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Abstract

In this paper we develop accurate techniques to price continuous barrier
options using a one-dimmensional finite difference scheine, allowing for time-
dependent drift as well as time- and state-dependent volatilities. We provide
numerical examples which demonstrate the smoothness and accuracy of
such methods in the Black-Scholes context as well as in the Dupire local
volatility model.
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Introduction

The pricing of barrier options has always been of the utmost interest to
academics and practitioners. Analytical formulas were developed in the
early works of Merton (1973) and Reiner and Rubinstein (2006), in the con-
text of constant drift and volatility. The problem with these approaches is
that although they provide an intuitive answer to the various market data
sensitivities of barrier options, they fail to capture realistic features, start-
ing from the most trivial term structure of interest rates and dividends to
the more involved term structure of volatility smiles. However, in more
general contexts analytical tractability is lost and one has to resort to
numerical methods. The favored solution is generally a finite difference
scheme. This approach also has its own shortcomings, including approxi-
mating the continuous barrier structure with discrete barriers, as well

as the lack of smoothness of the discrete value function which can create
a substantial lack of accuracy for Greek calculation purposes. In the fol-
lowing, we show how to address both of these issues in a robust and casily
generalizable way.
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This paper is organized as follows: we first introduce our general pricing
framework and notations. We then present our barrier option terminology
and recall the classic barrier option results under the constant volatility
and drift assumptions. In the third section we show how to approximate a
continuous barrier option price using a finite difference scheme and a sim-
ple adjusted barrier structure. In the subsequent section we demonstrate
how to remove the barrier option finite difference pricing inaccuracy due to
the lack of smoothness of the approximate value function by jointly using
smooth pasting and accurate analytical corrections based on constant drift
and volatility barrier option analytical formulas. Then we provide some
numerical examples and show how our approximations perform in the situ-
ation where analytical formulas are known and in the local volatility case.
Lastly we conclude with suggested improvements and extensions to this
work.

Notations and pricing framework
We postulate the dynamics of some underlying spot price under the risk-
neutral measure as:

ds (t)

= (t)dr £, S (L)) dW (t (1)
S® w (D dr 4o (1,5(1)) (t)

where:

« Sisthespot price of the traded asset at timet;

¢ Wisaone-dimensional Brownian motion under the risk-neutral
measure;

e uistheinstantaneous drift function, which is assumed to be time-
dependent only;

¢ oisthe instantaneous volatility function, which we assume to be
strictly positive and time- and level-dependent.
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Furthermore, we assume that the volatility function o verifies the
following assumptions:

Al o is (!

A2 3KV (L, S) o (tx) <K,

da (LX)
DX

<K

We also introduce the short rate r(t), which is assumed to be a determin-
istic function of time, and we will denote the discount bond price at time
tand for maturity T by P(t, T). Under the deterministic rate assumption the
two quantities relate as follows:

T
P(t,T) = exp (—/ r(s) ds)
t

Furthermore, in the case where the underlying price is a stock price (or
foreign exchange rate), the drift will be defined by:

w®=r@®—dm

where d(t) denotes the instantaneous dividend yield (or foreign short rate
function) at time t, which we assume to be a deterministic function of time.

We assume that the instantaneous rate/dividend functions have already
been calibrated to a term structure of market instruments using standard
bootstrapping methods. An exhaustive and rigorous account of these meth-
ods can be found in Chibane and Sheldon (2009). Similarly, we expect the
instantaneous volatility surface to be pre-calibrated according to the cel-
ebrated Dupire formula, as described in Dupire (1994):

WAL 4 40 (1) KEED. & q(1)C (T, K)

- 2)
2 02C(TK) (
K=

o (ILK)? =2

where C(T, K) is the price of a European call option with expiry T and strike
K. This formula assumes call option prices are available for a continuum of
expiries and strikes.

Now we need to present a generic framework for pricing exotics. We first
consider a European security with maturity T, with no intermediate cash
flows, and with terminal payoff function denoted by g. We denote the value
of this security at timne t by V(t, S(t)). By standard non-arbitrage arguments
one can prove that:

DMVES®) =EDMgES M) ®3)

where:

* E denotes the risk-neutral expectation operator conditional on the
information available at time t;

* D(t)= exp(—f; 7(s)ds) is the stochastic discount factor (inverted money
market account) at time t.

¢ Using the deterministic rate assumption, equation (3)yields:

VE,s®) =PEDE[gE )]
From the Feynman-Kac theorem we know that V solves the following

parabolic PDE:

WV w o1, , 0%V

E+M(US%+E(T (f,S)SW:"(UV (4)
V(T.S) =g ()

where we abuse the notation by using Vinstead of V(t, S). It is often more

convenient to work with the log spot variable defined by x(t) = In (S(t)).
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Using It6’s lemma we readily obtain the SDE governing the dynamics
of x:

dx (t) = (u ® — %uz (t, x)) + 9 (t, x) AW (1)
7 (t,x) = o (t,exp (X))

Then, the value function V defined by V (t, x) = V (t, exp () is a solution to
the following PDE:
v 1, v 1, 92V .
- D= =n’tLx)) — + | s0°tX) ) = =1V
at +(m> 7 Y)) il +<2n( v)) o —rw 5
V (T, x) = g(exp (X))

This PDE can be solved efficiently using a Crank-Nicholson scheme, as
described in Morton and Mayer (2005). This scheme has quadratic accuracy
in time and space. Later, we show how to extend this approach to the pricing
of continuous barrier options. First, we introduce some barrier option termi-
nology and recall the standard analytical formulas.

Barrier option pricing framework

Firstly we define a general knock-out continuous barrier option as a security
which pays off at maturity a general function of the prevailing spot price
provided that the spot price process has not breached a given barrier level [1.!
Otherwise the option is automatically worth 0. A corresponding knock-in
option pays the same final payoffat maturity only if the spot process has
breached the barrier level. Clearly the prices of the knock-in and knock-out
option with the same terminal payoff are governed by the parity rule:

Knock in + Knock out = underlying europeian option

Furthermore, if the barrier is hit from below (above), the knock-out
option will be referred to as ‘up and out’ (‘down and out’). The correspond-
ing knock-in options will be referred to as ‘up and in’ and ‘down and in.”

We will denote the running maximum and running minimum between
two dates respectively as follows:

M(s, t) =sup (S(u); u € [s, t])
m(s, t)=1inf (S(u); u € [s, t])

The final payoff function conditional on the barrier condition being
verified will be denoted by g. We denote respectively the value at timet of ‘up
and out,” ‘up and in,” ‘down and out,” and ‘down and in”’ options by V¥(t, S(t)),
VUILE, S(t)), VPO, S(t)), VP'(E, S(E)).

Using non-arbitrage arguments it is easy to establish that conditional on
not breaching the barrier condition prior to time t:

V(.8 (1) = P(6T) B [Tnan < 8 (S (1))
V(S @) = P D B [1ngr-n £ (S (D))
VPO (1, S (1) = P(6,T) E; [1mmy=n 8 (S(D)]
VI (5 (©) = P (T B [Tngiy<n § (S (D)]

The only assumptions we make about the payoff function gis thatitis
continuous on [0, +eo|.
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From now on, for the sake of concreteness and without losing generality,
we will focus our analysis on the ‘up and out’ option. In this paragraph we
recall the option pricing formula in the context of constant drift, constant
volatility, and constant barrier referred to as constant Black-Scholes (from
now on CBS). As proved in Poulsen (2006), using the reflection principle, the
value of an ‘up and out’ option with arbitrary terminal payoff g is:

o sor s - (22) (o 2
VP s ) =f,S @) < I ) i t’S(t)
F@&S®) =P T)E[h (S D))
h(S(T)) = Lsm< &(S(T))

0% —2u
2

o

In the particular case where the payoffis one of a call option, we recover
the classic formula:

FUOCAIE, S(0) = Pt THS() explya(T — L)) - N(dg)
— K(N(d) — N(d)

-U0,Call __ sUoCall @ v ~U0,Call H_Z
VOl sy — U0l sy ( - ) s (r, sm)

= P(t, T)C"(S(t), o, o, H, K, T — 1)

where N is the standard cumulative normal distribution function.

The digital version of the ‘up and out’ call which pays one unit of domes-
tic currency provided that the barrier condition is not breached and if the
terminal spot price is above the strike K can be obtained by simple differen-
tiation with respect to strike as follows:

aC (S (), o, . HK, T — 1)

cUodisital (s () & 1 H KT — ) =
SM,o,1 ) 3K

However, these formulas are useless in practical cases since real market
data will always imply non-constant drift and volatility functions. In this
situation one needs to resort to numerical schemes. We show how to do that
in the nextsection.

Pricing barrier options in a finite difference scheme
We now identify the current pricing date with calendar time t= 0.
Conditional on not having already knocked out, the initial price of the ‘up
and out’ option is a solution to the following pricing PDE subject to terminal
and boundary conditions:

Yo (e -tran) Yy Lewn aZ"ﬂf(t v

P G U B M LR R

V(T,x) = 1x<n g (exp (X))

Vte [0,T] x>hV(t,x) =0

h = 1n (H) (6)
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where 1, is the indicative function relative to event A.

Oneway to find an approximate solution for (6) on a Crank-Nicholson
finite difference scheme is to make the approximation of replacing the con-
tinuous-time barrier by the discrete-time barrier acting at each of the times
in the finite difference grid. In this case, PDE (6) is approximated through
the following finite difference scheme:

Yj € [1:N] \ArM,] = lyn £ (xi)
Vi= (vfj)1§;51\' N o
Vielo,...,M—1] V;=E[Vi4]
Yjelo,...,N=1] ifxj>h: V

else :
BilX] = 0= 0AGI) " 0+ (1 —0) ALTH X
Xe RV, L e V=N

where:

. (‘A%)nﬁg, J<ien is the finite difference approximation to the true value
function V;

« coefficients of the matrix L, are detailed in Appendix A;

* the operatorE, can be interpreted as a discrete expectation operator to
the true conditional expectation EH[].

Using the true barrier as a discrete barrier obviously underestimates
the cffect of the barricr on the price, since it neglects the possibility of the
barrier condition being breached between two monitoring dates. It is well
known that for this kind of discretized algorithin to yield accurate enough
values, we need an impractically high number of time steps. This issue has
been covered extensively under the CBS assumptions as in Kou (2003), where
the author develops some adjusted barrier approximations to be used in a
discretized numerical scheme. Generalizations to more complex instantane-
ous volatility structures have been studied in Gobet (2009).> We will adopt
the technique of using a barrier adjusted for continuity, but do not dwell on
this feature as it is not the core issue of this work. The discrete adjusted bar-
rier is given by:

Hyj = Hexp (—Bo (ti.S;) VAL)

B=— (%) /27 ~ 0.5826
> 1

O=25 )
n=1

Under the continuity adjustment, the discrete approximation to PDE (6)
becomes:

vj e [1.N] Vg = 1yon g (%)
Vi= (Vf])lgglv ~ .
Viel0,....M—1] Vi=E[Viu]
Vjielo,....N=1] ifx>hs: V.
else : Vi

hiyj = InHjy

We note that equation (7) implies a floating barrier condition tied to
level H,, since the volatility depends on both the prevailing state and time.
This can have severe implications from the point of view of computational
efficiency, since obtaining accurate numbers from a finite difference scheme
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generally requires computing all these floating barriers. We have found,
however, that this effect can be avoided by noting that the barrier condition
needs to be checked with high accuracy only near the barrier. We suggest
replacing the state-and time-dependent adjusted barrier with a simpler time-
dependent only adjusted barrier defined by the volatility at the barrier:

H; = Hexp (—ﬁﬂ (ti. H) \/Atf)
o
hi =h— Bnti,h) VAL (8)

In the following, we show thath, can be used as an accurate effective barrier.
Proposition1 Existence of an effective barrier state: there exists a sufficiently
small time step and a value of the state variable y such that:

VX X <y & X < hy
Proof:
Let us consider the function fdefined by:

F) =x=nh+ pntix) VAL

The barrier condition being breached translates into f{x) > 0.
fis differentiable, and its first-order derivative is:

an (.
=1+ ﬂ%Jm ©)

ant, x)
Because 3
X

isbounded, there exists an « such that:
on (i, x
VAL <a:0 < f (x) =1 +ﬂ%‘/m

Furthermore, we have f(0) <0 and since the instantaneous volatility is
bounded, limg_, ; » f (x) = +oc. Therefore, for At sufficiently small, there
exists a point y, such that f(y) = 0. By definition of y, we have proved the
proposition:

Vx <yi:
S VY <y

F® <o
x < h— Bn(t;,x) /At

Therefore, y,can be used as an effective barrier. It could be computed by
finding the root of equation (9). Instead, we propose the following approxi-
mate effective barrier:

hi =h — Bn (L, h) AL

Proposition 2 Assuming At, is small enough, we have h, =y + O(At,).
Proof:
By definition fiy) = 0, therefore:

yi =h+Bn@y) VAL
an (t.h
=n=p (neh + 2L o=+ o (0 =10 ) VAT
Since 77is bounded it is clear thaty —h= O(\fA_tl) It follows that:
yi =h— Bo (t.h) VAl; + 0 (At;) = hi + 0 (ALy)

We note that in the CBS framework, y,=h . From now on we use h at each
time t,as our effective adjusted barrier. Later we demonstrate the accuracy
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of this last scheme compared with the non-adjusted scheme with a high
number of time steps.

Although the above-described algorithm is accurate enough for valua-
tion purposes, it still exhibits instabilities in the first derivative close to the
barrier. This effect stems from the fact that the terminal payoffis actually
discontinuous at the barrier. Furthermore, the discrete barrier approxima-
tion (described above) results in the fresh introduction of'a discontinuity at
the barrier at each time step. The finite difference scheine, being a discrete
approximation, does not properly handle these discontinuities.

Practitioners commonly address the terminal payoff discontinuity by
performing a number of fully implicit finite difference rollbacks (8 = 1) and
then switching to the Crank-Nicholson scheme (& = 0.5) for the remaining
integration. This can work, but in practice it requires a lot of fine-tuning,
and can not be made general enough.

In the following section we show how to remedy this problem in a sys-
tematic manner by applying convenient and robust smoothing techniques
which combine the CBS analytical framework and the finite difference
scheme presented in the current section.

Smoothing techniques for barrier option pricing

In this section, for the sake of clarity and intuition, we use spot as the state

variable but the following logic can equally be applied to x(t) = In(S(t)).
Letus look at a general ‘up and out’ barrier option as introduced previ-

ously. We recall that its price at any time t can be written as:

VY (1,8 (1) = P (t.T) B [1men-ng (S ()] = P (1. T) B [1nem<nh (S (T)]

(10)
h(S) = 151)<ug (S(T))

[t is clear that the function h exhibits a discontinuity on state H.
However, the left derivative of the final payoffexists at point Hand is
defined by:

oh (H™) oh (S)
—— = lim
as S—I- S
Without loss of generality, we can rewrite (10) as:
VY @, 5 (1) X ah(H")
————— = E[1mp<uh (S - E [1ngenn (S(T) — )
el [T <ah (S (M) S i [ n=n S (1) —NF]
— gH)E [1nn o] (11)
Oh(H")

RS =h©)+ 5 8- H)* + g(H™ )1s-n

[tis clear that the payoff function i is C* on [0, +eo[. Initially, let us assume
that the CBS assumptions apply on [0, T] with constant drift # and volatility
othen, using the analytic formulas already presented, the second and third
expectation of equation (11) can be computed exactly as shown below:

E [Iuerysn S =W ] =" S @), 0, u, HLHT - 1)
E[Inemsn] = chAsal (g () o, pu, HoH, T — 1)

The first expectation can be computed numerically using the finite
difference approach combined with the adjusted discrete barrier
approximation already presented. The advantage of this decomposition is
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that the part which is computed numerically has been corrected for the lack
of payoff continuity in value and first derivative, therefore yielding a much
smoother integrated profile.

However, in the local volatility framework the CBS assumptions cease to
exist, but we can still reuse the previous idea as demonstrated below. First,
let us focus our analysis on the interval [t, t, ] Over this interval drift is con-
stant by construction. Assume now that we know the discrete approxima-
tion \A'M of the true value function V{t,, ) at time . We denote the index of
point Hin the space axis by j.

We begin with the true value function:

V (£, Sj) = P (ti tip1) By, |:1M(L¢,Lz+1)<7-{v(tf+1- N (fi+1))]

Following the technique above, we introduce a transformation of Vto
decompose the expectation as follows:

Ey; [Hf(h,h“)wv (tf+1.5(fi+1))]

=Ey, [1M(tl‘tm)<n\ﬁ (g1, S (Tz'+1))]

v (tig1.H)
S

=V (tie1, HT) By [1M(g,r,+1)<H]

1 [1M(r,,n+1)<n (S (ip1) — K)+]

(12)

WV (ty1, H)

55 (S (tip1) = KT+ V (tip1, HY)

V (11, S (tig1)) =V (tig1, S (i) +

We will refer toy as the shifted value function.

Our finite difference approximation relies on taking o(t, S)to be the vol-
atility prevailing over [t, 1, ] conditional on state . Therefore, our discrete
time approximation enables us to write the expectations in the second and
third terms of (12) as:

Ex [1ndtty 151 (S(tis1) — FYT] =~ CU(S(h), o (b, S(8:)), S(8:), palt), L H by — 1)

E[ Uty )on1] = CPES(8), o (17, S(87)), S(), alte), Ho H by — 1)

Furthermore, since the current discrete estimation of V,, is available,

the factors multiplying those expectations can be approximated as:?

Steps / Year
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(a) 90
—— Non-Adjusted
—=— Adjusted
80 -\ - & - Smoothing Adjusted |-
—— BS Analytical
a 70
[}
2
z 60
50§
40
10 100 1000 10000

V(t;, H™) >~ Vyj,
OV(tiq,H™) ~ V1+L70 — “YHI]'nfl _ 5ju(\71’+1)

&N Sm - sio*l

We will need to evaluate the first term on the right-hand side of (12)
nuimerically, so we need a discrete version of the shifted value function att,
and use the following scheme:

V1+17 + Sjo(vl+l)(s K)+ + Vlj

Itis clear that 5( )= é;M( V ), therefore the discrete shifted value func-
tion V ,isregular around the ba‘mm level H and is well suited for a finite
dltterence integration.

Of course, we still rely on the continuous barrier adjustment to compen-
sate for the time discreteness of the finite difference scheme. To make this
approximation explicit we write:

Er'[1b1(rl,r{+1]<H‘7(tz‘ 1. S(t 1))] ~ El[Bl Vi 1}
Hiy1 = Hexp (—fo (ti. H)y/Atiy1)

Biy1 = diag(1s <mi, )
Wrapping everything up, we get our new discrete expectation operator:

Vi~ F; [B1+1V1+1] — &, Vi) C - Vl+1j CUI Digial

Cm Sj’ tzssj 5] i), H H tiyq — tx))

1<j=N

UID al
igita ( Ul Dlstmls o EI,S]) SJ #(m H.H, ti _tf))15]5N

This operator can easily be applied iteratively from time index N to 0.

Numerical results

In this section we present numerical results demonstrating the accuracy
and smoothness of our improved barrier option pricing scheme. As a bench-
mark instrument we take an AUD/USD ‘up and out’ call barrier option with
anotional of 10,000USD, time to maturity T'= 0.5 year, strike K= 0.85, and
barrier level H=0.9475. The market data used in pricing was based on close

Figure 1: Barrier option convergence w.r.t. number of steps per year for (a) CBS ( 6,,,,=14.75%) compared with analytical formula (‘BS Analytical’); (b) ‘Local Vol
compared with non-adjusted discrete barrier with 10,000 steps per year. We use 1000 states in our finite difference scheme.

(b) 130
—— Non-Adjusted
—=— Adjusted
- - Smoothing Adjusted
10 - —— Non-Adjusted 10K steps/year |~
)
@D
3 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
>
o
50
10 100 1000 10000
Steps / Year
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of business September 1, 2010. The spot price is §; = 0.89955. For simplicity
we have assumed that the interest rate markets implied flat rates of 1, =
0.153% and 7, = 2.005%. These zero rates were implied from the respective
1Y swap rates on that market date.

Figure 1 compares the convergence properties of different algo-
rithms as the number of time steps per year is increased. As expected,
simply replacing the continuous barrier with discrete barriers (‘Non-
Adjusted’) is slow to converge. Introducing the adjusted barrier approxi-
mation (‘Adjusted,’ cf. equation (8)) is an improvement, and in combina-
tion with the smoothing technique (“Smoothing Adjusted,” cf. earlier) is
even better.

Figures 2 and 3 show a spot ladder for the option price - price variation
with spot level - in order to compare the numerical smoothness of the algo-
rithms under the CBS assumptions, while Figures 4 and 5 show the same for
local volatility (‘Local VoI’). Both spot ladders are generated using a finite
difference resolution of 1000 states and 200 steps per year. It is clear that the
barrier adjustment and smoothing drastically improves smoothness and
accuracy - especially close to the barrier.

Figure 2: FX spot ladder of PV (CBS).

70
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50
40]

30

PV (USD)

7| ===~ Adjusted
+  Smoothing Adjusted
_| = BS Analytical

0.82 0.84 086 0.88
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Figure 3: Details of Figure 2 close to the barrier.
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Figure 4: FX spot ladder of PV (’Local Vol’). Analytical formula with constant
volatility is also listed to show the smile effects.
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Figure 5: Details of Figure 4 close to the barrier.
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Figure 6: FX spot ladder of delta (CBS).
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Figure 7: FX spot ladder of delta ("Local Vol’).
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Figure 8: FX spot ladder for gamma.
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Smoothness is more clearly demonstrated by the spot ladder for
delta and gamina shown for both CBS and local volatility assumptions in
Figures 6-8.Itis clear that the delta has been made very smooth by our
adjustment and that for all practical purposes, gamma is sufficiently accu-
rate.

Conclusion

We have presented a novel approximation which to our knowledge has
never been treated in the existing literature. The concept behind these
approximations is very similar to that of the control variate in a Monte Carlo
framework and can easily be extended to other modeling frameworks, like
non-deterministic drift or stochastic volatility models. One has to bear in
mind that the additional CBS computations involved by smoothing can
cause substantial computational overhead, but this can be mitigated by
using quick approximations for the normal distribution function and using
quick interpolation of the local volatility function.
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Appendix A

Here we propose to solve (6) on a finite difference grid defined by a time axis
6 =(t),y and a space axis X = (%) o<y SUCh that t = 0,7, =T. We assume that
both drift and rate functions can be formulated in terms of piecewise flat
curves on this time axis. Also, for improved accuracy the space grid should
contain the barrier level and all relevant strikes defining the payoff. We also
define the maximum sizes of time and space grids as:

Ay = maXi<izm (ti — ti-1)
Ay = max;<j-y (¥ — Xj_1)

In that setting we define the discrete approximation of the true value
function V obtained through a one-factor finite difference @scheme by V =
(V, rcienn, 1sjen where 8is the degree of implicitness of our scheme. Imposing
fell 1] guarantees the stability of the scheme. Maximum accuracy in time
is obtained for 8 = % and this is the value we use in practice. For ease of nota-

tion we introduce the slice vector defined by V= (Vo) ot
i i,j 1<j<N

vj € [1:N] iy = Ly<ng (i)
Vi= (ij)m-:x . .
Vi, M—1] (=6AuL)Vi=d+1=0) ALl Vi (aq)
Yjelo,....,N=1] ifx>h V=0
else:  Vy=Vy
. . L
J=N Loy = —A8
AxN-1(5 — Axy)
(L)
Ly = ——— (1,
M T AR (3 — Ax) )
Aly=1tliy1— b

AXj = Xjy1 — X

Li = (L)1 <j =y

i) — 0% (ti,x n? (1, x;
2<j<N-1 Lqu(ﬂ(m 31 ("1 1))_ 1 (z j)
AX; + AXj—1 20%A%;-1
2
n (l’i,X]) 1 1
Ly =r () + —+
i =1 (&) 2A%i-1 \AX  Axj_q
Lo utt) — 02t %) _ 2 (i, X))
w Ax; + Axy 20%A%_,
k¢{j_]’j'j+]} Li71+1:0
. (L)
=1 Lijp = ———— 41 (;
J i11 AX; (] T %) ( )
I w (L)
Ay — T
Axy (1+

where:

¢ the boundary coefficients of matrix L are obtained by applying the
discretized version of the loglinear boundary condition on the bottom
and top points of the space axis as characterized below;
¢ Tis theidentity matrix of dimension N.
v o'V
dx  9x2
We now denote the space made up of real-valued matrices of dimension
MxNbyT.
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We introduce the following || - || _ on this space, defined by:
IX]l = maxq<i<y,1<i<n %3]
X= (ij)lgigM,1gf§N

Furthermore, we define the approximate discrete conditional expecta-
tion operatorEA'[] defined on R" and with values R" by:

E: RY > RY
Vis B V] =T —=0AtL) (I 4+ (1 —0) AtL) V

Introducing the following error matrix:

e= (elj)lgst,lgjsN
ej = Vs =V (%)
Ttis clear that:
lim el =0
AgAr—0
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ENDNOTES
1. The barrier level can be a time-dependent function, but we will assume without loss of
generality that it is constant.

2. Gobet (2009) also treats Brownian bridge techniques to adjust for the overshooting
probability.

3. We note that by continuity of the option price, for any time t except the maturity time
t, = Twe have: (5, H-) = V(t; H+) = 0 and 2l _ VEnAD
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