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Abstract
Sobol’ sequence generators are used actively in financial applications. In 
this paper, we explore the effect of the uniformity Properties A and A’ on 
the generator performance in high-dimensional problems. It is shown that 
these properties provide an additional guarantee of uniformity for high-
dimensional problems even at a small number of sampled points. By impos-
ing additional uniformity properties on low-dimensional projections of 
the sequence in addition to the uniformity properties of the d-dimensional 
sequence itself, the efficiency of the Sobol’ sequence can be increased. The 
SobolSeq16384 generator, which satisfies additional uniformity properties 
(Property A for all 16,384 dimensions and Property A’ for adjacent dimen-
sions), is constructed. A comparison of known Sobol’ sequence generators 
for a set of tests shows that for the majority of tests, the SobolSeq16384 gen-
erator performs better than other generators.
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1 Introduction
Financial institutions implement pricing and risk management engines 
for accurate and efficient valuation of their complex portfolios, having 
 several hundred thousand positions in financial derivatives. Monte Carlo 
(MC) simulation is at the heart of these systems: it represents a unique 
 universal method for pricing and risk management, working even when 
the dimensionality of the problem is very high.

Convergence of MC methods does not depend on the dimension of the 
risk factor space. However, the rate of convergence, O(N −1/2), where N is the 
number of generated scenarios, is rather slow. A higher rate of convergence 
can be obtained by using quasi-Monte Carlo (QMC) methods based on low- 
discrepancy sequences (LDS). Asymptotically, QMC can provide the rate of 
convergence O(N −1+e) with an arbitrarily small e > 0.

There are a few well-known and commonly used LDS such as Halton, 
Faure, Sobol’, Niederreiter, and some others. Many practical studies have 
proven that the Sobol’ sequences are in many aspects superior to other LDS 
(see, e.g., Paskov and Traub, 1995; Kreinin et al., 1998; Jaeckel, 2002; L’Ecuyer 
and Lemieux, 2002), and this is why they are so widely used in finance. Paul 
Glasserman, in his highly acclaimed book Monte Carlo Methods in Financial 
Engineering (2004) says: “Preponderance of the experimental evidence 
amassed to date points to Sobol’ sequences as the most effective quasi-Monte 
Carlo method for application in financial engineering.”

The Sobol’ LDS were constructed by following the three main require- 
ments introduced in Sobol’ (1967):

1. Best uniformity of distribution as N → ∞.
2. Good distribution for fairly small initial sets.
3. A very fast computational algorithm.

The properties of the Sobol’ LDS are determined by the design of direc-
tion numbers. Different criteria were used for their construction by various 
authors (see, e.g., Jaeckel, 2002; Lemieux et al., 2004; Silva and Barbe, 2005; 
Joe and Kuo, 2008).

The present work contains an attempt to further increase the efficiency 
of the Sobol’ sequence by imposing additional uniformity properties on 
low-dimensional projections of the sequence in addition to the uniformity 
properties of the d-dimensional sequence itself.

The QMC valuation efficiency of a portfolio of financial derivatives depends 
on the properties of the portfolio pricing function, f (x), that we assume to be 
defined and square integrable in the d-dimensional unit hypercube Hd .1

It is not uncommon that the portfolio pricing function depends mainly 
on small groups of neighboring variables. Such models can be represented 
(or approximated) by equations of the following type:

 

f (x) = f0 +
d−m∑
i=0

gi(xi+1, . . . , xi+m),  (1.1)
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where m � d. Obviously, the ANOVA decomposition of (1.1) contains low-
dimensional terms only: their dimensions cannot exceed m. Therefore, the 
average dimension of (1.1) also does not exceed m. The concept of average 
dimension was introduced by A. Owen in Liu and Owen (2006) and inde-
pendently by Asotsky et al. (2006). These papers contain an important sug-
gestion: for integrands with small average dimension, QMC integrations are 
superior to MC integrations. Similar conclusions were drawn in Caflisch et 
al. (1997). This paper introduced the notion of effective dimensions. In more 
recent papers (see, e.g., Kucherenko and Shah, 2007; Wang and Sloan, 2005), 
it was shown that the majority of practical high-dimensional problems in 
finance have low effective dimensions. This explains the success of QMC 
methods for  solving such high-dimensional problems.

Models that can be presented in the form (1.1) may benefit from using 
Sobol’ LDS, which has additional uniformity properties on low-dimensional 
projections (adjacent dimensions).

This paper is organized as follows. Section 2 describes the design princi-
ples of Sobol’ sequence generators. Section 3 gives definitions of Properties 
A and A’ and shows that for dimensions higher than 3, it is possible to 
construct a Sobol’ sequence satisfying Property A’ but not Property A. In 
Section 4 we show that Properties A and A’ provide an additional guarantee 
of uniformity even with a small number of sampled points. New additional 
uniformity properties for low-dimensional projections are introduced in 
Section 5. Comparison of various Sobol’ sequence generators is presented 
in Section 6. Some examples of the application of numerical strategies 
based on QMC scenario generation in financial modeling are considered in 
Section 7. Finally, conclusions are given in Section 8.

2 Construction of Sobol’ sequences
Definition 1. Dyadic intervals. Let m be a non-negative integer. Dyadic 

intervals with length 2−m are obtained by dividing the unit interval 0 ≤ z ≤ 1 
into 2m equal intervals. We assume that the left end of a dyadic interval is 
closed and the right end is open, with one exception: if the right end is z = 1 
then the right end is closed also.

Thus, the unit interval is a sum of 2m dyadic intervals with length 2−m.

Definition 2. Dyadic boxes. A dyadic box Π in the d-dimensional unit 
hypercube Hd is a product of d dyadic intervals.

Thus, a given set of d non-negative integers (m
1
,…, m

d
) defines a decomposi-

tion of Hd into a sum of 2m dyadic boxes with volumes 2−m, where m = m
1
 +… + m

d
.

Definition 3. Pt -nets. Consider two integers ν > t ≥ 0. A point set consist-
ing of N = 2ν points in Hd is called a Pt-net if each dyadic box with volume 2t /N 
contains exactly 2t points of the net.

Obviously, smaller values of t imply a more uniform distribution of the 
points of the Pt -net.

Definition 4.  A dyadic section of an infinite sequence of points. Let x
0
, x

1
, x

2
,… 

be an infinite sequence of points in Hd. A subset of points x
i
 with indices i 

satisfying inequalities (k − 1) 2p ≤ i < k2p with arbitrary positive integers k and 
p is called a dyadic section of the sequence. 2p is the length of the section. For 
example, sections (x

0
, x

1
, x

2
, x

3
), (x

4
, x

5
, x

6
, x

7
) are dyadic sections of length 4. 

But sections (x
1
, x

2
, x

3
, x

4
), (x

2
, x

3
, x

4
, x

5
) are not dyadic.

Definition 5. LPt-sequences. An infinite sequence of points x
0
, x

1
, x

2
,… in Hd 

is called an LPt-sequence if all its dyadic sections with length exceeding 2t are 
Pt -nets.

LP
0
-sequences exist only in H1 and H2. In higher dimensions, as d increas-

es, the smallest possible values of t increase also.

Definition 6. Sobol’ sequences. LPt-sequences are widely used in com-
putational mathematics. But the term ‘LPt-sequences’ is not popular. In 
Niederreiter (1988), Pt-nets and LPt-sequences are called ‘(t, m, s)-nets in base 
2’ and ‘(t, s)-sequences in base 2’; here, s is the dimension and t ≡ t , m ≡ ν. 
However, most mathematicians and practitioners prefer a more brief termi-
nology: LPt-sequences are called ‘Sobol’ sequences’.

All Sobol’ sequences are uniformly distributed in Hd. Furthermore, they 
are well distributed.

An efficient algorithm for generating such sequences has been intro-
duced in Sobol’ (1967). It is based on independence properties of primitive 
polynomials in the field GF(2). The coordinates of all these Sobol’ points are 
binary rational numbers. For these Sobol’ sequences, direction points that 
allow a fast generation of the sequence can be defined.

Definition 7. Direction points. The points V
k
 = x

2
k−1 at k = 1, 2, 3,… are called 

direction points for the sequence x
0
, x

1
, x

2
,… Given m direction points 

V
1
,… , V

m
, one can easily obtain 2m points x

i
 of the sequence with i < 2m. In fact, 

if the number i in the binary system is i = e
m
…e

2
e

1
, then x

i
 = e

1
V

1
 ⊕ e

2
V

2
 ⊕ · · · ⊕ e

m
 

V
m
 where ⊕ is the XOR operation applied to each coordinate. Coordinates of 

the direction points are called direction numbers.
The Sobol’ numbers x

n
 = x1

n
, x2

n
,…xd

n
 are generated from a set of binary frac-

tions of length b bits, vj = (0.vj
2
vj

3
…vj

b
)
2
,  vj

i
 ∈0,1, j = 1,……d known as direction 

numbers. Direction numbers are defined below. Consider the nth number 
in the sequence given in binary form, n = (b

b
 ...b

3
b

2
b

1
). To produce the Sobol’ 

 integer number xj
n 
, the following formula is used:

xj
n = b1vj

1 ⊕ b2vj
2 ⊕ · · · ⊕ bbv

j
b,

where ⊕ is an addition modulo 2 operator: 0 ⊕ 0 = 0, 1 ⊕ 1 = 0, 0 ⊕ 1 = 1, 
1 ⊕ 0 = 1. ⊕ can also be seen as bitwise XOR. This result is obtained by per-
forming the bitwise exclusive XOR of the direction numbers vj

i
 for which 

b
i
 ≠ 0.

The final conversion to a uniform variate yj
n
 is performed by dividing xj

n
 

by 2bj :

yj
n = xj

n/2bj .

Direction numbers are selected by the following rules (see, e.g., Bratley 
and Fox, 1988).

Let P
j
 = xsj + a

1,j
 xsj −1 + · · · + a

sj −1, j
x + 1, j = 1,…, d be a set of different primitive 

polynomials. Primitive polynomials are irreducible (can’t be factored) and 
the smallest power p for which a polynomial divides xp + 1 is p = 2q − 1. Let 
m

i,j
 = 2i · v

i,j
. For numbers m

i,j
 at any j ≥ 2, i > s

j
 , where s

j
 is an order of a primi-

tive polynomial P
j
 corresponding to dimension j, the following relationship 

is satisfied:

mi,j = 2a1,jmi−1,j ⊕ 22a2,jmi−2,j ⊕ · · · ⊕ 2sj−1asj−1,jmi−sj+1,j ⊕ 2sjmi−sj,j ⊕ mi−sj,j,

( )
 (2.1)

where a
k,j

 are the coefficients of a primitive polynomial P
j
. Initial values m

1,j
, 

m
2,j

,…, m
sj
,
j
 can be chosen arbitrarily provided that conditions m

k,j
 < 2k and 

m
k,j

 is odd are satisfied. Therefore, it is possible to construct different Sobol’ 
sequences for the fixed dimension d.

^
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3 Properties A and A’
Sobol’ (1976) introduced additional uniformity conditions known as 
Properties A and A’.

Definition 8. Property A. A low-discrepancy sequence is said to satisfy 
Property A if for any binary segment2 of the d-dimensional sequence of length 
2d there is exactly one draw in each 2d hypercube that results from subdivid-
ing in half the unit hypercube along each of its length extensions.

Definition 9. Property A’. A low-discrepancy sequence is said to satisfy 
Property A’ if for any binary segment (not an arbitrary subset) of the d-dimen-
sional sequence of length 4d there is exactly one draw in each 4d hypercube 
that results from subdividing into four equal parts the unit hypercube along 
each of its length extensions.

Theorem 1. The d-dimensional Sobol’ sequence possesses Property A if 
and only if

 
det(Vd) = 1(mod 2),  (3.1)

where V
d
 is the d×d binary matrix defined by

 

Vd =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
1 v2,2,1 v3,2,1 · · · vd,2,1

1 v2,3,1 v3,3,1 · · · vd,3,1
...

...
...

. . .
...

1 v2,d,1 v3,d,1 · · · vd,d,1

⎞
⎟⎟⎟⎟⎟⎟⎠  (3.2)

with v
k,j,1

 denoting the first digit after the binary point of the kth direction 
number for dimension j(v

k,j
 = (0.v

k,j,1
v

k,j,2
 …)

2
).

Theorem 2. The d-dimensional Sobol’ sequence possesses Property A’ if 
and only if

 
det(Ud) = 1(mod 2),  (3.3)

where U
d
 is the 2d×2d binary matrix defined by

Ud =

⎛
⎜⎜⎜⎜⎜⎜⎝

v1,1,1 v1,1,2 v2,1,1 v2,1,2 · · · vd,1,1 vd,1,2

v1,2,1 v1,2,2 v2,2,1 v2,2,2 · · · vd,2,1 vd,2,2

v1,3,1 v1,3,2 v2,3,1 v2,3,2 · · · vd,3,1 vd,3,2
...

...
...

...
. . .

...
...

v1,2d,1 v1,2d,2 v2,2d,1 v2,2d,2 · · · vd,2d,1 vd,2d,2

⎞
⎟⎟⎟⎟⎟⎟⎠

 (3.4)

with v
k,j,i

 denoting the ith digit after the binary point of the kth direction 
number for dimension j (v

k,j
 = (0.v

k,j,1
v

k,j,2
…)

2
).

Proof of these theorems can be found in Sobol’ (1976).
Tests for Properties A and A’ are independent. Thus it is possible to con-

struct the Sobol’ sequence that satisfies both Properties A and A’ or only one 
of them (see Section 3.1).

To find determinants of matrices (3.2) and (3.4) it is necessary to calculate 
elements v

i,j,k
 for any (including high values) i and j. At the same time it is 

desirable to avoid full calculation of v
i,j
 numbers. Recurrent relationships for 

calculation of v
i,j,1

 are given in Joe and Kuo (2003). We derive a generalized 
variant of these relationships for an arbitrary k.

From (2.1) it follows that direction numbers v
i,j
 satisfy a relationship 

 
vi,j = a1,jvi−1,j ⊕ a2,jvi−2,j ⊕ · · · ⊕ asj−1,jvi−sj+1,j ⊕ vi−sj,j ⊕ vi−sj,j

2sj  
 (3.5)

for all i > s
j
 

Let v
k,j

 = 0.v
k,j,1

v
k,j,2

v
k,j,3

… be the binary representation of a number v
k,j

. Then 
vi,j

2sj = 0. 0 . . . 0︸ ︷︷ ︸
sj times

vi,j,1vi,j,2vi,j,3 . . .. Representation (3.5) leads to the following 

lemma.
Lemma 1. Let P

j
 = xsj + a

1,j
 xsj −1 +… + a

sj −1
x + 1 is a primitive polynomial of 

some degree s
j
 in the field GF(2). For j ≥ 2 and i > s

j
, we have

vi,j,k = a1,jvi−1,j,k ⊕ a2,jvi−2,j,k ⊕ · · · ⊕ asj−1,kvi−sj+1,j,k ⊕ vi−sj,j,k, k ≤ sj,  (3.6)

 
vi,j,k = a1,jvi−1,j,k ⊕ a2,jvi−2,j,k ⊕ · · · ⊕ asj−1,kvi−sj+1,j,k ⊕ vi−sj,j,k ⊕ vi−sj,j,k−sj , k > sj

 (3.7)

with v
i,j,k

 denoting the kth digit after the binary point of the direction 
number v

i,j
.

We will use this lemma later, in Sections 3.1 and 5.1 to investigate rela-
tions between uniformity properties without construction of the complete 
Sobol’ sequence.

3.1 Sobol’ sequence satisfying only Property A’
The objective of this section is to establish a relationship between 

Properties A and A’ for Sobol’ sequences. It was known from early original 
papers by Sobol’ that it is possible to construct Sobol’ sequences which 
satisfy Property A without satisfying Property A’. However, Property A’ previ-
ously was not studied in detail. Specifically, we would like to find out if the 
existence of Property A’ automatically guarantees the existence of Property 
A or whether it is possible to construct a sequence satisfying only Property A’ 
without satisfying Property A.

Consider possible variants of Sobol’ sequences for low dimensions and 
determine how Properties A and A’ depend on the choice of direction num-
bers. For construction direction numbers we will use the algorithm pre-
sented in Section 2.

The 1-dimensional Sobol’ sequence has a special form. It is known as the 
van der Corput sequence. For this sequence, all direction numbers m

i,j
 = 2i v

i,j
 

are equal to 1. It is easy to verify that it satisfies both Properties A and A’.
Consider the Sobol’ sequence for dimension 2. We will employ com-

monly used variants of primitive polynomials in ascending degree order. To 
obtain direction numbers for dimension 2, the polynomial P

2
 = x + 1 is used. 

In this case we have only one free parameter m
1,2

 which can be equal only to 
1. Thus, the following sequence m

i,2
 = 1, 3, 7, 15,… is obtained. For dimension 

2, V
2
 = 1 and U

2
 = 1. This means that the Sobol’ sequence for dimension 2 sat-

isfies both Properties A and A’.
Consider the Sobol’ sequence for dimension 3. To obtain direction 

numbers for dimension 3, the following polynomial is used: P
3
 = x2 + x + 1. 

In this case we have two free parameters m
1,3

 and m
2,3

. The value of m
1,3

 
is always equal to 1. For the parameter m

2,3
 there are two options: m

2,3
 = 

1 or m
2,3

 = 3. Thus, it is possible to construct two variants of the Sobol’ 
sequence.

In a binary representation, let m
2,3

 = (x1)
2
. We calculate m

k,3
, k ≥ 3 

using formula (2.1) and substitute in the matrices (3.2) and (3.4). The 
result is

det(V3) =
∣∣∣∣∣∣
1 1 1
0 1 x
0 1 x

∣∣∣∣∣∣ = x ⊕ x = 1,
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det(U3) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 1 0 1 0
0 1 1 1 x 1
0 0 1 0 x 1
0 0 1 1 1 0
0 0 1 0 x 1
0 0 1 1 x 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1.

The super line denotes the binary operation of negation (x = x ⊕ 1).
Hence, both Properties A and A’ are satisfied independently of the choice 

of x and, respectively, m
2,3

.
Consider the Sobol’ sequence for dimension 4. To obtain direction num-

bers, the following polynomial is used: P
4
 = x

3
 + x + 1. In this case there are 

three free parameters: m
1,4

 = 1, m
2,4

 , and m
3,4

 . Parameter m
2,4

 can take two 
possible values (1 or 3), while parameter m

3,4
 can take four possible values (1, 

3, 5, or 7). Parameter m
2,3

 can take two possible values, hence there are 16 dif-
ferent variants of the Sobol’ sequence for dimension 4.

In a binary representation, let m
2,3

 = (x1)
2
, m

2,4
 = (y1)

2
 , and m

3,4
 = (zt1)

2
. 

Using relationships (3.2), (3.4), and (3.6)–(3.7), we obtain:

det(V4) =

∣∣∣∣∣∣∣∣
1 1 1 1
0 1 x y
0 1 x z
0 1 1 y

∣∣∣∣∣∣∣∣ = x (y ⊕ z) ⊕ 1,

det(U4) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 1 0 1 0 1 0
0 1 1 1 x 1 y 1
0 0 1 0 x 1 z t
0 0 1 1 1 0 y 1
0 0 1 0 x 1 z ⊕ y t
0 0 1 1 x 1 z ⊕ y t
0 0 1 0 1 0 z t
0 0 1 1 x 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= t.

As a result, from 16 possible variants of the Sobol’ sequence, 12 variants 
satisfy Property A (8 variants for which m

2,3
 = 3 as well as 4 variants for which 

m
2,3

 = 1 and y = z, while t can attain any value). 8 variants satisfy Property A’, 
for which t = 1. The complete list of all variants with values of free param-
eters and conditions for Properties A and A’ is given in Table 1.

We can conclude that it is possible to construct a Sobol’ sequence for 
which Property A’ is satisfied while Property A is not satisfied. Examples of 
such sequences are sequences 4 and 6 (Table 1). It can be assumed that such 
a construction is also possible for sequences of dimensional orders higher 
than 4.

4 About additional uniformity properties
Originally, Sobol’ sequences were known as LPt-sequences, therefore in 

this section we will keep their original name.
Consider an arbitrary LPt-sequence x

0
, x

1
, x

2
,... in Hd. It is known that all 

LPt-sequences are uniformly distributed in Hd, moreover all Sobol’ sequences 
are well distributed. The lower the value of t, the better the uniformity prop-
erties of the distribution. However, all these properties are asymptotic: they 
are fulfilled when the number of points is sufficiently large. At the same 
time, the initial sets of points can be distributed non-uniformly.

Consider the initial part of the LPt -sequence

 
x0, x1, x2, . . . , xN0−1,  (4.1)

the length of which is equal to N
0
 = 2t +1.

It follows from the definition of the LPt-sequence that the sequence (4.1) 
is a Pt-net, that is any dyadic box with a volume 2t/N

0
 contains exactly 2t 

points of sequence (4.1). (A dyadic box is a product of dyadic intervals.) In the 
considered case this volume is equal to 2t /N

0
 = 1/2. There are 2d dyadic boxes 

with a volume equal to 1/2.
It is easy to see that such uniformity in ‘halves’ is quite a weak criterion 

from the point of view of uniformity. For example, if 2t points belong to the 
hyperoctant [0, 1/2)d and the remaining 2t points belong to the hyperoctant 
[1/2, 1]d , then the condition of uniformity with respect to ‘halves’ of the unit 
hypercube Hd is fulfilled.

4.1 LP
s
-sequence satisfying Property A

Consider an LPt-sequence satisfying Property A for the case t ≥ d. Then the 
length of the sequence (4.1) can be presented as N

0
 = 2d+p, where p = t − d + 1 

≥ 1. Therefore the sequence (4.1) consists of 2p sections containing 2d points 
that belong to various hyperoctants. Hence, there are exactly 2p points of the 
sequence (4.1) in each of the 2d hyperoctants.

This condition is much stronger than uniformity with respect to ‘halves.’ 
Indeed, each of the ‘halves’ consists of 2d−1 hyperoctants, therefore the 
number of points belonging to each of the ‘halves’ is equal to 2d−1 ∗ 2p = 2t.

Consider now the case when t < n. Then N
0
 ≤ 2d and all points of the 

sequence (4.1) belong to different hyperoctants.

4.2 LP
s
 -sequence satisfying Property A’

Assume that the LPt-sequence satisfies Property A’. Consider first the case 
when t ≥ 2d. Then the length of the sequence (4.1) can be presented as N

0
 = 

Table 1: Sobol’ sequences for dimension 4

No. m
2,3

m
2,4

m
3,4

A A’

1 1 1 1 Yes No
2 1 1 3 Yes Yes

3 1 1 5 No No

4 1 1 7 No Yes

5 1 3 1 No No

6 1 3 3 No Yes

7 1 3 5 Yes No

8 1 3 7 Yes Yes

9 3 1 1 Yes No

10 3 1 3 Yes Yes

11 3 1 5 Yes No

12 3 1 7 Yes Yes

13 3 3 1 Yes No

14 3 3 3 Yes Yes

15 3 3 5 Yes No

16 3 3 7 Yes Yes

^
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22d+q, where q = t− 2d + 1 ≥ 1. Hence the sequence (4.1) is a sum of 2q sets con-
sisting of 4d points, each of which belongs to one of the 4d hypercubes with a 
volume 1/4d (which appear in the definition of Property A’). We denote such 
hypercubes as H

1/4
. Therefore, each of these 4d hypercubes contains 2q points 

of the sequence (4.1). This property is stronger than uniformity in ‘halves.’ 
Indeed, each ‘half’ consists of 1/2*(4d) hypercubes and contains 1/2 * (4d) * 2q  = 

2τ points.
In the case when t < 2d, the length of the sequence is N

0
 ≤ 4d and all 

points of (4.1) belong to different H
1/4

 hypercubes.

4.3 The case of small sets of points

Consider the sequence x
0
, x

1
, x

2
,. . ., x

M −1
 when M < N

0
. In this case, from the 

definition of an LPt-sequence, it is not possible to extract any additional 
information on the distribution of these points.

It follows from Property A that the number of points in various hype-
roctants differs in not more than one point. Property A’ implies that the 
number of points in various H

1/4
 hypercubes differs in not more than one 

point.

5 Properties A and A’ for adjacent dimensions
We introduce two additional uniformity conditions that expand Properties 
A and A’. Any low-dimensional projection of the Sobol’ sequence can be 
considered as a low-discrepancy Sobol’ sequence. Therefore, we can impose 
additional uniformity properties for some projections of the sequence.

Definition 10. A low-discrepancy d-dimensional sequence is said to sat-
isfy Property A

k
 for some fixed k ≤ d if for any set of k adjacent dimensions a 

projection of the sequence on this set satisfies Property A.

Definition 11. A low-discrepancy d-dimensional sequence is said to sat-
isfy Property A’

k
   for some fixed k ≤ d if for any set of k adjacent dimensions a 

projection of the sequence on this set satisfies Property A’.
Properties A and A’ are special cases of properties A

k
 and A’

k
 , respectively 

under condition k = d.
We can formulate algebraic equations that guarantee Properties A

k
 and 

A’
k
 .

Theorem 3. The d-dimensional Sobol’ sequence satisfies Property A
k
 (k ≤ 

d) if and only if

 
det(Vj,k) = 1(mod 2),  (5.1)

for any 1 ≤ j ≤ (d − k + 1), where V
j,k

 is the k×k binary matrix defined by

 

Vj,k =

⎛
⎜⎜⎜⎜⎜⎜⎝

vj,1,1 vj+1,1,1 vj+2,1,1 · · · vj+k−1,1,1

vj,2,1 vj+1,2,1 vj+2,2,1 · · · vj+k−1,2,1

vj,3,1 vj+1,3,1 vj+2,3,1 · · · vj+k−1,3,1
...

...
...

. . .
...

vj,k,1 vj+1,k,1 vj+2,k,1 · · · vj+k−1,k,1

⎞
⎟⎟⎟⎟⎟⎟⎠  (5.2)

with v
m,n,1

 denoting the first digit after the binary point of the mth direction-
number for dimension n (v

m,n
 = (0.v

m,n,1
v

m,n,2
…),

2
 ).

Theorem 4. The d-dimensional Sobol’ sequence satisfies Property A’
k
 if 

and only if

 
det(Uj,k) = 1(mod 2),  (5.3)

for any 1 ≤ j ≤ (d − k + 1), where U
j,k

 is the 2k × 2k binary matrix defined by

Uj,k =

⎛
⎜⎜⎜⎜⎜⎜⎝

vj,1,1 vj,1,2 vj+1,1,1 vj+1,1,2 · · · vj+k−1,1,1 vj+k−1,1,2

vj,2,1 vj,2,2 vj+1,2,1 vj+1,2,2 · · · vj+k−1,2,1 vj+k−1,2,2

vj,3,1 vj,3,2 vj+1,3,1 vj+1,3,2 · · · vj+k−1,3,1 vj+k−1,3,2
...

...
...

...
. . .

...
...

vj,2k,1 vj,2k,2 vj+1,2k,1 vj+1,2k,2 · · · vj+k−1,2k,1 vj+k−1,2k,2

⎞
⎟⎟⎟⎟⎟⎟⎠

 (5.4)

with v
m,n,i

 denoting the ith digit after the binary point of the mth direction 
number for dimension n(v

m,n
 = (0.v

m,n,1
v

m,n,2
…)

2
 ).

These two theorems can easily be obtained from Theorems 1 and 2 given 
in Section 3. Let’s consider some arbitrary set of k adjacent dimensions {j, j 

+ 1,…,j + k}. The projection of the Sobol’ sequence on this set is the k-dimen-

sional Sobol’ sequence given by a set of direction vectors (v
m,j

 , v
m,j+1

,…, v
m,j+k

 ), 
m = 1, 2,…

We obtain relationships (5.2) and (5.4), substituting these direction vec-
tors into formulas (3.2) and (3.4), respectively.

According to the definitions of Properties A
k
 and A’

k
 relationships (5.2) 

and (5.4) could be fulfilled for all possible values of j.

5.1 Sobol’ sequence satisfying Property A
k
 for all k ≤ d

Our first objective is to investigate the possibility of constructing a Sobol’ 
sequence that satisfies Property A

k
 for all k ≤ d. First, we consider Sobol’ 

sequences at low dimension. If it is possible to construct a sequence satisfy-
ing the required criteria at low dimensions, then it can be generalized for 
sequences at high dimensions.

We will use an algorithm described in Section 2 to construct the Sobol’ 
sequence. The construction of all possible Sobol’ sequences for dimensions 
up to 4 was considered in Section 3.1. We note that m

1,m
 = 1 for any dimen-

sion m = 1, 2,… This result can easily be obtained from the constraints m
m,1

 ≤ 
21 and m

m,1
 is odd, therefore all Sobol’ sequences satisfy Property A

1
.

The 1-dimensional Sobol’ sequence has a special form. It is known as the 
van der Corput sequence. For this sequence, all direction numbers m

i,j
 = 2i v

i,j
 

are equal to 1. Consider the Sobol’ sequence for dimension 2. To obtain direc-
tion numbers for dimension 2, a polynomial P

2
 = x + 1 is used. In this case we 

have only one free parameter m
1,2

, which can only be equal to 1. Thus, the 
following sequence m

2
 = {1, 3, 7, 15,…} is obtained. Property A

2
 is the same as 

Property A for dimension d = 2. Therefore, Properties A, A
1
, and A

2
 are satis-

fied for this sequence.

Consider the Sobol’ sequence for dimension 3. To obtain direction num-
bers for dimension 3 the following polynomial is used: P

3
 = x

2
 + x + 1. In this 

case we have two free parameters m
1,3

 and m
2,3

. The value of m
1,3

 is always 
equal to 1. For the parameter m

2,3
 there are two options: m

2,3
 = 1 or m

2,3
 = 3.

Let’s denote m
2,3

 = (x1)
2
. If we impose Property A

2
, we obtain

det(V1,2) =
∣∣∣∣1 1
0 1

∣∣∣∣ = 1,

det(V2,2) =
∣∣∣∣1 1
1 x

∣∣∣∣ = x ⊕ 1 = x = 1,

x = 0 ⇒ m3,2 = 1.
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We find that only one 3-dimensional Sobol’ sequence with m
3
 = {1, 1, 7, 

11,…} satisfies Property A
2
. As already checked in Section 3.1, this sequence 

satisfies Property A and Property A
3
. Therefore, we constructed the 3-dimen-

sional sequence that satisfies Properties A, A
1
, A

2
, and A

3
. 

Consider the Sobol’ sequence for dimension 4. To obtain direction num-
bers, the following polynomial is used: P

4
 = x3 + x + 1. In this case there are 

three free parameters m
1,4

 = 1, m
2,4

 ∈ {1, 3}, and m
3,4

 ∈ {1, 3, 5, 7}. Value m
2,4

 
can be found from a condition required by Property A

2
. We have already 

imposed conditions det(V
1,2

) = 1 and det(V
2,2

 ) = 1. Therefore, we check only the 
determinant V

3,2
, which is equal to

det(V3,2) =
∣∣∣∣1 1
0 x

∣∣∣∣ = x = 1.

This gives m
2,4

 = 3. A requirement for Property A
3
 leads to the following 

relation:

det(V2,3) =
∣∣∣∣∣∣
1 1 1
1 0 1
1 1 y

∣∣∣∣∣∣ = y ⊕ 1 = y = 1,

y = 0 ⇒ m3,4 ∈ {1, 3}.

Therefore, we have two possible sets of initials numbers for the fourth 
dimension: m(1)  

4
  = {1,3,1,5,…} and m(2)  

4
  = {1,3,1,5,…}. As already checked 

in Section 3.1, both these sequences do not satisfy Properties A and A
4
. 

Therefore, we can formulate the following lemma.

Lemma 2. It is not possible to construct a Sobol’ sequence for dimension 
d ≥ 4 which satisfies Property A

k
 for all k ≤ d.

5.2 Sobol’ sequence satisfying Property A
k
 for arbitrary k

If we impose Property A
k
 only for one fixed k, then we can construct the 

Sobol’ sequence under this condition. For example, the requirements of 
Property A

2
 lead to the following conditions:

m1,n = 1, n = 1, 2, . . .

m2,n =
{

1, if n is odd,

3, otherwise,

It is easy to see that the sequence with these properties can be 
 constructed for any dimension d. Similar conditions can be derived for other 
k > 2, but it requires analysis in each case. Therefore, we need to select some 
fixed value k to construct the Sobol’ sequence. The Sobol’ sequence that 
 satisfies Property A

k
 for all k does not exist.

6 Comparison of Sobol’ sequence generators
In the present work we developed the Sobol’ sequence generator which 
satisfies additional uniformity properties: Property A for all 16,384 
dimensions and Property A’ for 5 adjacent dimensions (see BRODA, 
2011). It is called the SobolSeq16384 generator. The performance of the 
SobolSeq16384 generator is compared with that of other known generators 
on a set of test problems. All other generators were taken from the Quantlib 
library, popular among practitioners in finance (see Quantlib, 2011). 

It  contains the following sets of direction numbers for Sobol’ sequence 
 generators:

1.  The unit direction numbers suggested in Press et al. (2007). This gen-
erator fails the test for Properties A and A’ even for low dimensions. 
It is the worst choice of direction numbers and was not considered 
in our tests.

2.  The direction numbers for dimensions up to 40 constructed by 
Sobol’ and Levitan (see Sobol’ and Levitan, 1976). The same set of 
direction numbers was used later by Bratley and Fox (1988). This 
generator was not considered in this report.

3.  Direction numbers up to 32 dimensions provided by Jaeckel (2002). 
In our results, this generator is referred to as Jaeckel.

4.  The implementation of Lemieux, Cieslak, and Luttmer (further 
referred to as Lemieux) includes coefficients of the free direction 
integers up to dimension 360. Coefficients for d ≤ 40 are the same 
as in Bratley and Fox (1988). For dimensions 40 < d ≤ 360 the coef-
ficients were calculated as optimal values based on the ‘resolution’ 
criterion (see Lemieux et al., 2004 for details).

5.  Two series of direction numbers provided by Joe and Kuo (Joe and 
Kuo, 2011). The first series contains three generators marked Kuo1, 
Kuo2, and Kuo3. Generators from the second series are denoted 
JoeKuoD5, JoeKuoD6, and JoeKuoD7. The extended set of direction 
numbers corresponding to the same search criteria is available on 
the Web (Joe and Kuo, 2011). In this work we only considered the 
number sets used in the Quantlib library (Quantlib, 2011).

We also included the generator Sobol’-370, which can be seen as an exten-
sion of the generator presented in Sobol’ et al. (1992). A summary of all the 
generators used for comparison is given in Table 2. The dimensions shown 
for the generators from the Quantlib library are the maximum tabulated 
dimensions.

6.1 Discrepancy test

In the first test, L
2
-discrepancy (often denoted T

N
) was calculated for dimen-

sions 8 and 50. The maximum number of sampled points used for calcula-
tions was 65,536. The test results are presented in Figures 1 and 2. The behav-
ior of various generators at high dimensions (d > 50) is almost identical due 
to some limitations of the computational algorithm for discrepancy, and it 
is not presented in this report.

Table 2. List of generators used in tests

Generator Maximum dimension

Sobol’-370 370

SobolSeq16384 16384

Jaeckel 32

Lemieux 360

Kuo1 4925

Kuo2 3946

Kuo3 4586

JoeKuoD5 1999

JoeKuoD6 1799

JoeKuoD7 1899
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For low dimensions (up to 20), the generators Sobol’-370 and 
SobolSeq16384 show the best performance (lowest values of the discrepan-
cy), while for higher dimensions these two generators are at least as good as 
the best-performing Quantlib generators.

6.2 Subcube volume test

In this test the following test integral was considered:

V(d) =
∫ 1

0
· · ·

∫ 1

0

(
d∏

i=1

H (a − xi)

)
dx1 · · · dxd, H(t) =

{
0, t < 0,
1, t ≥ 0.

The value of the integral is equal to the volume of a d-dimensional cube 
with side length a < 1. The approximation error dV was defined as the dif-
ference between numerical and exact values of an integral. Integral calcula-
tions were performed by using the QMC method. Values d varied from 1 to a 
maximum dimension for a particular generator d

max
 (see Table 2).

Two values of the parameter a, a = 0.5 and 0.75, were chosen for the test. 
For these values, the parameter approximation error will be lower if the 
generator satisfies Properties A and A’. For the case a = 0.5, only Property A 
is important while for the case a = 0.75, both properties are important for 
achieving high convergence of the integral.

Figures 3 and 4 show the dependence of the approximation error versus 
dimension at the number of sampled points equal to 214. It is known that due 
to properties of Sobol’ sequences, the approximation error is minimal at 
N = 2k , with k an integer. It can be shown that for the case of low dimension, 
the approximation error will be equal to zero if a generator satisfies both 
Properties A and A’.

The worst-case scenario as far as the approximation error d V is con-
cerned is shown in Figures 5 and 6. The number of quasi-random points in 

Discrepancy TN(N) for dimension 8
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Figure 1: Discrepancy test results for dimension d = 8

Figure 2: Discrepancy test results for dimension d = 50
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Figure 3: Subcube volume test results for a = 0.5 and N = 214

this case is a prime number, N = 30,031. The Lemieux generator shows the 
worst performance in this test. We also note high values of an approxima-
tion error for the Jaeckel generator and the Kuo1–Kuo3 family at N = 214 (see 
Figures 3 and 5). The same generators show results comparable with other 
generators in the worst case (N = 30,031). SobolSeq16384 on average shows 
the best performance.
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Figure 4: Subcube volume test results for a = 0.75 and N = 214
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6.3 Evaluation of high-dimensional integrals

The following two test integrals are considered in this section:

 

I1 =
∫

[0,1]d

d∏
i=1

(1 + ci (xi − 0.5)) dxi  (6.1)

Figure 5: Subcube volume test results for a = 0.5 and N = 30031
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Figure 6: Subcube volume test results for a = 0.75 and N = 30031
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and

 

I2 =
√

1

d + 1

∫
[0,1]d

d∏
i=1

xλi−1
i dxi,  (6.2)

where d is the problem dimension and λi =
√

i
i+1 .

Figure 7: Integration test 1 results for low dimensions
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Figure 8: Integration test 1 results for average dimensions
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The first integral is used for comparison of the generators; the second 
integral is used to compare the rate of convergence as a function of the 
index of the first coordinate J of the Sobol’ point used for computation of 
the integrand in (6.2). Namely, if (x

1
, x

2
,…, x

d
 ) is a Sobol’ point, d∗ is the dimen-

sionality of the generator, and the dimension of the integral d < d∗, then the 
integrand in (6.2) can be computed analytically:

f (x1, x2, . . . , xd∗ ) =
d+J−1∏

i=J

xλi−1
i ,

where d + J − 1 < d∗. Obviously, the results of numerical integration depend 
on J .

The approximation error ΔI
1
 was compared for different Sobol’ sequence 

generators. Two sets of values for parameter c
i
  were used. The first series of 

calculations (Integration Test 1) were carried out at c
i
 = 0.01, i = 1, d. In this 

case, all coordinates are equivalent. In the second series (Integration Test 
2) the value of the parameter c

i
 was taken to be c

i
 = 0.01/i. In this case coordi-

nates with lower index number have greater weights in the integrand. The 
exact value of the integral I

1
, in both cases is equal to 1.

The results are shown in Figures 7–15. Values of an approximation error 
d I versus dimension d are presented in Figures 7–9 (Test 1). There are three 
plots corresponding to different parameters c: the first one is for low-order 
(less than 500) dimensions, the second one is for average-order (less than 
2000) dimensions, and the third one is for high dimensions. The number of 
sampled points is equal to 30,031 in all cases.

In Test 1 for low-order (less than 500) dimensions, three generators 
(Lemieux, Kuo3, and SobolSeq16384) are superior to other generators, while 
for average-order (less than 2000) dimensions and for high dimensions 
clearly the SobolSeq16384 generator shows the best performance. Similar 
calculations of the approximation error ΔI

1
 in Test 2 show that all consid-

ered generators are comparable in performance with the difference between 
the best and worst-performing generators being only ≈ 4×10−7.

In Figures 10–15 the convergence of an approximation error d I for Tests 
1 and 2 is shown for three different dimensions d (d = 10, d = 100, and d = 
1000). The best performance is shown by the SobolSeq16384 generator in all 
tests.

Figure 9: Integration test 1 results for high dimensions
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Figure 10: Integration test 1 results for dimension d = 10
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Figure 11: Integration test 1 results for dimension d = 100
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Figure 12: Integration test 1 results for dimension d = 1000 

Figure 13: Integration test 2 results for dimension d = 10
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Figure 14: Integration test 2 results for dimension d = 100
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Analysis of the relative error for the integral I
2
 in (6.2) as a function of the 

first coordinate index J of the Sobol’ points is presented in Figures 16 and 17. 
Notice that the value of this integral, I

2
 = 1. For this particular test we consid-

ered only the SobolSeq16384 generator.
One could expect a steady deterioration of the approximation quality 

with increasing J . In fact, this deterioration is not observed in our numeri-
cal experiments with the integral I

2
. The results presented in these figures 

 demonstrate that the choice of the initial index J of the Sobol’ points has 
limited effect on the approximation error.

6.4 Evaluation of improper integrals

Consider the improper multidimensional integral in the unit hypercube. It 
is possible to use low-discrepancy sequences for the evaluation of an integral 
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Figure 15: Integration test 2 results for dimension d = 1000
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Figure 16: Relative error of computation of the integral I
2
; d = 1024
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Figure 17: Relative error of computation of the integral I
2
; d = 2048
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I = ∫
[0,1]d φ

(
a−1 ln xi

)
dxi  which has a singularity at the origin (this was first-

considered in Sobol’, 1967).
Denote by P

k
 the points of an equidistributed sequence that we will use as 

integration points. Let P
k
 = (x

k,1
,…, x

k,d
). By definition, c

N
 is the minimum of the 

product

cN = min
1≤k≤N

(x1 · · · xd)

A set of sufficient conditions for the validity of the equality

lim
N→∞

1

N

N∑
k=1

f (Pk) =
∫ 1

0
. . .

∫ 1

0
f (P)dP

is given by Theorem 2 in Sobol’ (1967). One of these conditions requires that

N · DN

∫
G(cN )

∣∣∣∣ ∂df

∂x1 · · · ∂xd

∣∣∣∣ dx1 · · · dxd = o(N)

Figure 18: Improper integral test results: value c
N
 for N = 220 vs. dimen-

sion of integral

0 50 100 150 200 250 300 350 400 450 500
10−300

10−250

10−200

10−150

10−100

10−50

100
cN for N = 220

Dimension d

c N
Sobol–370
SobolSeq16384
Jackel
Lemieux
Kuo1
Kuo2
Kuo3
JoeKuoD5
JoeKuoD6
JoeKuoD7

64-79_WILM_Nov_2011_TP_Kucherenk74   7464-79_WILM_Nov_2011_TP_Kucherenk74   74 12/23/11   10:29:10 AM12/23/11   10:29:10 AM



Wilmott magazine 75

^

TECHNICAL PAPER

Figure 19: Improper integral test results: value c
N
 for dimension d = 10

102 103 104 105 106
10−16

10−14

10−12

10−10

10−8

10−6
cN for d = 10

N

c N

Sobol–370
SobolSeq16384
Jackel
Lemieux
Kuo1
Kuo2
Kuo3
JoeKuoD5
JoeKuoD6
JoeKuoD7

at N → inf, where G(c
N
) is the part of the unit cube in which the inequality 

x
1
· · · x

d
 ≥ c

N
 holds, D

N
 is discrepancy, d is the dimension of the integral.

In the following test, dependence of the value c
N
 versus dimension d and 

the number of sampled points N was monitored. The point with zero coordi-
nates was discarded from the calculations. It is obvious that an approxima-
tion error will be smaller for higher values of c

N
. For random numbers the 

value c
N
 can not be estimated, therefore the Monte Carlo method can not be 

used for an estimation of such integrals. Comparison of Sobol’ sequences 

with other low-discrepancy sequences can be found in Asotsky and Sobol’ 
(2005).

We compared the values of c
N
 for different Sobol’ sequence generators. 

Values of c
N
 versus dimension d are shown at the fixed number of quasi-

 random points N = 220 in Figure 18. Values of c
N
 versus the number of compu-

tational points N at three different dimensions d (d = 10, d = 50, and d = 100) 
are shown in Figures 19–21. Sobol’-370 and SobolSeq16384 generators show 
the best performance for low dimensions. All generators show equally good 
performance for average and high dimensions. The efficiency of the  Sobol’-
370 generator deteriorates as the dimension d increases.

7 Some Applications in Financial Modeling
In this section we consider examples of the application of numerical strate-
gies based on QMC scenario generation. Computation of sensitivities of 
financial derivatives by MC simulation represents a well-known problem 
(see Glasserman, 2004): a straightforward approximation by finite differ-
ences usually leads to a very poor approximation of sensitivities. Alternative 
methods evaluate sensitivities directly. These methods are based on the 
following ideas: differentiation of the paths and differentiation of the meas-
ures (see Glasserman, 2004; Chen and Glasserman, 2007). The second group 
of methods is also often called the likelihood ratio method (LLR).

The LLR method appeared to be an efficient tool for computation of the 
sensitivities of the path-dependent options. This method allows us to find 
sensitivities without re-evaluation of the financial derivatives.

Consider an arithmetic Asian option on the underlying stock whose 
dynamics under a risk-neutral measure Q are described by the standard 
Black–Scholes model

St = S0 exp (μt + σWt) , μ = r − 1

2
σ 2,

Figure 20: Improper integral test results: value c
N
 for dimension d = 50
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Figure 21: Improper integral test results: value c
N
 for dimension d = 100
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where r is a risk-free rate, σ is the stock volatility, W
t
 is a standard Brownian 

motion, and S
0
 > 0 is the initial value of the stock at time 0.

Let 0 < t
1
 < t

2
 < · · · < t

d
 = T . Denote S

k
 = S(t

k
). We consider a discrete-time 

model for the Asian option with discounted payoff

  

f (S0; S1, . . . , Sd) = exp(−rT)

(
1

d

d∑
k=1

Sk − K

)+
,  (7.1)

where K > 0 is the strike of the option. (7.1)
The option value V

0
 = V (S

0
) = E [f (S

0
; S

1
,…, S

d
)], and the option sensitivity,

 
δ = ∂V(S0)

∂S0
≈ V(S0 + �) − V(S0)

�
,  (7.2)

can be estimated using QMC path generation. As usual, the increments of 
the underlying process, ΔW

k
 = W

tk
 − W

tk
−1, are computed as

  
�Wk = √

tk − tk−1 · 	−1 (ξk) , k = 1, 2, . . . , d,  (7.3)

where x = (x
1
, x

2
,…, x

d
) is a random vector with independent components 

uniformly distributed in the cube [0 1]d . Thus, using different implementa-
tions of the uniform vector generators one can easily build the generators of 
independent normal vectors.

Consider the Asian call option with parameters S
0
 = K = 1.45, r = 0.0376, 

σ = 0.3 and assume that T = 5 (yr) and the number of time steps, d = 120. 
In this example, the sample paths of the underlying process form vectors 
in the space Rd

+
 Thus,  the discrete-time model dimension, dim = d in our 

example.
We compare three numerical strategies: MC , QM C

M
 (MATLAB imple-

mentation of the Sobol’ generator), and QM C
B
 (BRODA’s generator 

SobolSeq16384). There is no analytical formula for the price of the Asian 
option. The  benchmark value is computed using N∗ = 222 paths. Both QMC 
strategies estimate the value of the Asian option to be V∗ = 10.4907. The sen-
sitivity value is estimated as follows. At first, we perturb the initial value 
of the underlying equity, S∗

0= S
0
 · (1 +e), and compute the values of the pay-

off function in the new set of risk-neutral scenarios of size N = 2n0 (n
0
 = 10, 

11,…, log
2
(N∗)) to estimate V∗ = V (S∗)

0
. This computation allows us to find the 

‘benchmark’ value of the sensitivity, for N = N∗:  

δ∗ = V∗ − V0

S∗
0 − S0

.

The LLR method allows one to compute VLLR without computation of the pay-
off function in the new set of scenarios (see Glasserman, 2004).

7.1 Simulation results

The simulation process was organized as follows. The group of N
0
 = 1024 

scenarios was generated and then used for pricing of the Asian option. Then 
the payoff function is computed in each risk-neutral scenario. The number 
of groups is 4096 in our experiment.3

Table 3 represents the simulation results for the Asian option. The first 
column is the type of the generator, the second column represents the range 
of the results, the third column represents the standard deviation of the 

results in the groups, the fourth column is the discounted option value, the 
fifth and sixth columns represent estimators of V

*
. The last column repre-

sents the values of the sensitivity, d.
Figure 22 displays the convergence rate of the MC and QMC methods. 

The QMC methods outperform the MC method, with the SobolSeq16384 
generator being the most efficient among two compared generators.

7.2 Computation of credit value adjustment

Our next example is computation of the credit value adjustment (CVA) – an 
important quantity that recently became a focus of research in the area of 
financial modeling among practitioners and academics. As a pricing con-
cept, CVA represents risk of the counterparty default. The simplest approach 
to CVA computation is the so-called unilateral approach considered in Brigo 
and Masetti (2005, 2006). It neglects the effect of the possibility that the 
financial institution defaults before the counterparty defaults. An alterna-
tive approach to CVA computation, called bilateral CVA, is not considered in 
the present paper.

Denote by t the counterparty’s default time. The parameter L
c
 denotes 

the loss-given-default of the counterparty. Let T denote the final maturity of 
the instrument or portfolio under consideration. In the case of a portfolio, 

Table 3: Comparison of the simulation results for Asian option

Generator Range r V
0

V
*

V
*

LLR c

SobolSeq16384 [10.0137 11.0366] 0.021 10.4907 10.6943 10.6942 81.44

MATLAB [9.96 11.04] 0.027 10.4906 10.694 10.6941 81.44

MC [8.68 12.52] 0.27 10.4997 10.7035 10.7034 81.43

Figure 22: Rate of Convergence
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T is the maximum of the maturities of the individual instruments which 
comprise the portfolio. According to Brigo and Masetti (2005, 2006), the uni-
lateral adjustment, A(t), is

 
A(t) = Et

[
I (t < τ ≤ T) LcD(t, τ )V+

τ

]
,  (7.4)

where D(t, t’) is the discount factor between times t and t’, t is the counter-
party default time, I (·) is the indicator function, V+

t
 is the exposure of the t 

to the counterparty4 and E
t
[A] denotes the conditional institution at time 

expectation E[A|F
t
] with respect to a risk-neutral measure under the natu-

ral filtration {F
t
}

t≥0
.

Notice that V
t
 represents the default-free present value of the portfolio at 

time t (0 < t < T ) for the institution. Since CVA is defined in (7.4) as an integral 
with respect to the risk-neutral measure, it is quite natural to use QMC for its 
computation.

The CVA computation of large portfolios based on QMC scenario genera-
tion appeared to be an efficient risk management solution. We illustrate 
the results of application of this approach to a small counterparty portfolio 
of financial derivatives in several currencies containing stocks and put 
options. We assume, for simplicity, that the interest rates are deterministic 
in this example. There are two types of risk factor in this model: stock indi-
ces, S(j)

t
 (j = 1, 2,…, m

S
) and the foreign exchange rates, Q(j)

t
 (j = 2,…, m

S
). All risk 

factors are governed by the system of stochastic differential equations

 

dS(j)
t

S(j)
t

= μS
j dt + σ S

j dW (j,S)
t , j = 1, . . . , mS,

dQ (j)
t

Q (j)
t

= μ
Q
j dt + σ

Q
j dW (j,Q )

t , j = 2, . . . , mS.

 

 (7.5)

The underlying processes W(j,S)
t
 and W

t
(j,Q) are correlated Brownian 

motions. The total number of risk factors is thus m = 2 · m
S
 − 1. We assume 

that the portfolio currency has index j = 1. Under the risk-neutral measure, 
the drift coefficients μ

j
, satisfy the relationships

μ
Q
j = r1 − rj, j = 2, 3, . . . , mS,

μS
j = rj − σ

Q
j · σ S

j · ρj, j = 1, 2, . . . , mS,

wherer 
j
 is the instantaneous correlation of the underlying processes 

W(j,S)
t
 and W(j,Q)

t
; r

j
 is the risk-free rate in the jth currency.

The QMC scenarios5 are generated in accordance with (7.5). The ith sce-
nario is represented by the matrix R(i) = ||R

kl
 (i)||, where R

kl
 (i) is the value 

of the kth risk factor at time t
l
 in the scenario i (k = 1, 2,…, m; l = 1, 2,…, n). 

Therefore, the total dimension of the scenario space is D = m · n.
In the case of a portfolio of path-dependent options, the portfolio value, 

VP(t
1

0) = VP (R10) at time t
10, is a function of the sub-matrix R10 =||R

kl
||, l = l0, 

l0 + 1,…, n, at time t, is a function of the sub-matrix R = R, l = l0, l0 + 1,…, n. 
However, in the case of the portfolio of the plain equity derivatives, the port-
folio value process is Markovian and the function VP(t) depends only on the 
vector (R

1l0
, R

2l0
,…, R

ml0
)t describing the current state of the world. The effec-

tive dimension in this case should be relatively small and application of the 
QMC methods should be very efficient.

The portfolio, P, contains shares of five underlying stock indices (one 
index per currency) and 10 at-the-money put options (two per currency). 
The time horizon T = 16 months. The initial stock values, S

0
(i), the volatility 

parameters, σ
i
, the initial values of the FX rates, Q

0
(i), the volatility, σQ

i
, of the 

FX rates and the risk-free interest rates are shown in Table 4. Notice that the 
first FX rate, Q

t
(1) = 1. For this reason, we choose σQ

1 
= 0.

The portfolio simulation problem may include sub-portfolios of many 
counterparties. The instruments of these counterparties may require a 

Figure 23: Accuracy of LLR method
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Table 4: Equity parameters

Stock index S(i)  
0

r
i

Q(i)  
0

r Q
i

r
i

1 100 0.75 1.0 0 0.045

2 100 0.5 1.5 0.35 0.055

3 100 0.5 0.4 0.45 0.025

4 100 0.45 2.4 0.35 0.045

5 100 0.45 1.6 0.5 0.045

Table 5. Parameters of put options

Instrument Underlying Strike Maturity

1 1 100 16

2 1 100 15

3 2 100 14

4 2 100 13

5 3 100 12

6 3 100 11

7 4 100 10

8 4 100  9

9 5 100 13

10 5 100 14
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smaller time step for scenario generation, say weekly time steps, Δt = 1/52. 
The total dimension of the risk factor space, in this case, is D = 52 × 4 × 9 
= 1872. However, the effective dimension of the problem is significantly 
 smaller in our case: D∗ < 40.

Parameters of the put options are displayed in Table 5; maturities of the 
options are given in months.

The risk-neutral default time distribution is defined by the equation 

P (τ ≤ t) = 1 − exp (−λt) , t > 0.

The default intensity, λ = 0.04, in our numerical example. We assume 
that default events are independent of the market risk factors.

The results of the CVA computation are shown in Table 6. The second 
column displays the credit value adjustment of the portfolio, the third 
column represents the portfolio value at maturity t = T. The fourth and last 
 columns represent the sensitivity to the perturbation of the initial value of 
the first equity index by 0.5% of the portfolio value and CVA, respectively.  
The SobolSeq16384 generator was used in all tests.

The results demonstrate that an accurate estimation of the CVA can be 
obtained with N∗ = 8192 scenarios. The portfolio value can be estimated with 
the relative error e  < 0.01. Estimation of the sensitivity of the portfolio value 
at time t = 0 with the relative error e < 0.01 requires N∗ = 16,384 scenarios. The 
CVA sensitivity estimation with N∗ scenarios is quite accurate in this case.

The CVA can be a substantial part of the portfolio value. In our example, 
the CVA comprises about 10% of VP. The relation between these quantities 
depends on the risk-neutral default probability.

8 Conclusions
The SobolSeq16384 generator allows us to solve high-dimensional problems 
without loss of accuracy as the dimension of the problem increases. This 
behavior is explained by additional uniformity properties studied in this 
paper, which can increase the efficiency of Sobol’ sequences. Properties A 
and A’ provide the additional guarantee of uniformity for high-dimensional 
problems even at a small number of sampled points. A comparison of sever-
al known Sobol’ sequence generators, using a number of high-dimensional 
tests, shows a definite advantage of using the SobolSeq16384 generator.

Ilya M. Sobol’ received his Master of Science in Maths with Honors from the Moscow State 
University in 1948. He received a PhD in 1959 and a Doctor of Science in 1977. He became 
a full professor in 1980. He has more than 150 publications on differential equations, Monte 

Carlo methods (including applications in nuclear physics and astrophysics), uniform distri-
butions, quasi-Monte Carlo methods, multiple criteria decision making, global sensitivity 
analysis, etc. His citation index exceeds 2000. He has delivered lecture courses in many coun-
tries, including Russia, Germany, France, Italy, and Austria. He is a member of the Moscow 
Mathematical Society and the New York Academic Society. In 2004, Wilmott magazine award-
ed Professor Sobol’ the first Wilmott fellowship. Currently he holds the position of Principal 
Researcher at the Keldysh Institute of Applied Mathematics, Russian Academy of Science, 
Moscow. 

Danil Asotsky received an MSc degree in computational mathematics from Moscow 
Institute of Physics and Technology in 2001. He held a research position at the Institute 
of Mathematical Modelling, Russian Academy of Science. Currently he is a lecturer at the 
National Research University Moscow Institute of Electronic Technology, Russia. His research 
interests include Monte Carlo and quasi-Monte Carlo methods, low discrepancy sequences, 
and global sensitivity analysis. He is an author of several papers on Sobol’ sequences and glo-
bal sensitivity analysis.

Alexander Kreinin has been with Algorithmics since 1995, currently as the Senior Director of 
Quantitative Research. He has a PhD in Probability and Statistics from the University of Vilnius 
(Lithuania). He has published over 50 papers and two monographs. His research areas include 
market and credit risk modeling, numerical methods for risk management, Monte Carlo meth-
ods, calibration of stochastic models, semi-analytical methods of portfolio valuation, design 
of numerical algorithms and their software implementation. His current research projects are 
focused on pricing and optimization of credit portfolios. He is also an Adjunct Professor in the 
Computer Science Department of the University of Toronto and has been affiliated with the 
‘Masters of Mathematical Finance’ program. 

Sergei Kucherenko received his MSc degree with Honors and PhD from the Moscow Engineering 
Physics Institute in Russia. He has held a number of research and faculty positions in various 
 universities in Russia, the United States, Italy, and the UK. He also worked in an investment bank. 
Currently, he holds the position of Senior Research Associate at Imperial College London. He is 
also a director of BRODA Ltd. This company provides consultancy services to investment banks 
and financial companies in the area of MC and quasi-MC simulation and other advanced numerical 
techniques used in financial mathematics.

Table 6. Portfolio value and CVA

log
2
N CVA V P(T) ΔV P(T) Δ(CVA)

11 1311.06 13147.88 34.94 0.471

12 1318.43 13619.98 37.21 0.482

13 1321.5 14111.4 39.76 0.491

14 1322.84 14253.71 40.41 0.492

15 1323.54 14200.36 40.15 0.491

16 1324.17 14232.0 40.35 0.492

17 1324.11 14251.23 40.51 0.491

18 1324.57 14236.23 40.47 0.493

19 1324.61 14214.17 40.37 0.493

FOOTNOTES

1 We assume that the variables are independent and the dimension d is very high.
2 Not an arbitrary subset.
3 Thus, the kth group contains scenarios with indices j = 1024·(k−1)+1,…, 1024·k.
4 We use the standard notation x+ = max(0, x) and x− = min(0, x), for any real number x.
5 These scenarios describe the future state of the risk factors in a risk-neutral world.
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