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alpha beta rho (SABR) model 
introduced in Hagan, Lesniewski 

& Woodward (2001) and Hagan et al (2002) is widely used by 
practitioners to capture the volatility skew and smile effects of 
interest rate options. The underlying forward rate process Ft and 
its volatility vt are assumed to evolve according to the system of 
stochastic differential equations (SDEs):

	 dFt = Ft
βvtdW1 	 (1)

	 dvt = γvtdW2 	 (2)

where Fb
t is the local volatility function with 0 ≤ b ≤ 1, g is the 

volatility of the volatility process, and W1 and W2 are two stand-
ard Brownian motions under the risk-neutral measure with cor-
relation r. We assume an absorbing boundary condition for Ft at 
zero to guarantee that it is a martingale.

The primary use of the SABR model is in volatility surface 
interpolation and extrapolation. Another important application is 
pricing constant maturity swap (CMS) products. The CMS price 
is calculated via integrals of European swaption prices using a 
static replication formula (Hagan, 2003). The integration is done 
over swaption strikes from zero to infinity. This means that a 
SABR approximation of European swaption prices must be 
robust and coherent for a wide range of strikes.

In the original articles (Hagan, Lesniewski & Woodward, 
2001, and Hagan et al, 2002), the authors came up with an 
approximation formula for forward values of European options 
C(T, K) = E[(FT − K)+] using Riemannian geometry and the heat 
kernel approach. Later on, the logic was refined by many other 
authors, including Berestycki, Busca & Florent (2004), Henry-
Labordère (2008) and Paulot (2009).

However, the approximation quality rapidly deteriorates with 
time. For maturities larger than 10 years, for example, the error in 
implied volatility can be 1% or more even for at-the-money val-
ues. One can easily observe bad approximation behaviour for 
extreme strikes as well, which can prevent a valid probability den-
sity function being obtained. These undesirable properties in the 
distribution’s tails are especially dangerous for CMS calculations 
by static replication.

The initial approximation formula in Hagan et al (2002) is 
used as a standard tool for volatility surface interpolation, which 
has led somehow to the approximation rather than the model 
itself becoming an industry standard. However, the model price 
is more coherent.

A different approach to SABR option pricing was undertaken 

in Islah (2009), with an exact formula in terms of a multi-
dimensional integration for the zero correlation case and a con-
ditional Bessel process approximation for non-zero correlation. 
Nevertheless, a practical implementation of this exact result for 
calibration is hardly possible – the final formula consists of a 
three-dimensional integration of special functions and is com-
putationally costly.

Finally, Andreasen & Huge (2011) proposed an approxima-
tion-based one-step partial differential equation (PDE) solver. 
The procedure was proven to be arbitrage-free, but still only deliv-
ers a rough approximation of the theoretical SABR model.

In this article, we improve the approximations for SABR option 
pricing. We first give an exact formula for the zero correlation case 
in terms of a simple two-dimensional integration of elementary 
functions. The corresponding integrands have plausible asymptot-
ics, which permit an efficient numerical implementation. Moreo-
ver, we have found a very efficient approximation in terms of one-
dimensional quasi-Gaussian integration. Although an order of 
magnitude slower than the almost instantaneous Hagan formula, 
it is significantly more accurate, especially in the wings (see table 
A). This makes the swaption volatility cube calibration speed suit-
able for practical applications.

The second technical result covers a general correlation case 
where we propose a very accurate approximation based on a 
model mapping procedure. We calculate effective coefficients of a 
zero-correlation SABR model, the so-called mimicking model, 
such that its small-time asymptotics coincide with the initial non-
zero correlation case. The coefficient expressions involve simple 
algebra without numerical integration. Then we calculate the 
option price using the effective zero-correlation SABR model.

Our new results provide reduced approximation error and cor-
rect behaviour in the tails of the distribution for most model 
parameters. When |r| is close to one and b is close to zero, the 
option price can occasionally not be convex for small strikes. but 
this undesirable effect is much less pronounced than in previous 
approximations. Moreover, due to its small amplitude and locali-
sation, it does not affect CMS pricing by static replication.

The high accuracy of our approximation is very important for 
dynamic SABR models, where analytic approximation used in 
calibration should provide results close to those used in pricing, 
for example, SABR Libor market models, as in Mercurio & 
Morini (2009) and Rebonato, McKay & White (2009).

The classical SABR model (1) and (2) uses a widely known set 
of five parameters {F0, v0, b, g, r}. Usually, the initial rate F0 is 
known and the other parameters {v0, b, g, r} are subject to cali-

SABR spreads its wings
Traditional methods for the stochastic alpha beta rho model tend to focus on expansion 
approximations that are inaccurate in the long maturity ‘wings’. However, if the Brownian motions 
driving the forward and its volatility are uncorrelated, option prices are analytically tractable. In the 
correlated case, model parameters can be mapped to a mimicking uncorrelated model for accurate 
option pricing. Alexander Antonov, Michael Konikov and Michael Spector explain how

The stochastic
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bration. In some papers, v0 is denoted as a. It is natural to impose 
an absorbing boundary condition on the rate behaviour at zero, 
which guarantees the martingale property of the rate. This also 
implies a non-zero probability of the rate being zero. We can 
transform the SABR process Ft into a stochastic volatility Bessel 
process Qt via:

	
Qt =

Ft
1−β

1− β 	
(3)

which, with the volatility vt, satisfies the following SDE system:

	
dQt =

β
2 β −1( )Qt

−1vt
2dt + vtdW1

	
(4)

	 dvt = γvtdW2 	 (5)

Denote marginal probability density functions (PDFs) of the 
processes Ft and Qt as p(t, f) = E[d(Ft − f)] and p(t, q) = E[d(Qt 
− q)] respectively, where d(x) denotes the Dirac delta-function. 
These PDFs are related by:

	 p t, f( ) = p t,q( ) f −β 	 (6)

We consider the classical SABR model with stochastic volatility 
without mean-reversion. Analytical results cannot be easily 
adapted to mean-reverting volatility models.

Zero correlation case
Here, we assume r = 0. The SABR rate (1) is distributed as a time-
changed constant elasticity of variance (CEV) process, that is:

Ft ~ Xτt

where Xu is a CEV process with an absorbing boundary, dXu = 
Xb

udWu, and the stochastic time t is independent of the Brownian 
motion W1 and defined as the cumulative variance:

	
τt = vs

2 ds0
t
∫ 	 (7)

A distribution of the CEV process for a given time involves a 
modified Bessel function and can be found, for example, in Jean-
blanc, Yor & Chesney (2009). The stochastic time density p(t, t) 
= E[d(tt − t)] was found by Yor (1992) as an integral over v of the 
joint density p(t, v, t) = E[d(vt − v)d(tt − t)], which, in turn, was 
expressed in terms of a one-dimensional integral. The forward 
value of a European call option can be written as:

  

C t,K( ) = E Ft − K( )+⎡
⎣

⎤
⎦ = E Xτt − K( )+⎡

⎣⎢
⎤
⎦⎥

= dτ dvp t,v,τ( )Ccev0
∞
∫0

∞
∫ τ,K( )

where the CEV call option forward value Ccev(u, K) = E[(Xu − 
K)+] can be found in Jeanblanc, Yor & Chesney (2009) and refer-
ences therein. Substituting Yor’s expression for the joint density 
p(t, v, t), we obtain:

 

C t,K( )

= 2e−tγ
2 /8 dv

v0
∞
∫

v
v0

⎛
⎝⎜

⎞
⎠⎟

−1/2

dτCcev τ,K( ) e
−
v2 +v0

2

2τγ2

2τ0
∞
∫ ϑ vv0

τγ 2
,tγ 2

⎛
⎝⎜

⎞
⎠⎟ 	

(8)

where the function ϑ(r, t) is defined as:

ϑ r,t( ) = r
−2πi( ) 2πt

e−r coshξ−
ξ+iπ( )2
2 t

−∞
+∞
∫ sinhξdξ

A similar formula served as a basis for the approach used in 
Islah (2009). The CEV option values were expressed through c2 
probability distributions, each represented by the integral of the 
corresponding probability density. Altogether, it included four 
integrations; the integration over t was taken analytically. The 
final results of Islah (2009) contain triple integrals to be calcu-
lated numerically. This means the approach is computationally 
intensive and has convergence problems with integration over x, 
particularly at small times t, as discussed in Carr & Schroder 
(2004) in the context of Asian options.

But there are ways to significantly simplify expressions for 
option values, coming up with a double integral of elementary 
functions. The basic idea is to transform the option price (8) by 
integrating by parts with respect to t in order to get a t-time 
derivative for the CEV option price, proportional to the CEV 
density. Next, we use the standard contour integral to represent 
the underlying modified Bessel function and perform analytical 
integration over t and x using the residue theory. We further sim-
plify the obtained two-dimensional integral using a convenient 
parameterisation (see Antonov & Spector, 2012, for details).

The result is expressed via the kernel function:

	
G t,s( ) = 2 2 e−t /8

t 2πt
du ue−

u2
2 t coshu − cosh ss

∞
∫

	
(9)

which is closely related to the McKean (1970) heat kernel GMK(t, 
s). Both kernels are associated with Brownian motion on the 
Poincare hyperbolic plane H2. The kernel G(t, s) describes the 
cumulative probability P(s(x, y) > s) for the hyperbolic distance 
s(x, y) on H2 with the probability density given by the McKean 
kernel GMK(t, s), G(t, s) = 2p∫s

∞GMK(t, s′) sinh s′ds′. GMK is norm 
preserving, so G(t, 0) = 1, as can be shown directly.

The final option price formula for zero correlation is reduced to 
integration over the distance s:

	  

C t,K( )− F0 − K( )+

= 2
π

KF0 ds
sin ηφ s( )( )
sinh s

G tγ 2,s( )s−

s+∫
⎧
⎨
⎪

⎩⎪

+sin ηπ( ) ds e
−ηψ s( )

sinh s
G tγ 2,s( )s+

∞
∫

⎫
⎬
⎪

⎭⎪ 	

(10)

where:

η = 1
2 β −1( )

The underlying functions φ(s) and ψ(s) are defined as:

φ s( ) = 2arctan sinh2 s − sinh2 s−
sinh2 s+ − sinh

2 s

ψ s( ) = 2arctanh sinh2 s − sinh2 s+
sinh2 s − sinh2 s−

with the integration limits s− and s+ given by:

s− = arcsinh
γ q − q0
v0

⎛
⎝⎜

⎞
⎠⎟
and s+ = arcsinh

γ q + q0( )
v0

⎛
⎝⎜

⎞
⎠⎟

Here q and q0 are the transformed values of the spot and strike:
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q = K1−β

1− β
and q0 =

F0
1−β

1− β
Note that the option price depends on the parameters q0, q and v0 
through the dimensionless quantities s− and s+. The two-dimen-
sional integration in formula (10) can be performed numerically 
in an efficient manner; the integrands are smooth functions of the 
parameters. Moreover, it can be shown that the function G(t, s) 
can be closely approximated as:

	  
G t,s( ) ;

sinh s
s

e−
s2
2t −

t
8 R t,s( ) + δR t,s( )( )

	
(11)

where:

	

R t,s( ) = 1+ 3tg s( )
8s2

−
5t2 −8s2 + 3g2 s( ) + 24g s( )( )

128s4

+
35t 3 −40s2 + 3g3 s( ) + 24g2 s( ) +120g s( )( )

1024s6

g s( ) = scoth s −1 	

(12)

and the correction dR(t, s) is defined as:

	
δR t,s( ) = e t

8 − 3072 + 384t + 24t
2 + t 3

3072 	
(13)

to guarantee that G(t, 0) = 1. In computation, R(t,s) is replaced by 
its fourth-order expansion for small s, as is the square root expres-
sion in (11). The effective small-time expansion (12) can be 
derived following Section 4.3 of Antonov & Spector (2012) and 
taking few other expansion terms. The technique is based on the 
Hagan et al (2002) result for the McKean kernel. Substituting the 
kernel G approximation (11) in the equation (10) leads to a one-
dimensional integration formula. This considerably speeds up the 
calculation without sacrificing precision (see results below). As 
mentioned in the introduction, we consider b ∈ [0, 1). The limit-
ing case b = 1 requires taking careful limits in the expression (10) 
and will be addressed in future articles.

The general case: non-zero correlation
n Heat kernel expansion. The heat kernel expansion (DeWitt, 
1965) is a small-time asymptotic approximation for parabolic 
PDEs. This is a regular recipe for general stochastic systems to 
obtain PDF expansions as a fundamental solution to the Kol-
mogorov equation. The density p(t, f, v) expansion for the 
SABR model was calculated in Henry-Labordère (2008) and 
Paulot (2009).

The marginal PDF p(t, f) is obtained by integration over vola-
tility v, which is performed with the help of the saddle-point 
method, implying that the main contribution is due to the ‘opti-
mal’ volatility, given by:

vmin
2 = γ 2δq2 + 2ργδqv0 + v0

2 with δq = K1−β − F0
1−β

1− β
This gives the following small-time expansion for a call option 
time-value with strike K and maturity T:

 

C T ,K( )− F0 − K( )+ = T
3
2

2 2π
exp − 1

2
smin
2

T γ 2
− ln smin

2

2γ 2
⎧
⎨
⎪

⎩⎪

+ ln Kβ v0vmin( )− Amin} 1+O T( )( )
	

(14)

Here the optimal geodesic distance smin is a function of the initial 

value of the rate F0, the initial stochastic volatility value v0 and 
the strike K, and is given by:

smin = s q,vmin( ) = ln vmin + ρv0 + γδq
1+ ρ( )v0

The optimal parallel transport, which also depends on the 
strike K, is given by:

 
Amin = A q,vmin( ) = β

2
ln K / F0( ) + Bmin

Here:

 

Bmin = B q,vmin( ) = − 1
2

β
1− β

ρ

1− ρ2
π − ϕ0 − arccosρ− I( )

with:

ϕ0 = arccos − δqγ + v0ρ
vmin

⎛
⎝⎜

⎞
⎠⎟

and:

I =

2
1−L2

arctan u0+L

1−L2
− arctan L

1−L2( ) for L < 1

1
L2−1

ln
u0 L+ L2−1( )+1
u0 L− L2−1( )+1 for L > 1

⎧

⎨
⎪⎪

⎩
⎪
⎪

where:

u0 =
δqγρ+ v0 − vmin
δqγ 1− ρ2

and L =
vmin 1− β( )
K1−βγ 1− ρ2

Expression (14) was derived for strikes away from the forward, that 
is, |K − F0| >> √T, and a formal substitution of K = F0 leads to a 
divergence. Paulot (2009) came up with a correct limit expansion 
and explained how to find the at-the-money option time-value.

One can find further details in Henry-Labordère (2008), 
Paulot (2009) and Antonov & Spector (2012).
n Mapping to the zero-correlation SABR model. The expan-
sion works well for small times, but for moderate and large ones it 
is ineffective. We use the mapping technique of Antonov & 
Misirpashaev (2009), which works as follows. We produce a so-
called mimicking model that has the same small-time expansion 
for the option, and calculate the option value based on this. For 
example, Hagan used the Black-Scholes or normal model. Paulot 
has proposed the CEV process as the mimicking model. The most 
popular case of the Black-Scholes mimicking model dF~t = sF~tdWt 
has the effective volatility expansion s = s0 + s1T, where:

	
σ0 = γ

ln K
F0

smin 	
(15)

	

σ1
σ0

=
ln Kβ v0vmin( )− Amin − lnσ0 − 1

2 ln KF0( )
smin
2

γ 2 	
(16)

The derivation can be found in Henry-Labordère (2008) and 
Paulot (2009).

We will use the SABR model with zero correlation (SABR ZC) 
as a mimicking model. It has characteristics and asymptotics 
much closer to the initial SABR model than the Black-Scholes 
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one does. The mimicking model parameters can be strike-
dependent. We denote them as in SABR ZC but with a tilde. 
Then, using option value (14), we should match:

	   

1
2

%smin
2

T %γ 2
+ ln

%smin
2

2 %γ 2
− ln K

%β %v0 %vmin( ) + %Amin

= 1
2
smin
2

T γ 2
+ ln smin

2

2γ 2
− ln Kβ v0vmin( ) +Amin

	

(17)

We fix g~ and b
~
 in the mimicking model and look for time-expan-

sion of v~0:

	  
%v0 = %v0

0( ) +T%v0
1( ) +L 	 (18)

such that the fit (17) is satisfied for both O(T−1) and O(T 0) orders. 
After some algebra, we get:

	  
%v0
0( ) = 2Φδ

%q%γ
Φ2 −1 	

(19)

where:

 
Φ = vmin + ρv0 + γδq

1+ ρ( )v0
⎛
⎝⎜

⎞
⎠⎟

%γ
γ

and δ %q = K1−
%β − F0

1− %β

1− %β

The next correction term is slightly more complicated:

	   

%v0
1( )

%v0
0( ) = %γ 2

1
2 β − %β( )ln KF0( ) + 1

2 ln v0vmin( )
Φ2−1
Φ2+1

lnΦ

⎡

⎣

⎢
⎢

−

1
2 ln %v0

0( ) δ %q2 %γ 2 + %v0
0( )2⎛

⎝⎜
⎞
⎠⎟
− Bmin

Φ2−1
Φ2+1

lnΦ

⎤

⎦

⎥
⎥
⎥
⎥

	

(20)

Let us stress that the effective volatility expansion v~0 = v~ 0
(0) + T v~ 0

(1), 
as well as the optimal quantities, volatility vmin and parallel trans-
port term Bmin, explicitly depend on the strike K.

Now let us come back to fixed skew b
~
 and volatility-of-volatil-

ity g~. The approximation accuracy is quite sensitive to these 
parameters. A good choice based primarily on our numerical 
experiments is:

	  
%β = β 	 (21)

	  
%γ 2 = γ 2 − 3

2
γ 2ρ2 + v0γρ 1− β( )F0β−1{ }

	
(22)

The intuition behind this is the following. The same power b 
helps with asymptotics for small strikes (see below for a detailed 
discussion on asymptotics). The volatility-of-volatility g~ choice is 
inspired by a fit of the at-the-money implied volatility short-time 
curvature, obtained as the second derivative over the at-the-
money strike K = F0 of the leading term of the implied volatility 
expansion s0(K) (15). We fixed g~ and b

~
, and calculated v~0 because 

the resulting option price is most sensitive to v~0, and because the 
main fit of the O(T−1) terms could be explicitly solved for v~0 (19), 
but not for g~ and b

~
. The at-the-money case is just the limit K → 

F0. The leading-order term is:

 
%v0
0( )

K=F0
= v0

in this case, and the next correction is given by:

 

%v0
1( )

%v0
0( )

K=F0

= 1
12

1−
%γ 2

γ 2
− 3
2
ρ2

⎛

⎝⎜
⎞

⎠⎟
γ 2 + 1

4
βρv0γF0

β−1

Its last term comes from the second derivative of the integral 
Bmin.
n Approximation procedure. Here, we summarise the approxi-
mation procedure for the call option price C(T, K) = E[(FT − K)+]. 
Given the SABR model (1) and (2) with the five parameters {F0, 
v0, b, g, r}, strike K and maturity T, we come up with (strike-
dependent) mimicking processes F~t and v~t:

 d
%Ft = %Ft

%β %vtd %W1, d %vt = %γ%vtd %W2

with zero correlation between the driving Brownian motions, 
E[dW

~

1dW
~

2] = 0. The efficient parameters are calculated as fol-
lows: the skew b

~ = b, the volatility-of-volatility g~ as in (22) and 
the initial (strike-dependent) effective volatility v~0 = v~ 0

(0) + T v~ 0
(1) 

as in equations (19) and (20). The approximate call option price 
C(T, K) _~ E[(F~t − K)+] is finally calculated by the numerical 
integration of expression (10).

Asymptotics
Here, we address small- and large-strike asymptotics of the mar-
ginal densities. We present the results in terms of the Bessel form 
of the SABR process (4) using the PDF transformation rule (6) 
for the initial SABR PDF. First, we start with the zero correlation 
case where we have the exact solution. As shown in Antonov & 
Spector (2012), the small q asymptotics appeared to be linear:

p t,q( ) ~ q as q→ 0
The corresponding SABR rate density, f = (q(1 − b))1/(1−b), behaves 
as follows for small values:

p t, f( ) = p t,q( ) dq
df
~ f 1−2β as f → 0

A full calculation of the asymptotics for large q proved to be too 
involved and will be addressed elsewhere. Here, we present the 
leading order of the PDF (details can be found in Antonov & 
Spector, 2012):

p t,q( ) ~ e
− 1
2 tγ2

ln2 2qγv0 as q→∞

which coincides with that given by the heat kernel small-time 
expansion (14), where the geodesic distance smin ~ ln(2qg/v0). We 
doubt, however, that the pre-exponential factors of these two dif-
ferent limits, q → ∞ and t → 0, will also coincide. It is easy to see 
that for small b – the Gaussian case – the distribution is quite 
narrow even for moderate maturities. On the other hand, a log-
normal case – b → 1 – gives very fat wings.

For the general correlation case, one can show that the PDF will 
retain linear asymptotics in q for small strikes, p(t, q) ~ q, and guar-
antee that the underlying process Ft is a global martingale. The 
proof is based on the forward Kolmogorov equation analysis.

For large q, the leading asymptotics corresponds to its small-
time counterpart obtained by the heat kernel expansion:

	 p t,q( ) ~ e
− 1
2 tγ2

ln2 2qγ
1+ρ( )v0 as q→∞ 	 (23)

This is an intuitive result without a strict proof, however. The cor-

NOT FOR REPRODUCTIO
N



62	 Risk August 2013

cutting edge. interest rate derivatives

responding SABR rate probability density has the following lead-
ing asymptotics:

	 p t, f( ) ~ e
− 1−β( )2

2 tγ2
ln2 f

as f →∞ 	 (24)

This asymptotic behaviour coincides with the result of Benaim, 
Friz & Lee (2008) and Piterbarg (2004). The authors also derived 
the limit implied Black-Scholes volatility for call options C(t, K) 
for large strikes:

	
lim
K→∞

σBS t,K( ) = γ
1− β 	

(25)

which appeared to be strike-independent. We notice also that it coin-
cides with the large strike limit of the leading volatility term s0 (15).

Lee (2004) related minimum (maximum) finite moments to 
left (respectively, right) wings asymptotics of implied volatilities. 
The SABR model does not satisfy the right Lee condition: it has 
all positive finite moments, that is, E[Fp

T] < ∞ for p > 0 and b < 1 
due to its PDF strong decay (24). On the other hand, as shown in 
Benaim, Friz & Lee (2008), the left Lee condition is satisfied, 
leading to the left-wing implied volatility asymptotics:

lim
K→0

σBS
2 t,K( )
lnK

= 2

The approximation gives a close fit for the distribution for a 
wide range of strikes. Nevertheless, the approximate PDF can 
have small negative values for small strikes, for small b and |r| 
close to one. Of course, these negative values are tiny with respect 
to huge negative probabilities for existing approximations based 
on the effective implied volatility. For large strikes, our approxi-
mation appears to be close numerically to the heat kernel small-
time expansion (23). We will address it rigorously elsewhere.

Numerical experiments
Here, we demonstrate the efficiency of our approach using the 
following data: F0 = 1, v0 = 0.25, g = 0.3, r = −0.5, b = 0.6 and T 
= 20 years. We present the Black implied volatility for European 
call options C(T, K) = E[(FT − K)+] for a range of strikes K and 

A. Implied volatility error, 20-year maturity option
Moneyness Value (%) Difference with MC (bp) 1D–2D 

(bp)

MC HL-P Hagan ZC 
map

HL-P Hagan ZC 
map

10% 41.89 53.36 55.22 38.24 1,147 1,333 –365 0.3

20% 36.01 44.01 46.33 33.27 800 1032 –274 0.3

30% 32.38 38.78 40.89 30.20 640 851 –218 0.2

40% 29.72 35.18 36.97 27.96 546 725 –176 0.2

50% 27.61 32.46 33.90 26.20 485 629 –141 0.2

60% 25.88 30.29 31.40 24.76 441 552 –112 0.1

70% 24.41 28.52 29.31 23.57 411 490 –84 0.1

80% 23.16 27.04 27.54 22.57 388 438 –59 0.06

90% 22.08 25.79 26.03 21.72 371 395 –36 0.04

100% 21.15 24.74 24.74 21.01 359 359 –14 –0.02

110% 20.35 23.85 23.64 20.42 350 329 7 0.01

120% 19.67 23.10 22.72 19.92 343 305 25 0.02

130% 19.09 22.47 21.96 19.52 338 287 43 0.05

140% 18.61 21.95 21.34 19.19 334 273 58 0.04

150% 18.21 21.52 20.84 18.92 331 263 71 0.03

160% 17.88 21.17 20.46 18.71 329 258 83 0.03

170% 17.62 20.88 20.17 18.55 326 255 93 0.01

180% 17.42 20.65 19.96 18.42 323 254 100 –0.01

190% 17.25 20.47 19.81 18.32 322 256 107 0.0

200% 17.13 20.32 19.72 18.25 319 259 112 0.0
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1 Implied volatility error for different methods for a 
large maturity of 20 years

second-moment underlying CMS calculations.
CMS convexity adjustments depend on the second moment of 

the rate process, which can be evaluated by the usual static repli-
cation formula (Hagan, 2003):

	  
E FT

2⎡⎣ ⎤⎦ = 2 dKE FT − K( )+⎡
⎣

⎤
⎦0

∞
∫ 	

(26)

For the SABR ZC map option approximation, one can use this 
formula directly for the second-moment calculations without any 
heuristic tricks, such as strike domain limitations or tail replace-
ments. The tiny negativity of certain density approximations for 
the SABR ZC map does not influence the quality of the CMS 
calculations. For close-to-zero correlations and large skews, the 
big-strike tail is very fat, which produces a very slow convergence 
of the static replication integral.

To optimise the numerical integration, one can adapt different 
variance reduction techniques (for example, using the CEV 
model). The large strike option price can be approximated with 
the help of the implied volatility limit (25) with strike-independ-
ent efficient skew and volatility-of-volatility of the zero correla-
tion SABR model.

In our numerical experiments, we compare the following 
methods:
n Monte Carlo simulation (MC).
n The Henry-Labordère (2008) and Paulot (2009) (HL-P) form 
of the Black-Scholes implied volatility expansion.
n The Hagan et al (2002) form of the implied volatility expansion 
(Hagan).
n Map to the zero-correlation SABR model (ZC map).
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For the Monte Carlo simulations, we have used 100 time-
steps a year, 50,000 paths of good low-discrepancy numbers and 
an Euler scheme with an absorbing condition for a zero rate. 
The simulation results are presented as the mean over 50 inde-
pendent runs after a careful convergence study in both time-
steps and paths.

The computer time for the ZC map approximation is almost 
entirely spent in the numerical two-dimensional integration (9) 
and (10). Using efficient high-order integration schemes allows us 
to obtain the ZC map approximation 100 times slower than the 
almost instantaneous classical Hagan one. However, one-dimen-
sional integration with the kernel G(t, s) approximation (10) and 
(11) slows calculation by a factor of 10 compared with the Hagan 
formula, due to quasi-Gaussian nature of the former. This makes 
the swaption volatility cube calibration speed acceptable for prac-
tical applications. Note that the error between two-dimensional 
integration and one-dimensional one is tiny, at most 0.3 basis 
points in the implied volatility. We present it in our numerical 
experiments under the heading 1D–2D.

When the new formula’s slowness presents a bottleneck, one 
can use hardware to accelerate, for example, graphics processing 
units. Another way to speed up calibration is to find a solution 
with the original Hagan formula where it is known to be accurate 
– for example, for tiny maturities and close to at-the-money 
strikes – or use it as an initial guess for final calibration with a 
more precise new formula.

In figure 1 and table A, we present the implied volatility and its 
error for different methods for a large maturity of 20 years.

We observe an excellent approximation quality around the 
at-the-money region for the SABR ZC map, with only slight 
degeneration on the edges and insufficient approximation accu-
racy for the other methods.

Table B demonstrates an excellent approximation quality for 
the SABR ZC map and insufficient accuracy for the other meth-
ods. This means that our approximation works correctly even for 
extreme strikes. Indeed, for a 20-year maturity the second-

moment integration (26) goes quite far in strikes: the option price 
reaches 10−6 for strikes around 35.

Conclusion
The commonly used Hagan expansion for the SABR model is 
well known to be imprecise in the distribution’s tails, and in 
pricing longer expiry options, implying negative densities and 
arbitrage. Most known alternatives either exhibit similar behav-
iour, not consistent with the theoretical SABR model, or have 
an extremely slow numerical implementation. The approach 
presented here is quite precise and near arbitrage-free for all 
practical purposes, consistent with the theoretical SABR, and 
still reasonably fast. There is a new exact option pricing formula 
for the zero-correlation case, and the general case is handled by 
mapping the model parameters into an uncorrelated version 
without much loss of precision. Although there is a reduction in 
computation speed of an order of magnitude, the accuracy 
gained is significant. n
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B. Centred second-moment E[(FT – F0)2] and its errors for 
different methods

Value Difference with MC 1D–2D

MC HL-P Hagan ZC map HL-P Hagan ZC map

1.028 1.255 1.733 1.065 0.227 0.705 0.037 –0.001

NOT FOR REPRODUCTIO
N


