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Abstract
We present an extension of the BNS stochastic volatility model, incorporating two-
sided jumps in the asset price process. The characteristic function of the log-price 
process is computed, enabling us to calibrate efficiently to plain vanilla products by 
means of Fourier pricing methods. Finally, we present as an application of the two-
sided BNS model the calibration to FX option prices, where a model with two-sided 
jumps is more suitable due to the symmetric nature of the FX markets. We find that 
the two-sided BNS model calibrates better to FX smiles than the classical BNS model 
with one-directional jumps, even in a setting with equal degrees of freedom. 
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1. Introd uction
Since the rise of risk-neutral valuation, many extensions of the seminal market 
model of [Black and Scholes 1973] have been published. One direction is the incor-
poration of jumps into the asset price process, as suggested by, e.g., [Merton 1976, 
Kou 2002], inspired by market shocks causing the asset price to jump. Another 
generalization is achieved by substituting the constant Black–Scholes volatility by 
a stochastic process, leading to stochastic volatility models as in, e.g., [Hull and 
White 1987, Stein and Stein 1991, Heston 1993], also enhanced by independent 
jumps in the asset price process by [Bates 1996]. In the model of [Barndorff-Nielsen 
and Shephard 2001], both approaches are combined, incorporating simultaneous 
jumps in both the volatility process and the asset price process. The volatility proc-
ess is driven by a Lévy subordinator, while the diffusion process is superposed with 
the same driver to account for simultaneous jumps. This model is tractable in the 
sense that semi-analytic vanilla price calculation is possible via Fourier pricing, as 
described in [Nicolato and Venardos 2003].

However, the BNS model in its classical variant only supports jumps in the 
asset price process in one direction, since the driving Lévy subordinator is  pathwise 

 non-decreasing. For modeling stock prices, only allowing for one-directional 
(downward) jumps is not a significant restriction: Empirical studies (e.g. [Bakshi 
et.al.1997, Eraker 2004]) have highlighted that negative jumps are predominant in 
risk-neutral stock price dynamics extracted from option prices. Furthermore, the 
“leverage effect” of observing higher volatility in time periods of falling asset prices 
is displayed by a BNS model with negative jumps. But in many other applications, 
e.g. the modeling of FX rates, only allowing for one-directional jumps is a highly 
unnatural assumption. Restricting to one-directional jumps in FX rates contradict 
economic intuition, since FX rates are symmetric in nature. This is also underfed 
by empirical results from time series analysis as in [Jorion 1988], where two-sided 
jumps are observed for FX rates. Nevertheless, the original BNS model was applied 
to FX rates modeling by, e.g., [Tompkins 2006]. Thus, incorporating two- directional 
jumps (upward and downward) in the BNS-driven price process may be a desirable 
feature.

We present an extension of the BNS model which allows for two-sided jumps, 
but maintains the Lévy subordinator driven Ornstein–Uhlenbeck (OU) structure of 
the variance process. More precisely, we use a second Lévy subordinator as a driver 
which is responsible for positive jumps in the asset price process. As an example, we 
generalize the popular Γ-OU-BNS model and present a two-sided variant with com-
pound Poisson jumps in both directions. Furthermore, it turns out that under mild 
technical restrictions, a semimartingale decomposition of the asset price  process 
exists and the characteristic function of the log-price can be computed. Hence, 
Fourier pricing methods can be used for rapid calculation of plain vanilla prices fol-
lowing [Carr and Madan 1999, Raible 2000], ensuring efficient calibration to quoted 
vanilla prices. Finally, we compare the two-sided Γ-OU-BNS model (in different 
parameter settings) to the classical Γ-OU-BNS model in an empirical study, scruti-
nizing the calibration to FX vanilla options. It turns out that the two-sided Γ-OU-
BNS model captures the FX smile better than the classical Γ-OU-BNS model, even in 
a setting with equal degrees of freedom. Hence, our considerations based on stylized 
statistical facts that a two-sided modification of the BNS model might be more suit-
able to capture FX smiles than the classical BNS model is supported by empirical 
evidence.
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(Wt)t ≥ 0. We follow [Cont and Tankov 2004] and define the Laplace exponent of Lévy 
process Y by ψY (z) := log E [exp(zY1)], z ∈ C, existence provided.

As a volatility driver, one of the most popular choices is a standard compound 
Poisson process, resulting in the Γ-OU-BNS model, e.g. mentioned in [Barndorff-
Nielsen and Shephard 2001, Nicolato and Venardos 2003].

Example 2.1 (Γ-OU-BNS model) Let (Zt)t ≥ 0 be a standard compound Poisson 
process with exponentially i.i.d. jump sizes, i.e. 

 
Zt :=

Nt∑
j=1

Ej,
 

denoting by (Nt)t ≥ 0 a Poisson process with intensity c > 0 and by (Ej)j ∈ N  a sequence of 
i.i.d. random variables with Ej ∼ Exp(η), j ∈ N. Due to the exponential jump sizes, the 
process Z has Gamma distributed marginals (cf. [Barndorff-Nielsen and Shephard 
2001]). Thus, we call the variance process (σ 2

t )t≥0  a Γ-Ornstein–Uhlenbeck process 
and the BNS model with compound Poisson driver Z a Γ-OU-BNS model (see Figure 1).

The Γ-OU-BNS model allows for a fruitful interpretation when modeling stock 
prices: When the compound Poisson process exhibits a jump, volatility jumps up 
and simultaneously the stock price jumps down, due to ρ < 0. Market shocks in stock 
prices observe a similar behavior, often combining sudden decreases in stock prices 
with a simultaneous rise in volatility. On the other hand, upward movements of the 
stock price are rarely induced by large jumps, but are often observed in calm market 
periods where low volatility is observed. In several empirical studies, it has been 
shown that stock prices mainly exhibit negative jumps. Thus, the lack of  modeling 
upward jumps by the “classical” BNS model does not fundamentally affect the 

The remaining paper is organized as follows. In Section 2, we recapitulate the 
model setup of the classical BNS model and highlight its features via the Γ-OU-BNS 
example. In Section 3, we discuss shortcomings of the classical BNS model and 
introduce the two-sided BNS model. We show basic properties of the two-sided BNS 
model and present a two-sided version of the Γ-OU-BNS model as an example. In 
Section 4, we discuss Fourier pricing in the two-sided BNS model and compute the 
characteristic function of the log-price, in the general setting and for the Γ-OU-BNS 
example. Finally, in Section 5 we calibrate the two-sided Γ-OU-BNS model to FX 
smiles and compare our result with the classical Γ-OU-BNS model.

2. Review of the Barndorf f-Nielsen–Shephard 
model class
The seminal paper of [Barndorff-Nielsen and Shephard 2001] introduces a new class of 
stochastic volatility models, the Barndorf-Nielsen–Shephard (BNS) model class. The 
variance process is modeled by a non-Gaussian Ornstein–Uhlenbeck (OU)  process, 
driven by a Lévy subordinator. Furthermore, the same Lévy subordinator adds jumps 
to the asset price process, linking jumps in volatility and jumps in the asset price. 
Altogether, denoting the asset price process with (St)t ≥ 0 and defining Xt := log St, t ≥ 0, 
the general dynamics of a Barndorff-Nielsen–Shephard model are given by the SDEs 

 dXt = (μ + βσ 2
t ) dt + σt dWt + ρ dZλt ,  

 dσ 2
t = −λσ 2

t dt + dZλt ,  

with (Wt)t ≥ 0 denoting Brownian motion, μ, λ, σ 2
0 > 0 , ρ < 0, and (Zt)t ≥ 0 being a 

Lévy subordinator with Laplace exponent ψZ independent of the Brownian motion 
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Figure 1: A sample path of the asset price and volatility process following the dynamics of a Γ-OU BNS model. The model incorporates downward jumps in the 
asset price process, always accompanied by upward jumps in the volatility process.
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 usability of the model for modeling stock prices. Concluding, the incorporation of 
downward jumps in the stock price, accompanied by upward jumps in the stock’s 
volatility, and decreasing volatility in times without jumps makes the Gamma-OU-
BNS model suitable for the modeling of stock prices. This, however, does not have to 
hold for other objects, e.g. FX rates.

3. An extension of the BNS model with two-sided 
jumps
As we  have seen, the BNS model can be a sensible choice for modeling stock price 
dynamics. However, it may not be appropriate to model, e.g., the dynamics of FX 
rates with a BNS model, since in the FX world, there is no economic reason to restrict 
to the stylized property of one-sided shocks. Jumps in FX rates are often due to 
unanticipated economic downturn or prosperity in one monetary area (relatively to 
another) or unanticipated political decisions (e.g. unilateral interest rate hikes or cuts 
of one central bank). Furthermore, the way FX rates are quoted (e.g. EUR-USD) is 
arbitrary from a modeling point of view. Thus, symmetry is a desirable feature for FX 
modeling. Hence, the common practice of adapting equity models for the FX world 
like the Garman–Kohlhagen adaption of the Black–Scholes model in a two-interest 
world (cf. [Garman and Kohlhagen 1983]) may not work for the BNS model. Thus, 
we modify the original BNS framework and present a BNS-style model which allows 
for two-sided jumps and may therefore be more suitable for FX rates modeling.

3.1 The two-sided BNS model
Motivated by the shortcoming of  the classical BNS model to model symmetric 
 situations with jumps in both directions, we modify the classical BNS setting to allow 
for two-sided jumps. We start with a very general formulation of the framework, 
analoguously to the general formulation of the BNS model. Given two independent 
Lévy subordinators (Z+

t )t≥0, (Z−
t )t≥0 , we consider the process (Xt)t ≥ 0 governed by 

the following SDEs: 

 dXt = (μ + βσ 2
t ) dt + σt dWt + ρ+ dZ+

λt + ρ− dZ−
λt ,  (1)

 dσ 2
t = −λσ 2

t dt + dZ+
λt + dZ−

λt ,  

with (Wt)t ≥ 0 being Brownian motion independent from (Z+
t )t≥0 and (Z−

t )t≥0, μ ∈ R, 
λ > 0, ρ+> 0, ρ–< 0.

The restriction ρ–ρ+< 0 is crucial to allow for two-directional jumps in the proc-
ess (Xt)t ≥ 0. If we define the process St := exp Xt, we obtain a non-negative process 
jumping bidirectionally, while the variance process follows the same characteristics 
as in the classical BNS model. Thus, we call a model where the log-asset price  process 
(Xt)t ≥ 0 follows the dynamics given in (1) a two-sided BNS model and abbreviate it 
with “BNS2 model”. If we choose ρ–=– ρ+ and assume (Z+

t )t≥0 and (Z−
t )t≥0 to be 

independent copies of each other, we obtain a two-sided BNS model which has the 
same number of degrees of freedom as the classical BNS model, but behaves in a 
symmetric way in the jumps. Thus, we call this special situation of the two-sided BNS 
model a “symmetric BNS model” or “SBNS model”.

To justify the name “two-sided BNS model”, we give a brief overview of the main 
properties of a BNS2 model that are immediately clear from the definition. 

Properties 3.1 (Stylized facts of the BNS2 model) 

• Positive and negative jumps in the process (Xt)t ≥ 0 occur independently, due to 
independence of the drivers (Z+

t )t≥0, (Z−
t )t≥0. 

• A jump in the process (Xt)t ≥ 0 is always accompanied by an upward jump in the 
variance process (σ 2

t )t≥0 , regardless of the direction of the jump in (Xt)t ≥ 0. 

• Since Zt := Z+
t + Z−

t  is again a Lévy subordinator (being a positive linear com-
bination of Lévy subordinators), the variance process (σ 2

t )t≥0  is a Lévy-driven 
Ornstein–Uhlenbeck process with driver (Zt)t ≥ 0 and matches the variance pro-
cess classification of the classical BNS model. 

Thus, we find it justified to call a model with dynamics as in (1) a two-sided BNS 
model. Summarizing, the BNS2 model is a quite natural extension of the classical 
BNS model, allowing for positive and negative jumps, but preserving the process 
classification (Lévy-driven Ornstein–Uhlenbeck process) in its stochastic variance 
component.

Figure 2 shows sample paths of the EUR-SEK FX rate and its volatility in the BNS 
and BNS2 models.

3.2 Asset price dynamics of the two-sided BNS model
Since we want to model the underlying ass et price with St := exp Xt, the Itô–Döblin 
theorem immediately yields the following dynamics of the asset price. 

Proposition 3.2 (Asset price dynamics) If the process (Xt)t ≥ 0  follows the 
 dynamics (1) of a BNS2 model, the process (St)t ≥ 0, St := exp Xt, is governed by the 
 following SDEs: 

 dSt = St−
(
(μ + (0.5 + β)σ 2

t ) dt + σt dWt + dM+
t + dM−

t
)

  

 dσ 2
t = −λσ 2

t dt + dZ+
λt + dZ−

λt  

with 

 
M∗

t =
∑
0<s≤t

(
exp

(
ρ∗�Z∗

λs
) − 1

)
, ∗ ∈ {+,−},

 

as usually denoting by ΔZs := Zs– Zs– the jump height process associated with Z. 
Proof 

Follows directly from the It o––Döblin theorem for semimartingales applied to x ↦ 
exp(x).  □

For many applications, the following assumption (analog to [Nicolato and 
Venardos 2003]) is necessary. 

Assumption 1 (Domain of Laplace exponents) Denoting the Laplace exponent of a 
Lévy subordinator S by ψS, we assume ξ+ := sup{x ∈ R :ψ+ (x):= ψZ+ (x) < ∞}>0 and 
ξ– := sup{x ∈ R :ψ– (x):= ψZ – (x) < ∞}>0. 

Fortunately, this assumption does not restrict the choice of the subordinators too 
much (e.g. compound Poisson processes fulfill that property). Thus, in the remain-
ing paper we assume Assumption 1 to hold.

The following variant of the dynamics of (St)t ≥ 0 is helpful for further theoretical 
considerations.

Corollary 3.3 (Semimartingale decomposition of asset price dynamics) Let (St)t ≥ 0 
be as in Proposition 3.2 and ρ+ < ξ+. Then (St)t ≥ 0 is decomposed into a local martingale 
and a process of finite variation by 

dSt = St−
(
(μ + λ(ψ+(ρ+) + ψ−(ρ−)) + (0.5 + β)σ 2

t ) dt + σt dWt + dM̃+
t + dM̃−

t

)

with 

 M̃∗
t = M∗

t − λtψ∗(ρ∗) = (exp(ρ∗x) − 1) 
 (μZ∗ − νZ∗ )λt , ∗ ∈ {+,−},  

following [Jacod and Shiryaev 2002, p.66] by denoting μZ the random measure of 
Z’s jumps and νZ its Lévy measure/compensator and the integral of some function 
f : R × R≥0 w.r.t. some random measure μ by 
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Figure 2: Sample paths of the EUR-SEK FX rate and its volatility in the BNS and the BNS2 model, generated with calibrated parameters. As one can see, 
the scaling parameter for the jump size in the BNS asset price process is very low, hence, there are hardly any observable jumps in the asset price process. 
Contrasting, in the BNS2 setting, the asset price exhibits clearly identifyable (positive and negative) jumps.
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 (f (x, s) 
 μ)t :=
∫

R×[0,t]
f (x, s)μ(dx, ds).  

Proof
Add λt(ψ+(ρ+) + ψ–(ρ–)) to the process described in Proposition 3.2 and note that the 
processes (M∗

t )t ≥ 0 can be represented in terms of random measures via 

 M∗
t = ((exp(ρ∗x) − 1) 
 μZ∗ )t .  

Furthermore, the Lévy exponent ψ∗ of the process Z∗ is actually the scaled random 
measure tψ∗(ρ∗) = ((exp(ρ∗x)–1)*νZ∗)t due to the Lévy–Khintchine representation. 
Hence, general theory delivers that the solution (St)t ≥ 0 of the remaining part 

 dSt = St−(σt dWt + dM̃+
t + dM̃−

t )  

is a local martingale and the remaining process is of finite variation.  □
Analog to the Γ-OU-BNS model presented in Example 2.1, we can easily con-

struct a two-sided BNS model with compound Poisson drivers. We conclude this 
chapter by presenting a two-sided extension of the Γ-OU-BNS model.

Example 3.4 (A two-sided Γ-OU-BNS model) Let (Z+
t )t≥0, (Z−

t )t≥0 be standard 
compound Poisson processes with exponentially i.i.d. jump sizes, i.e. 

 
Z∗
t :=

N∗
t∑

j=1

E∗
j , t ≥ 0,

 

with (N∗
t )t≥0  being Poisson processes with intensity c∗ >0 and ( E j  

∗ )j ∈ N being a sequence 
of i.i.d. random variables with  E j  

∗ � Exp(η∗), j ∈ N, ∗∈{+, –}. To assure the independ-
ence of (Z+

t )t≥0 and (Z−
t )t≥0, we assume the Poisson processes ( N t  

+ )t ≥ 0 and ( N t  
– )t ≥ 

0 to be independent. Since the sum of standard compound Poisson processes remains 
a standard compound Poisson process, our variance process is also described by a 
Γ-Ornstein-Uhlenbeck process. Hence, we obtain a two-sided modification of the 
Γ-OU-BNS model of Example 2.1.

To check for the existence of a possible semimartingale decomposition, one has to 
remark that ξ∗ = η∗ holds for ∗∈{+, –}. Hence, we have to assume that ρ+ < η+. Since 
1/η+ = E[E+

j ]  is the average jump height of the driver Z+, we obtain an appealing and 
easy-to-interpret criterion: A semimartingale decomposition of St exists, if the average 
jump height of the positive jumps in the log-price ρ+/η+ does not exceed 1. Since jumps 
of this magnitude in the log-price are rather unrealistic for most processes occuring in 
mathematical finance, the restriction ρ+ < η+ does not practically affect the construction 
of a BNS2 model with compound Poisson drivers. 

4. Pricing European claims in the two-sided BNS 
model
As described in the previous section, the BNS2 model has rich dynamics induced 
by its driver triplet (W, Z+, Z–). Obtain ing price estimates by Monte Carlo simula-
tion (involving Euler or Milstein discretization schemes) is straightforward, but it is 
computationally expensive and typically not suitable for calibration purposes, where 
prices have to be calculated as a part of an optimization procedure. Thus, we have to 
find a way to price European contingent claims in an efficient manner, since these 
calculations are made very often when calibrating to market-quoted vanilla prices. 
The celebrated semi-analytic pricing approaches based on Fourier/Laplace inver-
sion techniques of [Carr and Madan 1999, Raible 2000] have shown to be an efficient 
and tractable way to price vanilla options. We therefore compute the characteristic 
function of the log-price Xt in the BNS2 dynamics, which is sufficient for applying 
Fourier pricing.

The characteristic function can be computed in a straightforward manner, fol-
lowing the arguments of [Nicolato and Venardos 2003].

Theorem 4.1 (Characteristic function of  log-price in a BNS2 model) Let (Xt)t ≥ 0 
be a process following the dynamics given in (1). Then the characteristic function of 
Xt , t>0, is given by 

logφXt (u) = iu(X0 + μt) + σ 2
0 δ(0, t, iu,β , λ)

 
+ λ

(∫ t

0
ψ+(δ(s, t, iu,β , λ) + iuρ+) ds +

∫ t

0
ψ−(δ(s, t, iu,β , λ) + iuρ−) ds

)
 (2)

with 

 
δ(s, t, z,β , λ) := (z2 + 2zβ)ε(s, t, λ)

2
,
 

 
ε(s, t, λ) := 1 − exp(−λ(t − s))

λ
,
 

ψ+ and ψ– denoting the Laplace exponents of the Lévy processes (Z+
t )t≥0 and (Z−

t )t≥0.

Proof
The proof follows the lines of [Nicolato and Venardos 2003, Theorem 2.2]. The key step 
in the proof is the fact that for a Lévy process Y with associated Laplace exponent ψY , 

 
E

[
exp

(∫ t

0
f (s) dYs

)]
= exp

(∫ t

0
ψY (f (s)) ds

)
 (3)

holds for f : R≥0 → C , Re f < ξY := sup{s ∈ R≥0 : ψY (s) < ∞}. In particular, 

 
E

[
exp

(∫ t

0
f (s) dZ∗

λs

)]
= exp

(
λ

∫ t

0
ψ∗(f (s)) ds

)
 (4)

holds for ∗∈{+, –}. Furthermore, note that the Ornstein–Uhlenbeck shape of the sto-
chastic volatility w.r.t. the Lévy subordinator Z, Zt :=  Z t  

+  +  Z t  
– , delivers the representation 

 

∫ t

0
σ 2
s ds = 1 − exp(−λt)

λ
σ 2
0 +

∫ t

0

1 − exp(−λ(t − s))
λ

dZλs
 

 
= ε(0, t, λ)σ 2

0 +
∫ t

0
ε(s, t, λ) dZ+

λs +
∫ t

0
ε(s, t, λ) dZ−

λs  (5)

for the integrated variance process (cf. [Barndorff-Nielsen and Shephard 2001]). Hence, 
we obtain 

φXt (u) = E

[
exp

(
iu

(
X0 + μt + β

∫ t

0
σ 2
s ds +

∫ t

0
σs dWs

 

 
+

∫ t

0
ρ+ dZ+

λs +
∫ t

0
ρ− dZ−

λs

))]
 

 
= E

[
exp

(
iu

(
X0 + μt + β

∫ t

0
σ 2
s ds +

∫ t

0
ρ+ dZ+

λs +
∫ t

0
ρ− dZ−

λs

))
 

 
E

[
exp

(∫ t

0
iuσs dWs

) ∣∣∣(Z+
λs)0≤s≤t , (Z−

λs)0≤s≤t

]]
 

 
= E

[
exp

(
iu(X0 + μt) +

(
iuβ + (iu)2

2

)∫ t

0
σ 2
s ds +

∫ t

0
iuρ+ dZ+

λs
 

 
+

∫ t

0
iuρ− dZ−

λs

)]
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 = E
[
exp

(
iu(X0 + μt) + σ 2

0 δ(0, t, iu,β , λ)  

 
+

∫ t

0
δ(s, t, iu,β , λ) + iuρ+ dZ+

λs +
∫ t

0
δ(s, t, iu,β , λ) + iuρ− dZ−

λs

)]

 = exp
(
iu(X0 + μt) + σ 2

0 δ(0, t, iu,β , λ)  

 
+ λ

∫ t

0
ψ+(δ(s, t, iu,β , λ) + iuρ+) + ψ−(δ(s, t, iu,β , λ) + iuρ−) ds

)
 

for the characteristic function. The last equality requires both Re(δ(s,t,z,β,λ)+zρ+)< ξ+ 
and Re(δ(s,t,z,β,λ)+zρ–)< ξ– to hold for z ∈ C on a whole imaginary strip. It immedi-
ately follows that 

 
ε(s, t, λ)

2
Re(z)2 + (βε(s, t, λ) + ρ∗) Re(z) − ξ∗ < 0  (6)

suffices to hold. Due to Assumption 1, ξ∗ > 0, thus Re (z) = 0 fulfills inequality (6) (if 
ε(s,t,z) =0, the quadratic inequality reduces to a linear inequality and the same argu-
ment applies). Hence, choosing z ∈ iR assures that (3) can be applied.  □

Theorem 4.1 yields a convenient expression for the characteristic function of 
Xt, but one has to admit that the general characteristic function in (2) does not have 
a closed-form solution, yet. The integral of the Laplace exponents of the driving 
subordinators cannot be expressed in terms of elementary functions for every Lévy 
subordinator. Fortunately, in case of the two-sided Γ-OU-BNS model that we have 
introduced in Example 3.4, the characteristic function of Xt has a closed-form solu-
tion which can be calculated explicitly.
Example 4.2 (Characteristic function in a two-sided Γ-OU-BNS model)
As described in Example 3.4, the two-sided Γ-OU-BNS model is obtained if the driv-
ing Lévy subordinators (Z+

t )t≥0, (Z−
t )t≥0, are specified as compound Poisson processes 

with intensities c∗ > 0 and jump size parameters η∗ > 0, ∗∈{+, –}. In this case, following 
[Nicolato and Venardos 2003], the integrals in (2) can be calculated explicitly.

Using elementary calculations, we obtain the following closed-form term for the 
characteristic function in the two-sided Γ-OU-BNS model: 

 logφXt (u) = iu(X0 + μt) + σ 2
0 δ(0, t, iu,β , λ) + h(u, t,β , λ, c−, η−, ρ−)  

 + h(u, t,β , λ, c+, η+, ρ+)  (7)

with 

 
h(u, t,β , λ, c, η, ρ) = c

η − f2(u, t, λ,β , ρ)  

 

(
η log

(
η − f1(u, t, λ,β , ρ)

η − iuρ

)
+ f2(u, t, λ,β , ρ)λt

)
,
 

 f1(u, t, λ,β , ρ) = iuρ + δ(0, t, iu,β , λ),  

 
f2(u, t, λ,β , ρ) = iuρ − u2 − 2iuβ

2λ
.
 

Similar to [Nicolato and Venardos 2003], choosing an IG process for Z+ or Z– 
yields a closed-form characteristic function for the log-price. Hence, a model with, 
e.g., compound Poisson downward jumps with exponential jump sizes and simulta-
neously small infinite activity upward IG jumps as a “Γ-IG-OU mixture model” can 
still be calibrated by means of Fourier methods.

5. The two-sided BNS model applied: Modeling FX 
rates
Compar ed to equity models, specific models for FX rates are treated only rarely in 
academia, which might be due to the less typical quoting conventions. Typically, in 

practice, equity models are adapted to the FX situation (like the famous Garman–
Kohlhagen extension of the Black–Scholes model). A compendium about FX rates 
modeling in mathematical finance is [Lipton 2002].

Above, we stressed that the original BNS model falls behind in modeling FX 
rates, since it only allows for one-directional jumps. However, jumps in FX rates have 
to be bidirectional, since they are typically induced by a shock in one of the two mon-
etary areas, or unanticipated central bank decisions may cause a sudden rise/fall of 
the FX rate. However, additional activity after a sudden jump makes equal sense for 
FX rates as for stock prices. Thus, modeling FX rates offers to be a natural application 
for a two-sided BNS model and an attractive alternative to other models that do not 
capture the smile and term structure of implied volatility correctly. In this section, we 
calibrate a classical and a two-sided BNS model to a quoted FX implied volatility sur-
face, where the models are driven by Γ-Ornstein–Uhlenbeck processes. Afterwards, 
we compare the calibration performances to quantify the benefit from incorporat-
ing upward jumps in the BNS model. Furthermore, we discuss possible parameter 
reductions for the two-sided BNS model in the Γ-OU framework, e.g. using symmet-
ric BNS (SBNS) dynamics.

5.1. FX rates framework
We assume to have deterministic risk-free continuously compounded interest rates 
in both monetary areas rdom, rfor > 0, denoting by rdom the domestic currency interest 
rate1 and by rfor the foreign currency interest rate2. The role of each currency is given 
by market standards, for details on the quotation of FX rates and options on FX rates 
we refer to [Reiswich and Wystup 2010].

5.2. Model setup
We propose to model FX rates with a two-sided Γ-OU-BNS model as treated in 
Example 3.4. We incorporate up- and downward jumps in the FX rate, induced by 
independent compound Poisson processes with exponential jump sizes Z+, Z– with 
matching Laplace exponents ψ+, ψ–.

Furthermore, to ensure risk-neutral valuation in the BNS2 model, our FX rate 
process S has to fulfill that that the parity-discounted process (exp((rfor – rdom)t)St)t ≥ 0 
is a martingale (cf. [Lipton 2002]). Hence, we assume St to follow the dynamics 

 dSt = St−
(
(rdom − rfor) dt + σt dWt + dM∗

t
)
,  

 dσ 2
t = −λσ 2

t dt + dZ+
t + dZ−

t  

with (Wt)t ≥ 0 being a Brownian motion which is mutually independent of the com-
pound Poisson processes Z+ and Z– and 

 M̃∗
t = M∗

t − λtψ∗(ρ∗) = (exp(ρ∗x) − 1) 
 (μZ∗ − νZ∗ )λt , ∗ ∈ {+,−}.  

We calibrate to market prices via FFT methods as described in [Carr and Madan 
1999, Raible 2000]. Therefore, to ensure that the characteristic function of Xt := log St 
exists as in (2), we require that ρ+ < ξ+ = sup{x ∈ R :ψ+ (x) < ∞}. Risk-neutral valua-
tion implies choosing μ = rdom – rfor – λ(ψ+ (ρ+) + ψ– (ρ–)) and β = –0.5. As we have 
discussed in Example 3.4, this requires that the expected upward jump sizes in the 
log-price should not exceed 1 to guarantee for the finiteness of ψ+(ρ+), which does 
not restrict a reasonable choice of ρ+ in reality. The characteristic function of the two-
sided Γ-OU-BNS model can be found in (7).
For some further investigations, we run our two-sided Γ-OU-BNS model in three 
different setttings: 

 1. We use a model with the maximum degrees of freedom and separate intensi-
ties, jump sizes, and scaling factors for the compound Poisson drivers.3 Thus, 
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our parameter vector in the full BNS2 setting is the octuple ( σ 0  
2 ,c–, c+, η–, η+, 

λ, ρ–, ρ+). 
 2. We reduce the parameter space and assume that the compound Poisson driv-

ers Z+ and Z– are independent copies of each other: Only the scaling factors 
ρ+, ρ– vary independently within their domain.4 So, our parameter vector is 
the sextuple ( σ 0  

2 , c, η, λ, ρ–, ρ+). 
 3. To ensure a fair comparison between the original Γ-OU-BNS model, we 

further reduce the parameters to an SBNS setting where the scaling factors 

additionally fulfill ρ– = –ρ+.5 Hence, our parameter vector in the SBNS setting 
is the quintuple ( σ 0  

2 , c, η, λ, ρ) – similar to the classical BNS setting. 
 4. As a reference model, we use the standard one-sided Γ-OU-BNS model, only 

accounting for negative jumps. 

5.3. Data and calibration methodology
We calibrate our two-sided Γ-OU-BNS model and the reference Γ-OU-BNS model 
to a set of 204 European options on the EUR-SEK foreign exchange rate6 with 
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Figure 3: The market and calibrated short-term volatility smiles from EUR-SEK options. One can clearly see that the classical BNS model has more difficulties 
to fit the smile compared to the different BNS2 variants. In particular, the OTM put options are overvalued by the classical BNS model. The very short-term 
smile (5 days) cannot adequatly be captured by neither of the models.
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 different strikes (10%–45% delta and ATM calls and puts) and maturities. For cali-
bration, we minimize the absolute distance of the model implied Black–Scholes vola-
tilities to the market implied volatilities, with equal weights on every option, i.e. we 
minimize the error function 

 
θ �→ 1

204

204∑
i=1

∣∣∣σimpl(Call
(i)
model(θ)) − σ

(i)
market

∣∣∣ , 

denoting by σimpl the function mapping a call price to its implied Black–Scholes 
volatility, by  Call  model  

(i)
   the function mapping the resp. parameter vector θ to the resp. 

model call price of the ith call, and by  σ market  
(i)

   the market-quoted implied volatility for 
the ith call, i = 1,…, 204 .

5.4. Calibration results
After calibrating the different model settings to market prices, we obtain the follow-
ing results:
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Figure 4: The market and calibrated longer term volatility smiles from EUR-SEK options. Regarding the long-term smiles, the BNS2 variants catch the smile 
even better than in the short term, in particular the OTM put prices are fitted better by the BNS2 models than by the reference BNS model. The SBNS model 
has some difficulties to fit the OTM call prices for longer maturities, while the reduced BNS2 model (having one more free parameter) captures the right wing 
of the smile much better.
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Model # of parameters Error7 
original BNS model 5 0.40%
SBNS model 5 0.25%
reduced BNS2 model 6 0.20%
full BNS2 model 8 0.19%

Being the most general model, it is not surprising that the full BNS2 model with 
eight degrees of freedom calibrates best. The more striking result is that the reduced 
BNS2 model calibrates almost equally well as the full BNS2 model, although it is 
less flexible due to the additional assumption of identically distributed compound 
Poisson drivers. Also, one can see that the SBNS model’s calibration performance 
is significantly better than the original BNS model’s calibration performance (even 
without adding more degrees of freedom) and not much worse than the results in 
the full and reduced BNS2 settings. Overall, this indicates that our two-sided exten-
sion of the BNS model, even in a parsimonious setting (SBNS model), actually fits to 
FX option prices better than the original BNS model. We conclude that a symmetric 
model incorporating two-directional jumps does not only match to the economic 
intuition of FX rates, but actually fits to option data significantly better than the 
asymmetric classical BNS model. The detailed calibration performance for each 
maturity is displayed in Figures 3 and 4: One observes that particularly the long-term 
volatility surface is captured better by the BNS2 model variants. The OTM put prices 
are overestimated by the classical BNS model, while the two-sided variants (even the 
SBNS model) capture the smile wings more accurate.

6. Conclus ion
We have constructed a generalization of the Barndorff-Nielsen–Shephard model 
class incorporating bidirectional jumps in the asset price process by introducing a 
second Lévy subordinator. As an important parametric example, we enhance the 
classical Γ-OU-BNS model to a two-sided Γ-OU-BNS model. In case of mildly 
restricted upward jump height in the log-price, we compute the characteristic 
function w.r.t. the general two-sided BNS model in a semi-closed form, analogu-
ously to the one-sided case. In particular, we are able to compute the characteristic 
function of the two-sided Γ-OU-BNS model in closed form. As an application, 
we calibrate our two-sided Γ-OU-BNS model to market prices of FX options, 
where a model with two-sided jumps is more natural. As a result, we obtain that 
the two-sided BNS model calibrates considerably better to FX options prices than 
the classical BNS model, even when assuming i.i.d. Lévy drivers and incorporating 
identically distributed up- and downward jumps. Concluding, we think that the 
two-sided BNS model is a useful extension of the classical BNS model due to its 
higher flexibility, being particularly suitable for FX rates modeling where symmet-
ric behavior is more natural and intuitive than the model-implied assymetry of the 
classical BNS model.
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ENDNOTES
1. In some literature, it is called accounting interest rate.
2. Sometimes also called underlying interest rate.
3. In the following, we refer to this approach as the “full BNS2” model.
4. In the following, we refer to this approach as the “reduced BNS2” model. Here, we 
denote the intensity of the compound Poisson processes by c := c+ = c– and the jump 
size by η := η+ = η–.
5. In the following, we refer to this approach as the “SBNS” model. In this setting, we 
denote the scaling factor by ρ := ρ+ = –ρ–.
6. It is a valid question why we did not choose the most liquid currency pair EUR-USD. 
At the time these calibrations were done, most of the EUR-nonEUR exchange rates and 
their derivatives markets (and, particularly, EUR-USD) were governed by the Eurozone 
crisis. We chose the EUR-SEK exchange rate, since the Swedish krona is not pegged 
with the Euro, but the economy is also closely connected to the Eurozone economy. 
Hence, the Eurozone crisis which distorts most of the EUR-nonEUR exchange rate 
markets, has less effect on the EUR-SEK exchange rate. For the EUR-USD exchange rate 
during the current Eurozone crisis, one should scrutinize whether a model as the pre-
sented two-sided BNS model actually makes sense. A pattern which can be observed 
in the EUR-USD exchange rate is that hits in the Eurozone crisis cause downward 
jumps on the EUR-USD exchange rate, while upward jumps on the EUR-USD exchange 
rate are mainly caused by signals of relaxation in the crisis. Hence, it is questionable 
that the postulated relationship between the exchange rate and the volatility (i.e. 
jumps in the exchange rate – regardless of the direction – cause upward jumps in the 
volatility process) holds for the EUR-USD exchange rate during the current crisis.
7. The error to market prices is measured by the average absolute deviation of implied 
volatilities.
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