

3i
(t) (i = 1, 2, 3), g

4i
(t) (i = 1, 2, 3), h

3i
(t) (i = 1, 2, 3), and 

h
4i
(t) (i = 1, 2, 3) appearing in the equations (76)–(82) are specified as follows: 

 

f11(t) = f21(t) = f31(t) = f41(t) = g41(t) = g42(t)

=
(

σ (t)(S(0))β
√

V (0)(t)
0

)
,  (97)

 

f22(t) = f32(t) = f33(t) = f42(t) = f43(t) = g43(t)

=
(

θ1(t)eξ
∫ t
0 ν(s)ds

√
V (0)(t)

θ2(t)eξ
∫ t
0 ν(s)ds

√
V (0)(t)

)
,  (98)

 

g21(t) = g31(t) = h31(t) = 2h32(t)

=
(

σ (t)β(S(0))β−1
√

V (0)(t)
0

)
,  (99)

 

2g22(t) = g32(t) = 4h33(t) =
⎛
⎝ σ (t)(S(0))β

(
e−ξ

∫ t
0 ν(s)ds

)
√

V(0)(t)

0

⎞
⎠ ,  (100)

 

g33(t) =
⎛
⎝ θ1(t)√

V(0)(t)
θ2(t)√
V(0)(t)

⎞
⎠ ,

 (101)

 
h41(t) =

(
σ (t)β(β−1)(S(0))β−2

√
V(0)(t)

2
0

)
,  (102)

 

h42(t) =
⎛
⎝ σ (t)β(S(0))β−1

(
e−ξ

∫ t
0 ν(s)ds

)
2
√

V(0)(t)

0

⎞
⎠ ,  (103)

 

h43(t) =

⎛
⎜⎝− σ (t)(S(0))β

(
e−2ξ

∫ t
0 ν(s)ds

)
8(V(0)(t))

3
2

0

⎞
⎟⎠ ,

 

(104)

where S(0) stands for S
a,b

(0), s (t) stands for s (a, b)(t) and

 
V (0)(t) = e−ξ

∫ t
0 ν(s)ds

(∫ t

0
ξηeξ

∫ s
0 ν(u)duds + V(0)

)
.  (105)

 Moreover, f5i(t), g5i(t), h5i(t), and k5i(t) (i = 1, 2, 3)  in the equations 
(76)–(82) are given as follows: 

 

f51(t) = f53(t) = h51(t) = f21(t),

f52(t) = h52(t) = h53(t) = f22(t),

g51(t) = g53(t) = k51(t) = g21(t),

g52(t) = k52(t) = 1

2
k53(t) = g22(t).  (106)
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We remark that in this approximation, the parameter v(t) standing for the 
mean-reversion seed of the volatility is made time-dependent for the reduction 
of the approximation error as much as possible; the effect of this parameter 
seems large for a long-tenor swap while it seems small for a short-tenor swap.

5.2 Quadratic-Heston LMM
The second example is the Quadratic-Heston LMM, where the stochastic volatil-
ity process is given by the Heston model and the local volatility function is 
specified as a quadratic function: 

 
φ(t, F) = (1 − b(t))F(0) + b(t)F + c(t)

2F(0)
(F − F(0))2,

 (107)

where b(t) and c(t) are some (deterministic) functions of the time-parameter t.
Based on the discussion in Section 2, in the Quadratic-Heston LMM the 

dynamics of a forward swap rate S
a, b

(t) under the swap measure is given as 

 

dSa,b(t) = σ (a,b)(t)
√

V(t)

(
(1 − b(t))Sa,b(0) + b(t)Sa,b(t)

+ c(t)

2S(0)
(Sa,b(t) − Sa,b(0))2

)
dW1

t ,  (108)

 

dV(t) = ξ (η − ν(t)V(t))dt + θ1(t)
√

V(t)dW1
t

+ θ2(t)
√

V(t)dW2
t .  (109)

Next, set Xa,b(t) := Sa,b(t)/Sa,b(0), and then the swaption price is expressed 
as 

 

Swptn(a, b) = Na,b(0)E
[
max

{
Sa,b(T) − K, 0

}]
= Na,b(0)Sa,b(0)E

[
max

{
Xa,b(T) − K

Sa,b(0)
, 0

}]
,

 (110)

and the dynamics of X
a, b

(t) is given by 

 

dXa,b(t) = σ (a,b)(t)
√

V(t)
(
1 − b(t) + b(t)Xa,b(t)

+ 1

2
c(t)(Xa,b(t) − 1)2

)
dW1(t).  (111)

We note that as the local volatility function in (111) can be regarded as 
an approximation by the second-order Taylor expansion around the initial 
value X

a,b
(0) = 1 of an arbitrary twice differentiable function, this quadratic 

form is considered as a rather general local volatility function.3

An approximation formula for the swaption price in the Quadratic-Heston 
LMM is obtained by the formula (74) where f

11
(t), f

2i
(t) (i = 1, 2), f

3i
(t) (i = 1, 2, 3), 

f
4i
(t) (i = 1, 2, 3), g

2i
(t) (i = 1, 2), g

3i
(t) (i = 1, 2, 3), g

4i
(t) (i = 1, 2, 3), h

3i
(t) (i = 1, 2, 3), and 

h
4i
(t) (i = 1, 2, 3) appearing in the equations (76)–(82) are specified as follows: 

 

f21(t) = f31(t) = f41(t) = g41(t) = g42(t)

=
(

σ (t)
√

V (0)(t)
0

)
,  (112)

 

f22(t) = f32(t) = f33(t) = f42(t) = f43(t) = g43(t)

=
(

θ1(t)eξ
∫ t
0 ν(s)ds

√
V (0)(t)

θ2(t)eξ
∫ t
0 ν(s)ds

√
V (0)(t)

)
,  (113)

 f11(t) = S(0)f21(t),  (114)

 

g31(t) =
(

σ (t)b(t)
√

V (0)(t)
0

)
,  (115)

 g21(t) = h31(t) = 2h32(t) = S(0)g31(t),  (116)

 

g32(t) =
⎛
⎝ σ (t)e−ξ

∫ t
0 ν(s)ds√

V(0)(t)

0

⎞
⎠ ,  (117)

 2g22(t) = 4h33(t) = S(0)g32(t),  (118)

 

g33(t) =
⎛
⎝ θ1(t)√

V(0)(t)
θ2(t)√
V(0)(t)

⎞
⎠ ,

 (119)

 

h41(t) =
(

S(0)σ (t)c(t)
√

V(0)(t)
2
0

)
,  (120)

 

h42(t) =
⎛
⎝ S(0)σ (t)b(t)e−ξ

∫ t
0 ν(s)ds

2
√

V(0)(t)

0

⎞
⎠ ,  (121)

 

h43(t) =
⎛
⎝− S(0)σ (t)e−2ξ

∫ t
0 ν(s)ds

8(V(0)(t))
3
2

0

⎞
⎠ ,  (122)

where S(0) stands for S
a, b

(0) and s stands for s (a, b). Moreover, f
5i
(t), g

5i
(t), h

5i
(t), 

and k
5i
(t) (i = 1, 2, 3) in the equations (76)–(82) are given as follows: 

 

f51(t) = f53(t) = h51(t) = f21(t),

f52(t) = h52(t) = h53(t) = f22(t),

g51(t) = g53(t) = k51(t) = g21(t),

g52(t) = k52(t) = 1

2
k53(t) = g22(t).

 (123)

6 Numerical Examples
This section provides two numerical examples: the calibration test and 
the accuracy test. First, let us set LSV-LMM as the CEV-Heston LMM and the 
Quadratic-Heston LMM for the numerical examples. Under the spot measure 
Q, the local volatility functions of CEV-Heston LMM and Quadratic-Heston 
LMM are given by 

 
φ(t, F) = Fβ and φ(t, F) = (1 − b)F(0) + bF + c

(F − F(0))2

2F(0)
,  (124)

respectively, where b, c and s 
j
 are some constants. Then the one-dimensional 

Heston-type stochastic volatility in (83) is equipped with the two models. 
All model parameters are assumed to be constant for simplicity. We set the 
parameter ε = 1.

6.1 Calibration Test
This subsection examines the calibration ability of the CEV-Heston LMM and 
the Quadratic-Heston LMM with our approximation formula. In particu-
lar, because a caplet is regarded as a special case of a swaption4,Theorem 1 
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with specifications in Section 5.1 or 5.2 is applied to the evaluation of cap 
prices in calibration of each model: Formula (74) with equations (97)–(106) 
is applied to CEV-Heston LMM, while the one with equations (112)–(123) is 
applied to Quadratic-Heston LMM.

The US cap market data5 as of April 1, 2008 downloaded from Bloomberg 
are employed for the calibration test. The two models are calibrated to the 
market caplet implied volatilities with 1, 2, 3, 5, 7, 10, 15, and 20-year maturi-
ties, simultaneously.

The parameters V(0) and h are fixed as 1. The other parameters of the 
local stochastic volatilities and the correlations between LIBORs and the 
volatilities are obtained by calibration. The calibrated parameters of the 
local stochastic volatilities are listed in Table 1. The number of parameters, 
s

k
, r

k
 and forward LIBORs is so many that those values are not reported 

here.6 
Figure 1 and 2 plot the market and model-based caplet implied 

 volatilities. 
These figures show that the model-based caplet implied volatilities 

generated by both the CEV-Heston LMM and the Quadratic-Heston LMM 
are fitted into the market ones very well. This calibration test implies that 
the CEV-Heston LMM and the Quadratic-Heston LMM have sufficient cali-
bration ability to cap markets, and that our approximation formula is a 
very powerful tool because such a fast caplet pricing scheme is necessary 
for implementing the calibration. In fact, it only takes less than 1/1000 
seconds with core i7-870 processor to evaluate each caplet by applying our 
formula. 

6.2 Accuracy Test
This subsection provides the accuracy test of our approximate swaption 
pricing formula in Theorem 1. Setting the calibrated parameters in section 
5.1 and historically estimated correlations among forward LIBOR rates in 
the CEV-Heston LMM and the Quadratic-Heston LMM, we compute 5-year × 
5-year and 10-year × 10-year payers swaption prices by our formula. In order 
to calculate s (a, b), the total correlation structure in LMM with the stochastic 
volatility should remain positive semi-definite. For that reason, we use the 
parameterization method proposed by Mercurio and Morini (2007) for the 
correlation matrix. Then, we compare our approximate swaption prices 
with exact ones.

The parameters used for calculating swaption price are reported in 
Table 1 to 3, where C-H and Q-H stand for CEV-Heston and Quadratic-Heston, 
respectively. 

Table 4 to 7 display the prices of 5-year × 5-year and 10-year × 10-year 
payers swaption under the CEV-Heston LMM and the Quadratic-Heston 
LMM, respectively. In the tables, the values of (a) Full MC denote swaption 
prices computed by the Monte Carlo simulation with 1,000,000 sample 
paths without any approximation techniques. We consider these prices as 
the exact values of swaption prices. The values of (b) FT + MC are the Monte 
Carlo prices with the freezing techniques. The values of (c) FT + AE are the 
swaption prices by the asymptotic expansion scheme with the freezing tech-
niques, that is, our pricing formula: Formula (74) with equations (97)–(106) 
is applied to CEV-Heston LMM, while the one with equations (112)–(123) is 
applied to Quadratic-Heston LMM. The value in the round bracket denotes 
the implied volatility corresponding to each swaption price. As explained in 
Remark 2, we have no problems in computation, which is very fast: It only 
takes less than 1/1000 seconds with core i7-870 processor to evaluate a 10 × 10 
swaption, (although we partially rely on numerical integrations since we make 
the parameter v(t) time-dependent for the reduction of the approximation 
errors as much as possible.)

Table 1: Local Stochastic Volatility Parameters.
 w p a b c 

CEV-Heston 0.0987 0.4442 0.0100 – –

Quadratic-Heston 0.0488 0.3124 – 0.2438 1.2919 

Figure 1: Caplet Implied Volatilities with 1, 2, 3, and 5-Year Maturities.
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Figure 2: Caplet Implied Volatilities with 7, 10, 15, and 20-Year Maturities.
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Table 2: The Value of v(t).

t
C-H 
5 ë 5 

Q-H 
5 ë 5 

C-H 
10 ë 10 

Q-H 
10 ë 10 t

C-H 
10 ë 10 

Q-H 
10 ë 10 

0.25 1.035  0.853  1.000  0.716  5.25  0.998  0.811 

0.5 1.029  0.851  1.000  0.714  5.5  0.998  0.817 

0.75 1.023  0.850  1.000  0.713  5.75  0.998  0.822 

1 1.018  0.850  1.000  0.713  6  0.998  0.827 

1.25 1.012  0.850  0.999  0.714  6.25  0.998  0.831 

1.5 1.009  0.855  0.999  0.718  6.5  0.998  0.836 

1.75 1.007  0.862  0.999  0.725  6.75  0.998  0.841 

2 1.006  0.870  0.999  0.733  7  0.998  0.846 

2.25 1.006  0.879  0.999  0.743  7.25  0.998  0.850 

2.5 1.004  0.885  1.000  0.749  7.5  0.998  0.858 

2.75 1.003  0.892  0.999  0.755  7.75  0.999  0.866 

3 1.002  0.899  0.999  0.762  8  0.999  0.874 

3.25 1.002  0.906  0.999  0.770  8.25  0.999  0.883 

3.5 1.000  0.912  0.999  0.775  8.5  0.999  0.889 

3.75 0.999  0.918  0.999  0.781  8.75  0.999  0.895 

4 0.999  0.924  0.999  0.787  9  0.999  0.902 

4.25 0.998  0.929  0.999  0.793  9.25  0.999  0.908 

4.5 0.997  0.934  0.999  0.798  9.5  0.999  0.915 

4.75 0.996  0.939  0.998  0.803  9.75  0.999  0.921 

5 0.995  0.944  0.998  0.807  10  0.999  0.928 

Table 3: Other parameters.

 Forward 
Swap  Annuity 

q (a, b) 
(C-H) 

q (a, b) 
(Q-H) 

r (a, b) 
(C-H) 

r (a, b) 
(Q-H) 

10 ë 10  5.413%  5.037 –0.1535 –0.5239 0.0048 0.0877 

5 ë 5  5.049%  3.720 –0.1378 –0.5443 0.0068 0.1370 

Table 4: 10y ë 10y Payers Swaption Prices under CEV-Heston LMM.

Strike Rate (%)  3.00  4.00  5.00  6.00  7.00 

(a) Full MC  0.1236  0.0779  0.0400  0.0157  0.0048 

 (12.07)  (10.04)  (8.62)  (7.75)  (7.34) 

(b) FT + MC  0.1239  0.0783  0.0403  0.0158  0.0048 

 (12.51)  (10.26)  (8.72)  (7.77)  (7.31) 

(c) FT + AE  0.1241  0.0784  0.0403  0.0156  0.0047 

 (12.74)  (10.29)  (8.69)  (7.74)  (7.25) 

(b) – (a)  0.0003  0.0004  0.0003  0.0001  –0.0001 

 (0.44)  (0.22)  (0.10)  (0.02)  (–0.03) 

(c) – (b)  0.0002  0.0001  –0.0001  –0.0001  –0.0001 

 (0.24)  (0.03)  (–0.03)  (–0.03)  (–0.06) 

(c) – (a)  0.0005  0.0005  0.0002  0.0000  –0.0002 

 (0.68)  (0.25)  (0.07)  (–0.01)  (–0.09) 

Table 5: 5y ë 5y Payers Swaption Prices under CEV-Heston LMM.

Strike Rate (%)  3.00  4.00  5.00  6.00  7.00 

(a) Full MC  0.0786  0.0467  0.0222  0.0080  0.0023 

 (17.48)  (14.67)  (12.77)  (11.62)  (10.98) 

(b) FT + MC  0.0787  0.0468  0.0222  0.0080  0.0022 

 (17.72)  (14.75)  (12.78)  (11.57)  (10.90) 

(c) FT + AE  0.0788  0.0467  0.0221  0.0079  0.0022 

 (17.84)  (14.74)  (12.76)  (11.54)  (10.86) 

 (b) – (a)  0.0001  0.0001  0.0000  0.0000  –0.0001 

 (0.24)  (0.09)  (0.00)  (–0.05)  (–0.07) 

(c) – (b)  0.0001  –0.0001  –0.0001  –0.0001  0.0000 

 (0.13)  (–0.01)  (–0.01)  (–0.03)  (–0.04) 

(c) – (a)  0.0002  0.0001  0.0000  –0.0001  –0.0001 

 (0.36)  (0.07)  (–0.01)  (–0.08)  (–0.12) 

Table 6: 10y ë 10y Payers Swaption Prices under Quadratic-Heston LMM.

Strike Rate (%)  3.00  4.00  5.00  6.00  7.00 

 (a) Full MC  0.1258  0.0812  0.0437  0.0182  0.0058 

 (14.47)  (11.70)  (9.80)  (8.51)  (7.78) 

(b) FT + MC  0.1252  0.0803  0.0425  0.0169  0.0049 

 (13.91)  (11.26)  (9.42)  (8.13)  (7.36) 

(c) FT + AE  0.1249  0.0799  0.0422  0.0168  0.0046 

 (13.55)  (11.06)  (9.32)  (8.09)  (7.20) 

 (b) – (a)  –0.0006  –0.0009  –0.0012  –0.0012  –0.0009 

 (–0.56)  (–0.44)  (–0.38)  (–0.37)  (–0.42) 

(c) – (b)  –0.0003  –0.0004  –0.0003  –0.0002  –0.0003 

 (–0.35)  (–0.20)  (–0.10)  (–0.05)  (–0.16) 

(c) – (a)  –0.0009  –0.0013  –0.0015  –0.0014  –0.0012 

 (–0.91)  (–0.64)  (–0.48)  (–0.42)  (–0.58) 

Table 7: 5y ë 5y Payers Swaption Prices under Quadratic-Heston LMM.

Strike Rate (%)  3.00  4.00  5.00  6.00  7.00 

(a) Full MC  0.0802  0.0489  0.0245  0.0096  0.0030 

 (20.14)  (16.58)  (14.21)  (12.65)  (11.74) 

(b) FT + MC  0.0798  0.0482  0.0236  0.0087  0.0024 

 (19.50)  (15.99)  (13.63)  (12.05)  (11.08) 

(c) FT + AE  0.0796  0.0482  0.0237  0.0089  0.0024 

 (19.17)  (15.95)  (13.74)  (12.18)  (11.07) 

 (b) – (a)  –0.0004  –0.0007  –0.0010  –0.0009  –0.0006 

 (–0.64)  (–0.59)  (–0.58)  (–0.60)  (–0.67) 

(c) – (b)  –0.0002  –0.0001  0.0002  0.0002  –0.0000 

 (–0.33)  (–0.04)  (0.11)  (0.12)  (–0.01) 

(c) – (a)  –0.0006  –0.0008  –0.0008  –0.0007  –0.0006 

 (–0.97)  (–0.63)  (–0.47)  (–0.48)  (–0.68) 

Next, we note that the values in the lower layers of Table 4, 5, 6 and 7 
denote the approximation errors caused by the freezing techniques and/or 
the asymptotic expansion. 

It can be seen that significantly accurate prices are obtained by our swap-
tion pricing formula under the CEV-Heston LMM in Table 4 and 5, while the 
prices under the Quadratic-Heston LMM in Table 6 and 7 are less accurate 
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than the ones under the CEV-Heston LMM. However, even when pricing 
deep in-the-money swaptions in Table 6 and 7, the approximation errors in 
terms of the implied volatilities are less than 1%. Therefore, the level of these 
errors seems acceptable in practice.

7 Conclusion
This paper proposed the LSV-LMM with affine-type stochastic volatility 
models combined with local volatility models, where all parameters in the 
LSV-LMM can be time-dependent. In particular, applying standard freezing 
techniques and an asymptotic expansion method, it provided a new analytic 
approximation formula for pricing swaptions under the model. To demon-
strate effectiveness of our approach, the paper took CEV-Heston LMM and 
Quadratic-Heston LMM as examples and confirmed sufficient accuracies of 
our approach for calibration to a caplet market and numerical evaluation of 
swaptions under the models.

Our future research topics are as follows: Fist, in order to improve the accu-
racy of our current approximation formula, the higher order computational 
scheme of the asymptotic expansion developed by Takahashi, et al. (2009) 
has to be applied. Alternatively or at the same time, the full application of 
the asymptotic expansion might be necessary without freezing techniques. 
Second, for more accurate calibration, we may need to implement a pricing 
formula for swaptions under the LSV-LMM with a multi-dimensional stochas-
tic volatility. Finally, in order to compute exotic interest rate derivatives and 
their Greeks, we have to develop efficient Monte Carlo simulation techniques.

Appendix

A Formulas for the conditional expectations of the 
Wiener-Itô integrals
This appendix summarizes conditional expectation formulas useful for 
explicit computation of the asymptotic expansions. In the following, q

i
 

∈L2[0, T], i = 1, 2, …,5. Also, H
n
(x; Σ) denotes the Hermite polynomial of degree 

n and � = ∫ T
0 |q1t|2dt.. For the derivation and more general results, see 

Section 3 in Takahashi, Takehara and Toda(2009). 
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ENDNOTES 
1. Hereafter, the drift terms μ

Q
j , j = 1, 2, . . . , will not appear explicitly due to the changes 

of numéraires.
2. This remark discusses about the multi-dimensional case that is the model described by 
the equations (28) and (29), because the same formula (74) is applied to the case.
3. The asymptotic expansion of X

a, b
(t) gives the simpler expression than that of S

a, b
(t).
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4. For a caplet, the underlying forward rate’s effective and terminal dates are given by T
a
 

and T
a + 1 

(T ≤ T
a
, a ∈{1, 2, …, N − 1}), respectively. Hence, setting b = a + 1 in the formula 

(74) provides the formula for the caplet.
5. In our calibration test, we calibrated the models to the cap market data solely, because 
suitable swaption data are not available in our circumstance.
6. They will be given upon request.
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