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Abstract

This article reports a practical approach to extend the classical Gabillon
model to allow explicit modeling of commodity futures smiles. The
original Gabillon model is first extended with a deterministic shift to
fit the term structure of futures prices. The smile information of indi-
vidual futures is extracted from the futures options markets in terms of
the implied marginal distributions. An algorithm based on the copula
technique is then developed to reconstruct the joint distribution of the
underlying futures prices that is consistent with both the term struc-
ture of volatilities and the marginal distributions of individual futures.
Examples are provided to illustrate the calibration procedure and
options pricing.
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1 Introduction

Gabillon (1991) introduces a two-factor model for the term structure of
futures curve in crude oil markets. The first factor is the spot price S(t),
which is assumed to follow a log-normal diffusion that mean-reverts to

the second stochastic factor, the long-term price L(t), which itself follows a
log-normal diffusion. This leads to the following dynamics for the spotand
long-term price

asw L AW
¢ In && + osdWy(t),
% = prdt + ordWi(1),

where W, and W, are Brownian motions with instantaneous correlation gy
defined as dW(t)d W, (t) = p, dt. The model parameters ¢, 0,>0, 0, >0, K> 0
and p; € [-1,1] are assumed to be constants. Gabillon’s analysis leads to the
following formula for the forward price

F(t, T) = A(t. T)S(t)PeDL () =BT,

where
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Putting Smiles Back to the Futures

1
A(t,T) = exp o (0§ + o — 2psrasar) Bt T)[1 — E:z_
B(t, T) = e <0,

In commodity markets, the futures price in the front-end of the futures
curve is usually more volatile, while the back-end of the curve is less so. By
introducing two factors to model both the short-and long-term effects, the
Gabillon model can effectively capture the characteristics of futures price
movements. No explicit modeling on the convenience yield is needed.! In
practice, the model can offer excellent performance in modeling the vari-
ous shapes of futures curve (e.g. contango/backwardation) and the term
structure of volatilities (e.g. Samuelson effects) observed in a variety of com-
modity markets.

However, the Gabillon model ignores the effects of volatility smiles
thatare commonly observed in the options markets. Unlike the equity and
forex markets, the commodity spot is usually not a liquid assct. The payoff
of many commodity derivatives depends on multiple points on the futures
curve. As a result, the value of commodity derivatives can be sensitive to
the volatility smiles of the underlying futures prices. To be able to price
and manage the risk of these products, we need a model that incorporates
smile information into the correlation and term structure modeling of the
futures curve.

Here we document a practical approach to extend the classical Gabillon
model to allow explicit modeling of volatility smiles. The idea is to recon-
struct the joint distribution of the underlying futures prices that is consist-
entwith both the classical correlation structure and the market-implied
marginal distributions of individual futures. Our approach exploits the
copula technique, which is an industry standard often used to deal with
basket derivatives. The approach can be easily applied to other multi-factor
log-normal models.

‘We briefly review the Gabillon model (with deterministic-shift exten-
sion) and derive the forward-price representation in Section 2. To incorpo-
rate the market smile information, we first recover the marginal distribu-
tions of the underlying futures prices from market volatility smiles. We then
apply the copula technique to “twist” the log-normal prices generated from
the Gabillon model, such that their margins match the implied marginal
distributions of the underlying futures. These techniques are addressed in
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Section 3.1n Section 4, we address the practical issues in calibration and
surface construction. Section 5 provides examples to illustrate the pricing of
path-dependent options. We conclude in Section 6.

2 Gabillon Model with Extension

In this section we consider a two-factor log-normal model for the commod-
ity spot price, which can be viewed as an extension to the classical Gabillon
(1991) model. We assume that the spot price process under the risk-neutral
measure Q is defined by

S(t) = exp{f(t) + X(t)}.  S(0) = So. (1)

where f(t) is a deterministic function and X (t) is an Ornstein-Uhlenbeck proc-
ess with a stochastic long-term mean Y (t). The dynamics of X(f) and Y (t) are
given, respectively, by

aX(t) = k(B[Y(H) — X(B)dt + osdWs(®),  X(0) =0, 2)

aY(t) = oy (dWi(D),  Y(0) =0, 3)

where (W, W,) is a two-dimensional Wiener process defined on a filtered
probability space (Q, F, (F),,,, Q) with a natural filtration and a risk-neutral
measure Q. The instantaneous correlation between W, and W, is assumed to
be p, (1) defined as

AWs(MAWL(t) = psy(t)dt. (4)

In the above model, the function f{t) is deterministic and defined in a time
interval [0, T,  JwithT  agiven time horizon sufficiently large for our inter-
est. The other model parameters are in general time dependent, and x(t) 20,
oft)20and o,(t) 20 and p(t) € [-1, l]forallte [0,T, I

Introducing the function fcan provide flexility to model the seasonality
of commodity price. Here we use fas a deterministic shift to exactly repro-
duce the market observed futures curve, which can be difficult to achieve in
the original Gabillon model. This technique has been widely used in interest
rate term structure modeling; see for example Brigo and Mercurio (2006)
and references therein. It can be shown that, with constant parameters and
a proper choice of f(t),* the above model will reduce to the classical Gabillon
model.

Valuation of futures contracts. We next proceed to value futures (forward)
contracts. Let F(t, T) denote the price at time t of a forward contract with
maturity T. In the risk-neutral valuation framework, the forward price is
equal to the conditional expectation of the future spot price under the risk-
neutral measure. Formally we have

F(1,T) = EXS(T)] = Efexp (f(1) + X(T)}] )

Since we assume deterministic interest rates, the futures price is equal to the
forward price’ see, for example, Duffie (1996). To evaluate the expectation,
we first solve the equations (2) and (3). The solutions can be written as

X(T) = b(t, TIX(t) + [1 — b(t, T)Y(t)

T T
+ [ vt Tostoawits + [ 11 = v Thowani,
L A

T
) =Y(0) + \ o1 (AW (5.
L
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where

T
b(l,T) = exp *I.\ a@&_. (6)

We see that X(T) conditional on (X(t), Y(t)) is normally distributed with condi-
tional expectation and variance:

EPIX(T) = b(t. TIX(0) + [1 — b(t, T)I¥ (1),
r
VarlX(T)] = \ o2(s, T)ds,
t
where o (1, 1') is the instantaneous volatility determined by
(1, T) = o (D% (1. T) + 2psi(t)os(t)or(tb(t, T)[1 — b(t, T)] + o (O[1 — b, T (7)

Therefore, by equation (5), the forward price F(t,T) follows a log-normal dis-
tribution and we can write

T
F(L,T) = exp TE + b(t, TIX(1) + [1 — bt TYY(1) - W \ o2(s, Em_. (8)

Moreover, by assuming X(0)=Y (0)= 0 (without loss of generality), we can
write the model implied initial forward curve as F(0,T) = exp {f(T) +

3 % o%(t, T)dt}. Now letF,  (T) denote the current term structure of futures
prices observed from the market. It is easy to verify that the above model can
reproduce exactly the current futures curve F_ (T) if we set the determinis-
mn.mra?hnmoh

T
FT) = In(Fp(T) — > \o o2t T,

T2

Dynamics of Forward Prices. To facilitate further analysis, it is convenient
to represent the model in terms of the forward-price dynamics. Applying
Ito’s formula to (8) leads to the following dynamics

dF(t, T

8D bt Tos(0awst) + [1 — bie. Ty awi o), o

I, T)
which confirms the martingale property of F(1.T). In terms of the instantane-
ous volatility o (t,T) given in (7), the dynamics of F(t,T) can be written as

dF(t, T)

T = oo,

where W(t) is a standard Wiener process defined by

b(t. T) 1-Db(t.T)
a(t,T) a(t,T)

AW (t) = os(t) AWs(t) + oi(t) dwi(t)-

Integrating (9) leads to the following representation for the forward price:
1 L L
F(t. T) = F(0, T) exp _ -3 \ o (s, T)ds + \. o s, E:\z_
0 0
with K0, T)=F
write

' T) being the current forward curve. Moreover, we can

F(t, T) = F(0, T)exp {u(t. T) + v(t, T)Z(1)}, (10)

where Z(t) ~ N(0,1) is a normal random variable, and
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Conversely, we note that, for a given forward price F(t,T) generated by the
above model (1)-(4), the random variable

_ In(F(6TY/FO.T) = pit.T)
Z(t) = ST N(0,1) (12)

follows a standard normal distribution.

3 Futures Model with Smiles

The model discussed in the previous section generates futures prices that
follow a log-normal distribution. This is in line with the classical multi-
factor models, such as Schwartz (1997), Gibson and Schwartz (1990) and
Schwartz and Smith (2000). In this section we describe a practical approach
to model the effects of volatility smiles that are commonly observed in the
markets.

3.1 Term Structure of Marginal Distributions

We first focus on the marginal distributions of the underlying forward (or
futures) prices, which can be recovered from the market prices of vanilla
options.

Let us consider a European call option on a forward contract with matu-
rity T. The option is assumed to expire on 7 <T. The payoffof the option at
expiration 7 is (F(t, T) — K)*, where we write F instead of F to emphasize that
we are dealing with a forward price with a market-implied distribution
(which is not necessarily log-normal). In riske-neutral valuation, the option
price (without discount) can be represented by

- —+o00
Clr. K) = EQUF(x. T) = K)*] = | b= Kife.yidy.

where f(7 y) stands for the risk-neutral density of the underlying forward
price F(z, T) at expiration z Simple differentiation yields
i C(t,K) \ ‘ flr.y)dy —1

—((t,K) = 7, _1,

K Y
which leads to the following probability distribution function for the for-
ward price

- d
¥(r,K) =Pz, 1) <K) =1+ %Qa;@ (13)

This formula provides us a way to extract the marginal distribution of for-
ward price from the non-discounted option prices contingent on the for-
ward price.

Moreover, a directapplication of the Black (1976) model yields that, in
terms of implied volatility, the Curopean call price (without discount) is
given by

C(z,K) = F(0,T)®(d+) — K®(d—), (14)

where F(0,T)is the initial forward price, ® () is the cumulative normal distri-
bution function, and
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n(F(0, T)/K)

da(1.K) = ! + e (15)

w(z,K) 2
with w(t, K) = \/Toimp(t, K) being the (implied) total volatility for expiration

7 and strike K. Combining (13), (14) and (15) we obtain the following repre-
sentation for the marginal distribution of forward prices

YT K)=1—dd_)+ éa;%iﬁﬁ (16)
where ¢() is the standard normal density function.

Therefore, the term structure of marginal distributions for the underly-
ing futures prices can be characterized by the surface /(7 K), which can be
recovered from the implied volatility surface [ 7,K) by using (15) and (16).
In practice, itis convenient to represent the surface in terms of the forward-
log moneyness x(K) := In(K/F(0,T)) instead of the strike K. In this case, the
term structure can be defined as

x(1,X) := P(n(F(z, T)/F(0,T)) < x) = v (t, F(0, T)e"). (17)

In order to price a derivative with a payoff depending on the entire
futures curve, we need to obtain the joint distribution of the underlying
forward prices. However, knowing the marginal distributions ofits com-
ponents is not sufficient to determine such a joint distribution. We need
to model the co-dependence structure across different maturities. In the
following section we discuss how copula technique can be used for this
purpose.

3.2 Joint Distribution: A Copula Approach

We first briefly introduce the copula function. The idea is to transform
random variables by their marginal distribution function to obtain uni-
form random variables that contain the same information. Precisely,
letg(x,, ... ,x )beann-dimensional distribution function with margins
g,(x),....g,(x ). Thena copula functionc(x,, ...,z ) can be defined by

().

,x,), we can define a joint distri-

oz, oxn) = glgy (x),

Moreover, for a given copula function c(x,, ..
butiong(x,,....x )via

8X1, o xn) = clg1(X1), - -, BnlXn))s

such thatits margins are given by g (x,), ..., g, (x,)-
The copula function allows us to model the dependence of random
variables by concentrating on the corresponding uniform variables. With
a copula function, we can easily specify the joint distribution for given mar-
ginal distributions. This technique has been widely used to model basket
creditderivatives; see, for example, Li (2000). It is also applied to construct
basket volatility surface in Qu (2005). In what follows, we apply the copula
technique to extract the information of co-dependence across different
maturities from the classical log-normal framework, which is further incor
porated with the implied marginal distributions to model futures smiles.
In the pricing engine, we first simulate the Monte Carlo paths
from a log-normal model, such as the one described in Section 2. Let
Kt T),...,FtT)denote the simulated forward prices at time spot t. Using
equation (12), we can transform them to the following normal random
variables:
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(Zy(t), - - ., Zn(1)) ~ N(0, X)

with some correlation matrix ¥ implicitly defined by the log-normal model.
These normal random variables Z (t) can be further transformed to the uni-
form random variables U (t) by

Ult) = @Z(t). (i=1.....n)

with @ () being the standard normal cumulative distribution function.
It is easy to verify that the distribution function of the random vector
(U,(t), ..., U,(t) defines a Gaussian copula:

iy, .. Un) = Fuym, uao (1, - o o5 1) (18)

In our approach, this copula function will be used to specify the co-
dependence of the forward prices F(t,Ty),. .., F(t, T,). Now fix t and consider
the random variables

54y — IEET)/FO,T) — e, Ty
(1) = SO T

where g (t,1')and v(t, 1) are defined in (11). Let us assume that the random
variable Zj(l) has a distribution function given by my.@ = ENE < z).Then,
we can define the random vector (Z,(t), . . ., Zy(t)) through the following
transform

Z{t) = o (Ui() = ®; (@Z). (=1.....n),

i

where one can verify that it has marginal distributions ®1(z), ..., ®,(z) and
shares the same copula function as (Z,(t), ..., Z (t)) given by (18). Moreover,
the “skewed” forward prices can be recovered by the following equation

F(1. ) = F(O. T exp {u(e. T) + v(t. 70} (19

whose margins match those implied from the market.

Itremains to specify the distributions function ®4(z), ..., ®,(z). Using
the technique laid out in Section 3.1, we can recover the market-implied
term structure of marginal distributions (7,K) (or (7 x) in terms of for-
ward-log moneyness) for the underlying futures prices. Obviously, if the
sampling time t happens to be the option expiration z, the distribution
function ®;(z) can be calculated directly from y/( 7.K) (or y (7,x)) as

®;i(2) = P(F(t. Tj) < F(0. Ty)e T+ Ty

— {\Aﬂr Zo.ﬁ.umEd i)+zv(Ti

= x(zi, wlT, Ti) + zv(7:, Ti))

with y(z.K)and y (7,x) being defined, respectively, in (16) and (17).

More often, the sampling time t in F(t, T;) is not equal to its option expi-
ration 7. In this case, an interpolation procedure is usually required to fill
in the gaps. We need to make sure that the interpolated distributions are
consistent with the term structure of volatilities (implied by the log-normal
model) and the terminal distributions (implied by the futures smiles). To
this end, we observe that the term structure of total variance is a monotonic
increasing function of time to maturity (see e.g. Figure 1). This enables us to
use the total variance as as a new “clock” to locate a specific time slice inside
the marginal distribution surface y(7,K) (or y(7,x)).

We recall that, in the log-normal model, the term structure of total vari-
ance as a function of time to maturity 7 is defined as*
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Figure 1: Term structure of ATM total variance.

ATM total variance vs maturity
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where o2 (t, T) is the instantaneous variance of F(t, T) given by (7). The func-
tion v(7) can be calculated directly from the calibrated volatility function
o (t,T).In practice, it can be defined by interpolating the market-implied
term structure of ATM total variances given by pairs {(7, v(7))}.>

On the other hand, at the sampling time , the total variance of F(t, T) is
given by

VAL T = .\.ﬁqu? T;)ds,
0

where T, is fixed for a given futures. In order to match the variance v*(t, T) to
the term structure of total variance v (), we introduce the following trans-
form to timet

(1) = v (V3L T, (21)

and define the distribution function @;(z) as
®i(2) = ¥ (2 (), FO, Te W0 = y(e() w(t, T) + 200, T, (22)

With these distributions ®1(2), ..., ®,(z) defined, we are ready to apply
(19) to simulate the “skewed” forward prices for derivatives pricing and risk
management.

This practical approach allows us to incorporate the market smile infor-
mation into the multi-factor model without complicating the calibration
procedure. In fact, the calibration to ATM volatilities and to market smiles
can be done separately.

4 Model Calibration and Surface Construction
In this section we address the calibration of the model to the real market
data and the construction of marginal distribution surface. As an example,
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we use the market-implied volatilities of crude-oil futures options from
NYMEX on December 20, 2011 to illustrate the calibration procedure.

4.1 Calibration of The Gabillon Model

We recall that the model presented in Section 2 reproduces exactly the ini-

tial term structure forward prices.* What we need is to calibrate to the term
structure of volatilities, so as to match the model-implied volatilities to the

market-implied volatilities.

Let {oympi(j)}j=1....k denote the at-the-money implied volatilities for an
option contract with expiration 7onana futures contract with maturity ﬁ
To calculate the model-implied volatilities, we recall the instantaneous vari-
ance o %(t, T) defined in (7) and write the model-implied variance Q‘W_EE for
option expiration 7 as

. HH.
qﬂa:.juﬂ\o 1:.:&

.— T
=< \ TBN + 201(psos — o)b(t, T) + (62 — 2psiosor + of )2 (t, HS dt,
o

where b(t, T)is given in (6). If we restrict our attention to constant param-
eters k. g, 0;and o, then we have

o—(T=1) _ o—xT

020i(T.T) = 0" + 201(psios — 01) —

o= 2(T—7) _ o= 2T
2 2
+ Aqm — 2ps10501 + OF v %

Morcover, assuming 7 =T, we can write
1— m\ﬁ,
«T

1 — 2T

+ Aqm — 2pgio501 + o) T

O moa(T) = of + 201(psi0s — o1)
By using the above formulae, the calibration problem can be formalized
as the following optimization problem:

k
. b ; 172
min D (@) = o] (23)
0

«>0,05>0,01.>0,p51.€[—

wherew, is the weight of average. This is a standard nonlinear least-squares
problem. We apply a procedure based on the Levenberg-Marquardt algo-
rithm to search for a local minimizer for this problem. The initial guess and
the calibrated results are shown in Table 1, where we simply set w=1 forall
j, although other weights can be used to slightly improve the fit. The calibra-
tion procedure is very efficient and typically takes less than 0.5 seconds to

converge in a PC with Intel(R) Core(TM) 2 CPU @ 2.40 GHz. In this data set,
the RMSE of implied volatility N w M%_qsai.? Tj) — omu(j)]* = 0.26% against

the RMS of the volatility /1 Muwﬁ 02,:) = 29.11%. In practice, one can use
multiple initial guesses across the parameter domain to reduce the risk of
being trapped inside a local minimum.

Table 1: Calibration to ATM implied volatility.

a Py, o g,
Initial Guess 1.0 05 o o K
Calib Results 0.366432 -0.29271 0.409231 0.290985
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To illustrate the goodness of fit, we plot the term structure of market-
implied total variances and that of the calibrated model in Figure 1. The red
cross represents the market data and black line is for the results of the cali-
brated model.

4.2 Construction of Implied Volatility Surface

As shown in Section 3.1, the marginal distributions of futures prices can be
recovered from the market implied volatility surface (IVS). One essential step
requires differentiating the volatility smiles as in (16). In reality, the implied
volatilities are only quoted for some discrete strike levels, so that volatility
modeling is necessary for extrapolating and smoothing the volatility smiles.
In what follows, we apply the popular SVI model to illustrate the construc-
tion of an arbitrage-free IVS in the crude-oil market, although other param-
eterizations could be used.

The SVImodel. The Stochastic Volatility Inspired (SVI) model is a parametric
form on the implied variance suggested by Gatheral (2004). For a fixed matu-
rity. itis given by
020 =10 = a+ b (plx—m) + Vix=mP + o7 24
where x is the forward log moneyness and a, b, m, p and o are constants.
Although itis designed based on practical experience, this model can be
viewed as the large-time asymptotic implied volatility of the Heston model,
as pointed out by Gatheral and Jacquier (2009). It turns out that this simple
parameterization can provide an outstanding fit to volatility smiles in equi-
ty and FX markets; see Deryabin (2011) for its application in energy markets.
Using the SVI model, we can fit the market volatility smiles slice by slice.
This can be done either forward or backward in time providing appropriate
constraints for absence of arbitrage. For a fixed maturity, we aim to match
the market smiles in terms of implied variances nﬁw_ix:r.uf 1 forasetof
forward log moneyness {x;}j1,. k. Formally, the calibration can be described
as a least-squares optimization problem on the SVI parameters:
k
m%w_:hq > wi [0l fa,b,m, p,0}) — o2ux)]’
= (25)
subject to a certain boundary and no-arbitrage constraints. In general the
parameters a, b, m, p and o can depend on the time to maturity z We first
impose the following basic constraints to the calibration:

a=>0 (26)

b>0, |p| =1,
No-Arbitrage Constraints. Absence of arbitrage is a fundamental require-
ment for constructing a volatility surface. Practically the arbitrages to
exclude are negative vertical spreads, negative butterflies and negative cal-
endar spreads. For a fixed maturity slice, it turns out that a necessary condi-
tion is a constraint on the slopes of the total variance V(z,x) := .ﬁa_.w_a.ﬁ X),
which states
9
I<:.x._ <4,
X
for all forward log moneyness x; see Rogers and Tehranchi (2010). As pointed
out by Gatheral (2004), this translates to the following constraint on the SVI
parameters b and p:
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b1+ lpl) < W (27)
Clearly this condition applies to options on futures as well as options on
spot.

To avoid arbitrage between maturity slices, we need additional condi-
tions to cnsure that option prices (equivalently, the implied total variances)
are non-decreasing in time to maturity for an arbitrary forward log money-
ness x. For the SVI model, this is given by

T202,(%: A2.b2, My, p2,02) > T162(x: a1, b1, m1, p1,a1), (28)
for time to maturity 7,2 7,. This turns out to be a sufficient condition to
ensure absence of calendar spread arbitrage for options on futures, while it
is sufficient and necessary for options on spot; see Deryabin (2011).

Efficient Calibration. Various techniques, such as dimension reduction,
can be applied to improve the efficiency of SVI calibration; see, for example,
Zeliade (2009). Consider the following change of variable

X—m

y=—
o

by which we can rewrite the total variance V = ro;

Vi {e. By =a + Byy +1+yy,

as

where

a=ar, B=botr, y=Dbport. (29)

This enables us to consider the following sub-problem for given m and o':

VO s By ) = Vi) (30)

where Vy(j) = .nﬁm_ix: are the market total variances and V= Ax_ -m)|o. We
impose the following constraints

@ < max;(Vil(j))
0<pB <40
-B<y<B

—do—B)<y<40-p

(o=t + BT +1+vT= Vi) 0. y)

where Vi(y) = af + B5+/¥? + 1+ ;Y is the total variance of the previous
slice with time to maturity 7, and y contains the grid points on which no-
arbitrage constraint is satisfied.

These constraints can be derived from the original constraintsona, b
and p. First of all, the upper bound on «is obvious. For 3, sinceb>0, o >0
and b(1+|p|) < 4/t,we see that f =bor >0and S =bor <bor(1+|p|)<4c.For
7.since |p| £1andb(1+|p|)<4/t, wehave | | =8| p| < and B(1+]| p|) < 4o
thatimplies | )| =| p| <406 -4.The last constraint is implied by the no-arbi-
trage condition (28).

Now let {a"(m, &), #7(m. 6), y(m, )} denote an optimal solution to the
problem (30) for given m and o. Then, by (29), we can easily identify the tri-
plet {a*(m, &), b (m, 6), p"(m. 6)} and the original calibration problem (25)
can be restored as
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k

. 2
min 3w [0y tm, 0,07, 1", 07)) — oy ()] (1)
j—1

subject to the boundary constraints

Mmin < M < Mgy

Omin = 0 = Omax

This becomes a two-dimensional nonlinear least-squares problem. The
advantage to splitting the original calibration is that the sub-problem (30)
is convex with a linear program and linear constraints. Such a program
admits a global solution that can be solved explicitly. In fact, the global
minimum is either at the interior that makes gradient zero or on the bound-
ary of its domain that can be solved using Lagrange multipliers. Once the
sub-problem is solved, we can apply some iterative scheme, such as the
Levenberg-Marquardt algorithm, to search for a local minimizer for the
reduced problem (31).

Table 2 shows the calibrated results for the NYMEX crude-oil data,
where we simply setw,=1forallj,m =3min(x).m = 3max(x), o, =1%
and o, =100%. To avoid arbitrage between maturity slices, we impose the
no-arbitrage condition to an equispaced grid of 100 points (forward log-
moneyness) from -1.0 to 1.0, namely, set })={-1.00, -0.99, ...,0.99.1.00}.
The RMSE of implied volatility for the whole surface is 0.19%, while the
RMS of the volatility surface is 35.60%. The calibration procedure usually
takes a few seconds to converge in a PC with Intel(R) Core(TM) 2 CPU @

2.40 GHz.

max

Table 2: The calibrated SVI parameters.

7 a b m p o
.0822 0.0468 0.7187 0.0818 0.3496 0.0820
1616 0.0726 0.4992 0.1214 0.2043 0.1107
2466 0.0819 0.3515 0.1288 0.0161 0.1234
3315 0.0673 0.3055 0.1440 -0.1536 0.1845
4192 0.0747 0.2664 0.1790 -0.0878 0.1687
4986 0.0676 0.2485 0.1655 -0.2225 0.1934
.5808 0.0461 0.2659 0.1807 -0.2014 0.2368
.6685 0.0206 0.2647 0.2511 -0.0323 0.3229
.7507 0.0469 02113 0.2518 -0.0583 0.2568
.9068 0.0653 0.1509 0.2719 -0.0826 0.1830
9945 0.0564 0.1525 0.2039 -0.2379 0.2458
.0904 -0.0374 0.2794 0.1667 -0.1925 0.4615
1699 -0.0432 0.2640 0.1633 -0.1935 0.4988
2466 -0.0011 0.2206 0.1744 -0.2190 0.3932
Al64 -0.0182 0.2017 0.1946 -0.1933 0.4995
9178 0.0094 0.1280 0.1887 —0.2587 0.4997
4137 0.0506 0.0678 0.1902 -0.4543 0.2552
9178 0.0336 0.0711 0.2944 -0.1193 0.3828
9178 0.0496 0.0377 0.2757 -0.2567 0.1586
.9260 0.0330 0.0542 0.3664 0.0314 0.3493
.9233 0.0384 0.0559 0.1726 -0.2807 0.2729




Figure 2: Calibration to implied volatility.
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Figure 3: Calibrated implied volatility surface.
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To illustrate the goodness of fit, we plot the implied volatilities (left 5 o (x(K))

panel) and total variances (right panel) in Figure 2. In both cases, the red =W, K) = (33)

5T . K 2Kw(t, x(K))"
cross represents the market data and black line is for the results of the cali-
brated model. Figure 3 shows the interpolated volatility surface, where a where
Stineman interpolation (Stineman, 1980) is applied to the time dimension.
) J x—n
T = —og) =b|p+———me——=

. . I . X Vix—m)?+ a2

4.3 Construction of The Marginal Distribution Surface

Once we have a smooth and arbitrage-free IVS, we are ready to construct the
marginal distribution surface y (7, x) (or ¥ (7 K) in terms of strike). In terms
of the SVImodel (24), the total volarility is given by the term structure of marginal distributions
Wi, K) = /K. (32) 4
X)) =1—®(d_
with x(K) =1n(K/F(0,T)), and its derivative is given by x(w.x) @)+ 2w

is the derivative of the SVI model.
Therefore, by (15)-(17) and (32)~(33), we derive the following formula for

old-), (34)
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Figure 4: Implied surface of marginal distributions.
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Using the formula (34) together with the calibrated SVI parameters in
Table 2, we construct the surface of marginal distributions y (7, x) as shown
in Figure 4. The left panel shows the term structure of marginal distribu-
tions implied from the market. The right one demonstrates the interpo-
lated surface of marginal distributions, where a Stineman interpolation
(Stineman 1980) is applied to the time dimension. This surface serves as an
input to the pricing routine, where the copula technique will be utilized to
incorporate smile information to the log-normal model.

5 Valuation Algorithm

In this section, we illustrate the application of the model to price options.
In general, the options payoff may depend on the intermediate realizations
of the underlying futures prices. The following summarizes an algorithm to
simulate the “skewed” prices F(t, ,...,n),attheintermediate time
step .

Simulation Algorithm.
Input: the marginal distribution surface y (7, x)
Output: the “skewed” forward price m? T;)

1. Generate a log-normal forward price F(t, T) following the log-normal
model (9)

2. Calculate the accumulative drift #(t, T )and volatility v(t, T) according

to(11) ) .

Transform the log-normal price F(t, T) to a Gaussian variable Z (t)

using (12)

4. Compute the probability U(t)=® (Z (t)) with ®(z) being the standard
normal CDF

5. Transform the current time t to 7 (t)= v '(v*(7, T))), where v () is the
term structure of total variance defined in (20)

d
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6. Compute the “skewed” random variable Z(t) = mv_.\:c_ﬁr where ®;(z)
is the “skewed” marginal distribution defined in (22)

7. Calculate the “skewed” forward price F(t, T;) according to the formula
(19).In terms of y (7, x), we write

F(t. T) = F(0. To) exp{x ;1 (Ui(D)}.

Note that the steps 5 and 6 require the inverse of the functions v (7)
and ®(z). This can be time consuming if a root finding scheme is directly
applied to search for the inverse. However, thanks to their monotonicity, a
more efficient technique is to discretize the image of the functions and, sub-
sequently, to interpolate the image to obtain the inverse image.

Figure 5: Implied volatility smile: model vs market.
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We next apply the calibrated model to price vanilla options. Consider a
maturity slice with expiration equal to, for example, 6 month (T= 0.4986).
We develop a Monte Carlo routine based on the above algorithm. We
price all options in this maturity slice and convert the options price to
Black implied volatilities. The results are shown in Figure 5, which dem-
onstrates that the model has an excellent fit to the market volatility.

The simulation uses 52 time steps and 10° paths. The RMSE of implied

volatility w Muwa_qs%c. — omie(j)]* = 8 bp against the RMS of the volatility

w H Q‘MES = 36.42%. The results clearly demonstrate the model’s ability

to recover the market implied volatility smiles. The same technique can be
directly applied to price path-dependent options.

6 Conclusions

We have shown a practical method to extend the classical log-normal
Gabillon model to incorporate volatility smiles and discussed its application
to the NYMEX crude oil market. The method can be applied to other multi-
factor log-normal models, such as Gibson and Schwartz (1990) and Schwartz
and Smith (2000). In this modeling framework, different models may be
built upon different intuitions for fitting the term structure of prices and
volatilities. However, thanks to the martingale property, the differences are
restricted to the volatility function in the forward-price representation. The
important feature of our approach is its ability to “twist” the underlying log-
normal distribution to capture the market smile information. In addition,
the method can be casily extended to handle a gencral multi-asset multi-fac-
tor commodity model, which can be applied to price the fast growing mar-
ket on commodity baskets.
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ENDNOTES

1. In fact, the convenience yield is implicitly determined by the interaction between the
short- and long-term price movements.

2. Precisely, let parameters , 4, 0, 6, and p,, be constants and (&) = In(So) + (e — Wamuﬁ
3. This conclusion holds as long as the interest rates are independent of the spot prices.

4. Here we write function T(7) to emphasis that the futures maturity T is tightly coupled
with the option expiration z

5. In this case, the transform (21) can be replaced by an appropriate interpolation routine.
6. As a matter of fact, the current forward curve can be used as an input to the model and
the forward curve is matched automatically.
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