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Abstract
In this article, we will discuss three pricing methods for LPI swap: perturba-
tion method, common factor method, and Monte-Carlo method. The pertur-
bation method can give a clear hedging idea, but not a great result except 
when the LPI is close to Zero-coupon. The common factor methods are modi-
fications of the common factor method introduced by Brody, Crosby, and 
Li (2008), the new common factor methods significantly improve the result 
for long-term LPI pricing. We will also discuss how to simplify and speed up 
the Monte-Carlo method for LPI pricing. Since the inflation option market 
also has skew/smile, we will discuss how to add the skew/smile effect into JY 
model, the idea is tested with real market data. 

Keywords
inflation swap, LPI, Jarrow–Yildirim model, market model, common factor, 
perturbation

I. Introduction
A Limited Price Index (LPI) is a UK inflation index that is used to define typi-
cal payout structures of UK pension plans. By definition, LPIs have annual 
returns that are equal to the corresponding annual UK inflation rates 
capped at y and floored at x, for some strikes x and y. The most common val-
ues for x and y are 0 and 5%, respectively.

LPI swaps are zero-coupon (ZC) swaps where a fixed GBP amount is 
exchanged at a given maturity T for the LPI return over the interval [0, T]. 
In general, LPI swaps must be priced with Monte Carlo since the underly-
ing LPI value is defined by non-trivially compounding the embedded caps 
and floors. However, one may resort to pricing models that allow for ana-
lytical approximations. This is the case for instance of Brody et al. (2008), 
who used a common-factor methodology to derive an LPI swap pricing 
formula under the Jarrow and Yildirim (JY) model (Jarrow and Yildirim, 
2003).

The Brody et al. (2008) approximation method works well for short- to 
middle-term swaps, but not necessarily for longer maturities. In fact, we will 
consider the example of a 40-year swap (a traded contract in the inflation 
swap market) and show cases where its pricing error can be as large as 24 bp, 
and hence larger than the typical bid-ask spreads observed in the market. 
Moreover, as already pointed out by Brody et al. themselves, the common-
factor method has the major drawback that it cannot reproduce the same 

Limited Price Indexation (LPI) Swap 
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maturity ZC swap price in the limit case where the LPI’s caps and floors 
 vanish.

In this article, we will modify the Brody et al. method and show that a sim-
ple change in their algorithm can already improve the approximation result 
for long-term swaps. Then, we will introduce a different numeraire, and show 
that the common factor method presents no bias if applied under this nume-
raire. In particular, this technique will prove to be very efficient when pricing 
the more liquid LPI swaps, as it is confirmed by our numerical results below.

In the following, we will first define the LPI swap, introduce a pertur-
bation method for LPI. By using a new numeraire which automatically 
converge the LPI price into the ZC price in the limit case when cap/floor van-
ishes.  We will then derive out the result for JY model since this is the most 
popular model in practice.  Then we will modify the common factor method 
introduced by Brody et al. and show that a simple change in their algorithm 
can already improve the approximation result for long-term swaps. We 
will also apply the method for the LPI price under the new numeraire and 
show that the common factor method presents no bias if applied under 
this numeraire. In particular, this technique will prove to be very efficient 
when pricing the more liquid LPI swaps, as it is confirmed by our numerical 
results. We will also discuss how to simplify/speed up MC under JY model. 
Then we will discuss how to extend the method to include the skew/smile 
effect. And we will test the real market data. The techniques discussed in 
this article can be applied to other inflation models; the extension of the 
method to inflation market model is given in the appendix.

II. LPI swaps
Zero-coupon LPI swap has an inflation leg, there is one payment at the matu-
rity, and the final payment is based on the LPI index times the notional of 
the swap.  There are two types of LPI swaps in current market. The type A N 
year LPI index is defined as: 

 
LPIN = max

(
min

(
CPIN
CPI0

, (Kc + 1)N
)

,
(
Kf + 1

)N) (2.1)

where K
c
 is the cap strike, usually set at 5%, K

f
 is the floor strike usually set 

at 0%. This type of LPI can be decomposed into a zero-coupon swap plus a 
zero-coupon cap and a zero-coupon floor. When K

c
 = ∞ and K

f
 = −∞ the zero-

 coupon LPI swap will have to converge to regular zero-coupon inflation 
swap. So this type of LPI is just vanilla derivative and easy to price. We will 
not  discuss it in this article.
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Type B N year term LPI index is constructed as:

 
LPIN = �N

i=1max

(
min

(
CPIi

CPIi−1
, Kc + 1

)
, Kf + 1

)
 (2.2)

where CPI
i
 is the CPI index set at time i, usually the reset frequency is yearly. 

Again when K
c
 = ∞ and K

f
 = −∞ the LPI swap has the exactly same payment 

as regular zero-coupon inflation swap. In more general case, the LPI index 
has imbedded year-on-year cap/floor option on the inflation rate and is path 
dependent. In this paper we will discuss how to price this type of LPI.

Denoting by P
n
(t,T

i
) the (nominal) zero-coupon bond price at time t with 

maturity T
i
 and EQ

n
N
 the expectation under the T

N
–forward measure QTN 

whose associated numeraire is P
n
 (t,T

N
), the LPI par swap rate is given by:

K = KN := N

√
EQ N

n [LPIN]

LPI0
− 1

Even if we can derive out the forward CPI index from the zero-coupon infla-
tion swap market, to predict LPI index still involves path depended calculation, 
which is usually done by MC, and is time consuming in general.  Blindly using 
MC does not shed light on the fundamental intuition of this product. 

In order to calculate the LPI index in more efficient ways, we will do 
some calculation first.

Let I(T
i
) = CPI

i
, rewrite the LPI index an in different way:

  

LPIN =
N∏

i=1

max

(
min

(
I (Ti)

I (Ti−1)
, Kc + 1

)
, Kf + 1

)

=
N∏

i=1

(
I (Ti)

I (Ti−1)
−
[

I (Ti)

I (Ti−1)
− Kc − 1

]+
+
[
Kf + 1 − I (Ti)

I (Ti−1)

]+)

=
N∏

i=1

⎛⎝ I (Ti)

I (Ti−1)

⎛⎝1 −
⎡⎣1 − Kc + 1

I(Ti)

I(Ti−1)

⎤⎦+

+
⎡⎣Kf + 1

I(Ti)

I(Ti−1)

− 1

⎤⎦+⎞⎠⎞⎠
= I (TN)

I (T0)

N∏
i=1

⎛⎝1 −
⎡⎣1 − Kc + 1

I(Ti)

I(Ti−1)

⎤⎦+

+
⎡⎣Kf + 1

I(Ti)

I(Ti−1)

− 1

⎤⎦+⎞⎠
= I (TN)

I (T0)
+ I (TN)

I (T0)

N∑
i=1

⎛⎝⎡⎣Kf + 1
I(Ti)

I(Ti−1)

− 1

⎤⎦+

−
⎡⎣1 − Kc + 1

I(Ti)

I(Ti−1)

⎤⎦+⎞⎠+ · ·
 
(2.3)

So the expected value at time t is

Et

(
exp

(
−
∫ TN

t
n(s)ds

)
LPIN

∣∣∣∣Ft

)

= Et

(
exp

(
−
∫ TN

t
n(s)ds

)
I(TN)

I(T0)

N∏
i=1

(
1 −

[
1 − Kc + 1

I(Ti)
I(Ti−1)

]+
+
[

Kf + 1
I(Ti)

I(Ti−1)

− 1

]+)∣∣∣∣Ft

)

= Et

(
exp

(
−
∫ TN

t
n (s) ds

)
I (TN)

I (T0)

∣∣∣∣Ft

)

+ Et

(
exp

(
−
∫ TN

t
n(s)ds

)
I(TN)

I(T0)

N∑
i=1

([
Kf + 1

I(Ti)
I(Ti−1)

− 1

]+
−
[
1 − Kc + 1

I(Ti)
I(Ti−1)

]+)∣∣∣∣Ft

)
+ · · ·

 (2.4)

Here E
t
 means under the spot measure, F

t
 denotes the information available in 

the market at time t. We only expand into first order term on the option pric-
ing, and ignored the higher order terms.  From the equation, we can see LPI 
can be decomposed into leading order, which is the regular Zero-coupon swap, 
plus first order correction of the embedded cap/floor option, and also higher 
orders which are the compounding corrections. With this decomposition, we 
can recover easily the trivial zero-coupon result when the cap/floor vanishes. 

Let us define the forward CPI at time t for maturity T
i
 by I(t,T

i
) = EQ

n
i  

[I(T
i
)|F

t
], where EQ

n
i 
 denotes expectation under the T

i
–forward measure. 

Denote by P
n
(t,T

i
) the (nominal) zero-coupon bond price at time t with matu-

rity T
i
, and forward CPI ratio at time t for period from T

0
 to T

N
 as

 
γ (t, T0 : TN) = EQ N

n

[
I (TN)

I (T0)

∣∣∣∣Ft

]
= J (t, TN)

J (t, T0)
eC(t,T0:TN)

 (2.5)

where C(t,T
0
:T

N
) is the convexity adjust term for the, which can be found in 

the literature (Mercurio, 2005) and will also be shown in Appendix A.
Then consider the measure Q 

r
N associated with the numeraire

Z (t) = Pn (t, TN) γ (t, T0 : TN)

And define by 

 

dQ N
r

dQ N
n

= Z (TN) Pn (t, TN)

Z (t) Pn (TN, TN)
= γ (TN, T0 : TN) Pn (t, TN)

Pn (t, TN) γ (t, T0 : TN)

= IN/I0
γ (t, T0 : TN)

= IN/I0
J(t,TN)
J(t,T0)

eC(t,T0:TN)  (2.6)

Then the expectation of   
I(T

i
)
 ____ I(T

i−1
)   under Q 

r
N measure is defined as

 
EQ N

n

(
I (TN)

I (T0)

I (Ti)

I (Ti−1)

∣∣∣∣Ft

)
= J (t, TN)

J (t, T0)
eC(t,T0:TN)EQ N

r

(
I (Ti)

I (Ti−1)

∣∣∣∣Ft

)
 (2.7)

From Equation (2.4), if we can derive out the expectation and volatility 

of   
I(T

i
)
 ____ I(T

i−1
)   under Q 

r
N measure defined as:

Et

(
exp

(
−
∫ TN

t
n (s)ds

)
I (TN)

I (T0)

I (Ti)

I (Ti−1)

∣∣∣∣Ft

)
= pn (t, TN) EQ N

n

(
I (TN)

I (T0)

I (Ti)

I (Ti−1)

∣∣∣∣Ft

)
= pn (t, TN)

J (t, TN)

J (t, T0)
eC(t,T0:TN)EQ N

r

(
I (Ti)

I (Ti−1)

∣∣∣∣Ft

)
then we can easily price LPI swap. In the following we will try to price LPI 
under JY model.  The detail of the derivation is given in Appendix A. The for-
mula for market model result also will be provided in Appendix B.

III. LPI swap price under JY model
The JY model is constructed as follows (Jarrow and Yildirim, 2003; Mercurio, 
2009):

 

dn (t) = [ϑn (t) − ann (t)] dt + σndWn (t)

dr (t) = [ϑr (t) − ρrIσIσr − arr (t)] dt + σrdWr (t)

dI (t) = I (t) [n (t) − r (t)] dt + σIdWI (t)

 (3.1) ^
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(W
n
,W

r
,W

I
) is a three-dimensional Brownian motion whose components have 

the following instantaneous correlations: r
nr

,r
rI
,r

nI
.

So spot CPI will be

I (T) = I (t) exp

(∫ T

t
[n (s) − r (s)] ds − 1

2
σ 2

I (T − t) + σI [WI (T) − WI (t)] (3.2) 

Then the expectation of    
I(T

i
)
 ____ I(T

i−1
)    under Q 

r
N measure is

 

EQ N
r

(
I (Ti)

I (Ti−1)

∣∣∣∣Ft

)
= EQ N

r

(
exp

{∫ Ti

Ti−1

[n(s) − r(s)]ds − 1

2
σ 2

I (Ti − Ti−1)

+ σI[WI(Ti) − WI(Ti−1)]

}∣∣∣∣Ft

)
 (3.3)

Since JY model can be analytically solved, after some straightforward but 
tedious algebra we can get the final answer considering T

0
 ≤ T

i−1
 < T

i
 ≤ T

N
:

EQ N
r

(
I(Ti)

I(Ti−1)

∣∣∣∣Ft

)
= J(t, Ti)

J(t, Ti−1)
exp

[ ∫ Ti−1

t
dsX(s, Ti−1, Ti) +

∫ T0

t
dsỸ(s, T0, Ti−1, Ti, TN)

+
∫ Ti−1

max(t,T0)
dsY(s, Ti−1, Ti,TN) +

∫ Ti

Ti−1

dsZ(s, Ti, TN)

]
 (3.4)

with

X(s, Ti−1, Ti) = (Br(s, Ti−1)σr − Br(s, Ti)σr)(Br (s, Ti−1)σr

− Bn(s, Ti−1)ρnrσn) − (Br(s, Ti−1)σr − Br(s, Ti)σr)ρrIσI

Y(s, Ti−1, Ti, TN) = (Bn(s, Ti)σn − Bn(s, Ti−1)σn)(Bn(s, Ti)σn

− Br(s, TN)ρnrσr + ρnIσI) − (Br(s, Ti)σr

− Br(s, Ti−1)σr)(Bn(s, Ti)ρnrσn − Br(s, TN)σr + ρrIσI)

Ỹ(s, T0, Ti−1, Ti, TN) = (Bn(s, Ti)σn − Bn(s, Ti−1)σn)([Bn(t, Ti) − Bn(t, T0)]σn − [Br(t, TN)

− Br(t, T0)]ρnrσr) − (Br (s, Ti)σr − Br(s, Ti−1)σr)([Bn(t, Ti)

− Bn(t, T0)]ρnrσn − [Br (t, TN) − Br(t, T0)]σr )

Z(s, Ti, TN) = Bn(s, Ti)σn[Bn(s, Ti)σn − Br(s, TN)ρnrσr + ρnIσI]

− Br(s, Ti)σr [Bn(s, Ti)ρnrσn − Br(s, TN)σr + ρrIσI]

+ σI(Bn(s, Ti)ρnIσn − Br(s, TN)ρrIσr) + σ 2
I

 (3.5)

I(t,T
i
) is the forward CPI index. For x ∈{n,r}, B

x
(t,T) =   1−e−ax(T−t)

 ____ a
x
  

The variance can also be derived out:

Var

(
ln

(
I(Ti)

I(Ti−1)

)∣∣∣∣Ft

)
=
∫ Ti−1

t
ds[(Bn(s, Ti) − Bn(s, Ti−1))2σ 2

n + (Br(s, Ti) − Br(s, Ti−1))2σ 2
r − 2(Bn(s, Ti)

− Bn(s, Ti−1))(Br (s, Ti) − Br(s, Ti−1))ρnrσnσr ] +
∫ Ti

Ti−1

ds[Bn(s, Ti)
2σ 2

n + Br(s, Ti)
2σ 2

r

+ σ 2
I − 2Bn(s, Ti)Br (s, Ti)ρnrσnσr + 2Bn(s, Ti)ρnIσnσI − 2Br(s, Ti)ρrIσrσI]

 (3.6)

The covariance can also be derived out for j >i, which has also been 
derived out in Brody et al. (2008):

cov

(
ln

(
I(Ti)

I(Ti−1)

)
, ln

(
I(Tj)

I(Tj−1)

)∣∣∣∣Ft

)
=
∫ Ti−1

t
cov(Bn(Ti−1, Ti)e

−an(Ti−1−s)σndWn(s)

− Br(Ti−1, Ti)e
−ar (Ti−1−s)σrdWr(s), Bn(Tj−1, Tj)e

−an(Tj−1−s)σndWn(s)

− Br(Tj−1, Tj)e
−ar (Tj−1−s)σrdWr(s))

+
∫ Ti

Ti−1

cov(Bn(s, Ti)σndWn(s) − Br(s, Ti)σrdWr(s)

+ σIdWI(s), Bn(Tj−1, Tj)e
−an(Tj−1−s)σndWn (s) − Br(Tj−1, Tj)e

−ar (Tj−1−s)σrdWr (s))

 (3.7)

Since we know the average and the variance of lognormal process  

Y
i
 =   

I(T
i
)
 ____ I(T

i−1
)    then the first order term of the LPI price is

Pn (t, TN)
J (t, TN)

J (t, T0)
eC(t,T0,TN)EQ N

r

([
Kf + 1

Yi
− 1

]+
−
[
1 − Kc + 1

Yi

]+)
 (3.7)

Consider Y
i
 is a lognormal process with drift term of m(t) then

Yi (T) = Yi (t) exp

(∫ Ti

t
μ (s) ds − 1

2
σ 2

i (Ti − t) + σi (Wi (Ti) − Wi (t))

)
 (3.7)

For w = ±1 we can get

E

([
w

(
K

Yi
− 1

)]+)

= w
K

Yi (t)
e− ∫Ti

t μ(s)ds+σ2
i (Ti−t)N

⎛⎝w
ln( K

Yi(t)
) − ∫ Ti

t μ(s)ds + 3
2σ 2

i (Ti − t)

σi
√

(Ti − t)

⎞⎠
− wN

⎛⎝w
ln( K

Yi(t)
) − ∫ Ti

t μ (s)ds + 1
2σ 2

i (Ti − t)

σi
√

(Ti − t)

⎞⎠
 

(3.8)

Then we can calculate the first-order correction of LPI price. 

IV. Price of LPI with common factor
The LPI price under JY model has been discussed in Brody et al. (2008) and 
Ryten (2007). The basic idea in those literatures is to replace the covariance 
matrix Cov(lnY

i
,lnY

j
) with a rank one matrix. In JY model, Y

i
 is lognormal dis-

tributed under terminal zero coupon bond measure, Y
i
 = exp(a

i
z

i 
+ b

i
) where 

z
i˜N(0,1)  is normal distributed random variable. The key idea of Brody et al. 

(2008) and Ryten (2007) is to replace Y
i
 by Ŷi = exp(bi + ai(α̂iw +

√(
1 − α̂2

i

)
εi) 

where {w,e
1
,…,e

n
} are independent normal distributed random variables. 

And w is the common factor.  So conditional on w the individual cap/floors 
are independent and LPI price can be approximated as

Pn (t, TN) EQ N
n (LPIN) = Pn (t, TN) EQ N

n

(
N∏

i=1

max
(
max (Yi, Kc + 1) , Kf + 1

))

= Pn (t, TN) EQ N
n

(
N∏

i=1

(
Yi − [Yi − Kc − 1]+ + [

Kf + 1 − Yi
]+))  (4.1)
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To price LPI becomes one-dimension integration after plug in the indi-
vidual option value formula. 

In reference Brody D et al. (2008), the author approximate

 
α̂i ≈ exp

[
1

N − 1

(
kι −

∑N
j=1 kj

2 (N − 1)

)]
 (4.2)

with

 

kι =
N∑

j �=i

ln
[
cov

(
ln Yi, ln Yj

)]
 (4.3)

(for N = 1, ̂a
1
 = 1; for N = 2,  ̂a

1
 = 1,  ̂a

2
 = corr(lnY

1
,lnY

2
) these are exact results).

 Instead of (4.3) using the covariance matrix, we believe it is an error, 
since the original idea comes from Jäckel (2004), who discussed the 
approximation of correlation matrix.  So it is nature to use the correlation 
matrix:

 

kι =
N∑

j �=i

ln
[
corr

(
ln Yi, ln Yj

)]
 (4.4)

In which corr(lnY
1
,lnY

2
) is the correlation.  In the following section, we will 

see this simply modification will improve the result a lot.
As pointed out by the authors in the paper, the above approximation 

method cannot reproduce the standard zero-coupon price at the limit case 
when k

c
 = ∞ and k

f
 = −∞. Their results also show the zero-coupon case is the 

worst scenario for this approximation method.  In order to reproduce the 
result of zero-coupon, the full correlation matrix is required, not just one 
common factor.

The most popular LPI swaps have k
c
 = 5% and k

f
 = 0%, which is almost 

the worst case for the above method under current market condition. 
In order to improve the result, we will propose different approach as 
 following.

 Consider the LPI valuation formula in (2.3) and (2.4):

Et

(
exp

(
−
∫ TN

t
n (s)ds

)
LPIN

∣∣∣∣Ft

)

= Et

(
exp

(
−
∫ TN

t
n(s)ds

)
I(TN)

I(T0)

N∏
i=1

(
1 −

[
1 − Kc + 1

Yi

]+
+
[

Kf + 1

Yi
− 1

]+)∣∣∣∣Ft

)

= Pn(t, TN)
J(t, TN)

J(t, T0)
eC(t,T0,TN )EQ N

r

( N∏
i=1

(
1 −

[
1 − Kc + 1

Yi

]+
+
[

Kf + 1

Yi
− 1

]+)∣∣∣∣Ft

)

 (4.5)

The expectation EQ r
N(Y

i
)  has been derived out for JY model, Y

i
 is a lognormal 

process, with known average and variance.

If we apply the same common factor technique, let Ỹ
i
 = exp( b̃

i
+

a
i
(â

i
w + 

√(
1 − α̂2

i

)
εi)  (just remember, now Ŷ

i
 has different drift term b̃

i
 

due to different measure). We can approximate the pricing of LPI at 
time t as: 

Et

(
exp

(
−
∫ TN

t
n (s)ds

)
LPIN

∣∣∣∣Ft

)

≈ pn(t, TN)
J(t, TN)

J (t, T0)
eC(t,T0,TN)EQ N

r

( N∏
i=1

(
1 −

[
1 − Kc + 1

Ỹι

]+
+
[

Kf + 1

Ỹι

− 1

]+)∣∣∣∣Ft

)
 (4.6)

It is clear to see that even we approximate the correlation matrix with 
one common factor load, the above equation will automatically lead to zero-
coupon price at the limit case when k

c
 = ∞ and k

f
 = −∞. For the most popular 

LPI with k
c
 = 5%, k

f
 = 0%, there is clear advantage in this method.

V. Pricing LPI with MC for JY model
Since we can derive the marginal lognormal distribution of Y

i
 under Q

r
N 

measure above (the result under terminal measure  Q
n
N  as been given in 

Brody et al. (2008), we also know the correlation corr(lnY
i
,lnY

j
), which means 

we analytically have the full covariance matrix of Y
i
 with i = 1,…,N. Then 

when we do MC calculation, instead of the regular MC method, we can just 
simulate the full distribution of Y

i
 for i = 1,…,N with N correlated random 

variable. With this idea the MC method can be greatly speed up. We also use 
sobol sequences in the random number generating.

VI. Numerical results
We now examine some numerical examples with the different methods dis-
cuss above. For comparison purpose, we will adopt the same model param-
eters given in Brody et al. (2008), the parameters used there are based on 
historical estimation of the sterling market data with a four factor JY model, 
in which the nominal curve was modeled with 2-factor Hull–White model 
instead of one, and the parameters are given as:

a1
n = 0.06494565 σ 1

n = 0.00649825

a2
n = 0.00001557535 σ 2

n = 0.0063321172

ar = 0.032193009 σr = 0.006093904 σI = 0.0104000

ρ12
nn = −0.46296278 ρrI = −0.03781752

ρ11
nr = ρ12

nr = 0.518100 ρ1
nI = ρ2

nI = −0.018398113

(Notice the correlations r
rI
 and r

nI
 have different signs from the original 

Brody et al. (2008), this is because in Brody et al. (2008) they are modeling 
the bonds, here we are modeling the short rates, so the correlations have 
different signs). Our results above can be easily extended to the case when 
the nominal curve is 2-factor Hull–White model instead of one factor.  To 
save the space we will ignore the tedious formulas here. The initial nominal 
curve is flat 5.0%; real rate is flat 2.5%. 

When we look at different maturities with 10 year, 25 year, and 40 
year, the swap can have different cap/floor strikes. For comparison pur-
pose we use same strikes as in Brody et al. (2008).  The results are shown in 
Table A, B, C. 

In the tables, the MC results from Brody et al. (2008), are quoted, in 
which paper 130 million paths have been simulated. The one common fac-
tor quasi-analytic results in Brody et al. (2008) are also shown as BCL column, 
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the simply modification of the BCL method by using the correlation matrix 
to derive the common factor load as (4.4) is shown as BCL-Rho. The first 
order result of LPI described is this article is shown as ZM-o(1). The common 
factor quasi-analytic result based on the technique in this article is shown as  
ZM-rho. 

If we use MC as benchmark, the error of all the other methods is also 
shown in the tables. The differences are quoted as basis point. The 40-yr 
LPI MC are done by our MC method described above. The errors are also 
shown in Figure 1, the Y-axis is the error, and the X-axis shows the same 
11 cases with different cap/floor strikes as used in Brody et al. (2008). Real 
 market usually does not have such variety of strikes, but since we fix the 
inflation rate around 2.5%, so the variety of strikes will mimic cases when 
the option is close to the money or far out of the money.

It is interesting to see that all methods have good approximation result 
for short-term cases, say 10 year. But the result is very different for middle-
to long-term, such as 25 year or 40 year. The method provided by BCL has 4 
basis points error for the case of strike (0%, 5%) and 25-year term, and the 
error will be 15 basis points for a 40-year LPI, this error is not ignorable. For 
the case when the LPI is more close the 0-coupon, the error is even bigger.

10-yr LPI Implied Rate (%) Diff rates (bp)

Case Cap Floor MC BCL BCL-Rho ZM-o(1) ZM-Rho BCL BCL-Rho ZM-o(1) ZM-Rho

1 0.03 0.0 2.288252 2.28746 2.2894 2.2867 2.2895 −0.079 0.115 −0.155 0.125

2 0.03 0.02 2.50856 2.50836 2.5086 2.5078 2.5085 −0.02 0.004 −0.076 −0.006

3 0.032 0.01 2.38549 2.38475 2.3861 2.3850 2.3862 −0.074 0.061 −0.049 0.071

4 0.035 0.005 2.42731 2.42622 2.4279 2.4275 2.4281 −0.109 0.059 0.019 0.079

5 0.04 0.01 2.52303 2.52179 2.5229 2.5231 2.5231 −0.124 −0.013 0.007 0.007

6 0.045 0.0175 2.66821 2.66727 2.6673 2.6665 2.6674 −0.094 −0.091 −0.171 −0.081

7 0.0475 0.0025 2.52878 2.52708 2.5286 2.5289 2.5289 −0.17 −0.018 0.012 0.012

8 0.05 0 2.52978 2.52801 2.5295 2.5299 2.5299 −0.177 −0.028 0.012 0.012

9 0.05 0.005 2.53953 2.53785 2.5392 2.5395 2.5395 −0.168 −0.033 −0.003 –0.003

10 0.06 0 2.53493 2.53311 2.5346 2.5349 2.5349 −0.182 −0.033 −0.003 −0.003

11 0.12 −0.08 2.53145 2.52957 2.5312 2.5315 2.5315 −0.188 −0.025 0.005 0.005

25-yr LPI Implied Rate (%) Diff rates (bp)

Case Cap Floor MC BCL BCL-Rho ZM-o(1) ZM-Rho BCL BCL-Rho ZM-o(1) ZM-Rho

1 0.03 0.0 2.19897 2.18018 2.1975 2.1745 2.1982 −1.879 −0.147 −2.447 −0.077

2 0.03 0.02 2.49455 2.49077 2.4941 2.4652 2.4905 −0.378 −0.045 −2.935 −0.405
3 0.032 0.01 2.33336 2.31844 2.332 2.3157 2.3318 −1.492 −0.136 −1.766 −0.156

4 0.035 0.005 2.36778 2.34451 2.3655 2.3576 2.3671 −2.327 −0.228 −1.018 −0.068

5 0.04 0.01 2.50389 2.47889 2.5009 2.498 2.5029 −2.5 −0.299 −0.589 −0.099

6 0.045 0.0175 2.70033 2.68071 2.6972 2.688 2.6982 −1.962 −0.313 −1.233 −0.213

7 0.0475 0.0025 2.5159 2.47651 2.511 2.5146 2.5156 −3.939 −0.49 −0.13 −0.03

8 0.05 0 2.5192 2.47645 2.5138 2.5185 2.5191 −4.275 −0.54 −0.07 −0.01

9 0.05 0.005 2.54103 2.50193 2.536 2.5396 2.5406 −3.91 −0.503 −0.143 −0.043

10 0.06 0 2.5419 2.49511 2.5358 2.5415 2.5417 −4.679 −0.61 −0.04 −0.02

11 0.12 −0.08 2.53145 2.47849 2.5245 2.5315 2.5315 −5.296 −0.695 0.005 0.005

Regarding the first order perturbation result given in this paper ZM-
O(1), it does very good job for the case of (0%, 5%) even up to 40-year term, 
in which case the error is about 2 basis points. But sometimes it does a 
bad job, especially when the cap/floor option value is big, for example the 
case of (2%, 3%).  Consider the ATM inflation rate is 2.5315, both cap/floor 
option values are not ignorable; the error of LPI price can be as high as 17 
basis points. This can be easily explained, since the idea of the first order 
pricing is based on the option value is small, when the option value is not 
small, the higher order correction must be considered especially when 
the contract is long term. Fortunately most popular LPI contract is (0%, 
5%), and the inflation rate is around 2–3%. So in this normal condition, we 
believe first order pricing is good enough. Under abnormal economic con-
dition such as hyperinflation of deflation, we should not use the first-order 
method.

Regarding the modification of the original BCL method by using corre-
lation matrix in common factor calculation, the BCL-rho method greatly 
improves the original BCL results. The biggest error for 25-year LPI is just 
0.7 basis points comparing 5 basis points error in original method. For 40-
year LPI, the biggest error is 2 basis points comparing to 25 basis points. 
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40-yr LPI Implied Rate (%) Diff rates (bp)

Case Cap Floor MC BCL BCL-Rho ZM-o(1) ZM-Rho BCL BCL-Rho ZM-o(1) ZM-Rho

1 0.03 0.0 2.0543 1.9855 2.048 1.9129 2.0449 −6.88 −0.63 −14.14 −0.94

2 0.03 0.02 2.456 2.4455 2.4553 2.2868 2.4394 −1.05 −0.07 −16.92 −1.66

3 0.032 0.01 2.2379 2.1914 2.234 2.1181 2.2271 −4.65 −0.39 −11.98 −1.08

4 0.035 0.005 2.2549 2.1785 2.2485 2.1708 2.2467 −7.64 −0.64 −8.41 −0.82

5 0.04 0.01 2.4348 2.3576 2.4286 2.376 2.4274 −7.72 −0.62 −5.88 −0.74

6 0.045 0.0175 2.6905 2.6318 2.6859 2.6223 2.6825 −5.87 −0.46 −6.82 −0.8

7 0.0475 0.0025 2.4528 2.3181 2.4419 2.4289 2.4494 −13.47 −1.09 −2.39 −0.34

8 0.05 0 2.4608 2.3094 2.4484 2.4434 2.4584 −15.14 −1.24 −1.74 −0.24

9 0.05 0.005 2.4995 2.3669 2.4887 2.4778 2.4964 −13.26 −1.08 −2.17 −0.31

10 0.06 0 2.525 2.3496 2.5103 2.5177 2.5244 −17.54 −1.47 −0.73 −0.06

11 0.12 −0.08 2.5289 2.284 2.5076 2.5314 2.5314 −24.49 −2.13 0.25 0.25

Comparing the one common factor method introduced in this paper 
ZM-rho and the modified BCL-rho method, both do very good job for all cap/
floor cases and also long term cases.  The biggest error is about 2 basis points 
for 40-year LPI price, which is less than the market quote bid/ask spread, 
which is about 6 basis points. We believe either method is good enough in 
LPI pricing. If we compare these two methods, the biggest error for BCL-rho 
is when the LPI is close to Zero-coupon case, and do best job at (2%, 3%); 
instead the ZM-rho method has biggest error at (2%, 3%) and has no error at 
zero-coupon case.  These two methods exactly complement each other.  We 
can use different methods for different cases. Consider the most general 
case is (0%, 5%), we can see the new method ZM-rho is a better choice.

VI. Skew/smile effect in LPI pricing
We only discussed the JY model, which produces flat implied volatilities in 
shifted lognormal terms for year-on-year inflation caps/floors. However, the 

market prices of these caps/floors imply volatility skews/smiles similar to all 
other option markets. For example Figure 2 shows the implied year on year 
inflation caplet volatility from Bloomberg on 08/03/10, clear the volatilities 
are not flat.

In order to include the skew/smile effect in the LPI pricing, we have to 
use a more sophisticate model than JY such as stochastic volatility inflation 
market model (Mercurio and Moreni, 2005).  Alternatively, we can resort 
to a more empirical approach and include skew/smile effects by using the 
 following technique.

The first simply approach is that we can twist the JY model such that the 
cap/floor price imbedded in the LPI can be reproduced. This is done in the JY 
calibration: instead of calibration the cap or floor for JY model we will cali-
brated onto strategy [K

f  
+ 1− Y

i
]+  − [Y

i  
− K

c  
− 1]+.  After the calibration we will 

just use the JY model to price LPI. 
Another approach will be described as follows.
The approximate pricing of LPI,

7/15/2010 ZC-Market LPI-Market JY-LPI ZM-o(1)-LPI ZM-rho-LPI JY-diff(bp) ZM-o(1)-diff(bp) ZM-rho-diff(bp)

2 3.5 3.149 3.1584 3.1291 3.1293 0.94 −1.99 −1.97

3 3.26 3.0625 3.088 3.0693 3.0694 2.55 0.68 0.69

4 3.216 3.044 3.0813 3.0688 3.069 3.73 2.48 2.5

5 3.188 3.067 3.1014 3.0937 3.0938 3.44 2.67 2.68

6 3.1525 3.102 3.1326 3.1335 3.1335 3.06 3.15 3.15

7 3.1725 3.134 3.1558 3.1683 3.1683 2.18 3.43 3.43

8 3.1965 3.167 3.1818 3.204 3.2041 1.48 3.7 3.71

9 3.2245 3.202 3.2113 3.2398 3.2404 0.93 3.78 3.84

10 3.26 3.242 3.2472 3.278 3.2845 0.52 3.6 4.25

15 3.44 3.43 3.4276 3.4588 3.4606 −0.24 2.88 3.06

20 3.565 3.565 3.5598 3.5763 3.5787 −0.52 1.13 1.37

25 3.574 3.611 3.5706 3.611 3.6359 −4.04 0 2.49

30 3.59 3.666 3.5879 3.6505 3.6575 −7.81 −1.55 −0.85

40 3.537 3.679 3.536 3.674 3.689 −14.3 −0.5 1

50 3.525 3.69 3.5248 3.719 3.7474 −16.52 2.9 5.74

58-68_WILM_Zhang_TP_Jan_2012_Fin63   6358-68_WILM_Zhang_TP_Jan_2012_Fin63   63 2/25/12   11:53:00 AM2/25/12   11:53:00 AM



64  Wilmott magazine

Figure 1: The LPI pricing error with different methods.
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) including the skew/smile 

effect,  for any chosen stochastic volatility model, this term can be easily 

approximated or use replication to price it. Here considering the  simplicity 
of JY model, we still use the JY model to get the correct drift term for Y

i
 

under measure Q 
r
N, but we use the market volatility at corresponding strike 

instead of the JY model implied volatility.  The reason for using the pricing 
formula under the Q 

r
N measure is to get option payouts that only depend 

on Y
i
, so that there is no ambiguity on the market volatilities to use in the 

approximation. 
This simple method of handling skew/smile effects gives LPI prices that 

are very close to those contributed by dealers, this will be shown in the 
 following section. If higher order correction terms are needed, we may add 
them by using the common factor method. 

VII. Real Market Examples
In order to check whether the model described in this paper works in the 
real market including the skew/smile effect, we will test real market data. 
In the testing we used the market data on July 15, 22, and 26, 2010. We cal-
culated the LPI price from 2 year to 50 year based on market quoted year-on-
year cap/floor option value, inflation zero-coupon curve and swap curve. 
The option market has price quote only up to 30 year, so we will flat out the 
implied volatility up to 50 year in order to price 50-year LPI. The results are 
based on three different methods, first is JY model, second is the first order 
method including skew/smile effect (ZM-o(1)) and the last is full skew/smile 
model (ZM-rho). The result is given in Table D, E, and F.

In the tables we also show the LPI market quotes from one dealer, we take 
that quotes as benchmark and compared the difference with our results. 
Figure 3 shows the difference between the market quote LPI and our results. 
The X-axis is the term of LPI swap. Y-axis is the rate difference comparing 
with the benchmark quotes in basis point. 

We can see all three methods priced LPI close to the market quotes up to 
20 year, with maximum difference of four basis points. But the behaviors 
are different for long term above 20 years.  The difference with JY method is 
much bigger. This can be explained that since JY model is fixed parameter 
model, it cannot fit the cap/floor market on all the terms, and especially we 
are going to extrapolate the calculation to 50 years LPI.  

The methods based on Q 
r
N measure, either the first order (ZM-o(1)) or full 

order (ZM-rho) give closer results to market quotes for long-term LPI. This is 
because these methods have the freedom to use the real market volatilities 
and probably the dealer also used similar volatility extrapolation. 

For all terms of LPI from 2 to 50 year, we can see most differences are 
within 4 basis points which are within the current LPI market bid/ask 
spread. There are a few outliers:  the 2-year LPI on 7/22/10 and 7/26/10 is very 
different from benchmark, this is because the market had a 5 basis point 
jump in the 2-year zero-coupon, maybe the option market did not update 
fast enough; the 50-year LPI on 7/22/10 based on the full-order method (ZM-
rho), we do not know exactly what’s the reason. Intuitively we can try to 
understand  that since the quoted LPI(3.64%) at 50 year is higher than zero-
coupon rate (3.505%), which means the floor option has more value than 
the cap option, when market of the zero-coupon rate move from 3.525% on 
7/15 to 3.505% on 7/22. Then the LPI should at most move down by 2 basis 
points or could move up (when the underline move down the floor option 
would be even more valuable than the cap option which will push the 
spread of LPI to zero-coupon even higher). But instead the market quoted LPI 
moved down by 5 basis points. Thinking in this way maybe the market quote 
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E.7/22/2010 ZC-Market LPI-Market JY-LPI ZM-o(1)-LPI ZM-rho-LPI JY-diff(bp) ZM-o(1)-diff(bp) ZM-rho-diff(bp)

2 3.4538 3.212 3.2362 3.1678 3.1679 2.42 −4.42 −4.41

3 3.2537 3.0925 3.1137 3.0895 3.0896 2.12 −0.3 −0.29

4 3.144 3.037 3.0338 3.0537 3.0538 −0.32 1.67 1.68

5 3.091 3.044 3.0232 3.0629 3.0631 −2.08 1.89 1.91

6 3.1255 3.077 3.0498 3.1018 3.1022 −2.72 2.48 2.52

7 3.136 3.11 3.0781 3.139 3.1394 −3.19 2.9 2.94

8 3.143 3.143 3.1099 3.1743 3.1748 −3.31 3.13 3.18

9 3.193 3.179 3.1523 3.2114 3.2116 −2.67 3.24 3.26

10 3.214 3.218 3.1847 3.2507 3.2512 −3.33 3.27 3.32

15 3.3738 3.405 3.3691 3.4317 3.4334 −3.59 2.67 2.84

20 3.529 3.54 3.5059 3.5449 3.5474 −3.41 0.49 0.74

25 3.538 3.585 3.5179 3.5709 3.5763 −6.71 −1.41 −0.87

30 3.544 3.639 3.5354 3.5993 3.6439 −10.36 −3.97 0.49

40 3.511 3.646 3.4874 3.6115 3.6857 −15.86 −3.45 3.97

50 3.505 3.64 3.4834 3.6499 3.7695 −15.66 0.99 12.95

F.7/26/2010 ZC-Market LPI-Market JY-LPI ZM-o(1)-LPI ZM-rho-LPI JY-diff(bp) ZM-o(1)-diff(bp) ZM-rho-diff(bp)

2 3.44 3.219 3.2024 3.1607 3.1608 −1.66 −5.83 −5.82

3 3.228 3.0985 3.0949 3.0891 3.0894 −0.36 −0.94 −0.91

4 3.151 3.044 3.0245 3.0546 3.0549 −1.95 1.06 1.09

5 3.108 3.05 3.0206 3.0644 3.0648 −2.94 1.44 1.48

6 3.097 3.083 3.0521 3.1043 3.1047 −3.09 2.13 2.17

7 3.138 3.116 3.0853 3.1425 3.1429 −3.07 2.65 2.69

8 3.153 3.149 3.1213 3.1785 3.1788 −2.77 2.95 2.98

9 3.1485 3.185 3.1583 3.215 3.2151 −2.67 3 3.01

10 3.224 3.224 3.1919 3.2528 3.2541 −3.21 2.88 3.01

15 3.41 3.411 3.3806 3.4321 3.433 −3.04 2.11 2.2

20 3.529 3.545 3.5136 3.5463 3.5502 −3.14 0.13 0.52

25 3.536 3.589 3.5243 3.5716 3.5763 −6.47 −1.74 −1.27

30 3.547 3.645 3.5441 3.6032 3.6102 −10.09 −4.18 −3.48

40 3.534 3.674 3.5263 3.6339 3.647 −14.77 −4.01 −2.7

50 3.528 3.661 3.5126 3.668 3.6917 −14.84 0.7 3.07

LPI was not good enough. Still, even the general pricing of long-term LPI is 
close to the market quotes, we have to be cautious when we trying to price 
LPI based on extrapolation of option market.

Conclusion
Even there is a substantial market demand in LPI swap, but there is very lit-
tle discussion in the literature on how to price this product. In this paper, we 
discussed a few efficient pricing ideas based on the Jarrow–Yildirim model. 
The methods not just improve the pricing speed, the simple extension can 
be used in real market pricing by including the skew/smile effect, and also it 
could provide a nature hedging for LPI instrument. The method can also be 

generalized to other model such as the market model, this generalization 
will be given in Appendix B.  Apply the method on more sophisticated sto-
chastic model will be discussed other place. 
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Figure 2: The implied inflation year on year caplet volatility for GBP on 08/03/10.

Figure 3: The pricing difference of LPI comparing with market 
quotes.

-20

-15

-10

-5

0

5

10

2 3 4 5 6 7 8 9 10 15 20 25 30 40 50b
p

LPI price difference 7/15/2010

ZM-Rho ZM-o(1) JY

-20

-15

-10

-5

0

5

10

15

2 3 4 5 6 7 8 9 10 15 20 25 30 40 50

b
p

LPI price difference 7/22/2010

ZM-Rho ZM-o(1) JY

-20

-15

-10

-5

0

5

2 3 4 5 6 7 8 9 10 15 20 25 30 40 50

b
p

LPI price difference 7/26/2010

ZM-Rho ZM-o(1) JY

focused on developing pricing/risk models for interest rate derivatives, equity derivatives, 
currently responsible for inflation derivative products.
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APPENDIX A 
Expectation of   

I(T
i
)
 ____ I(T

i-1
)   under Q

r
N measure for JY model is presented.

The JY model is constructed as follows:

 

dn(t) = [ϑn (t) − ann (t)] dt + σndWn (t)

dr(t) = [ϑr (t) − ρrIσIσr − arr (t)] dt + σrdWr (t)

dI(t) = I (t) [n (t) − r (t)] dt + σIdWI (t)

 (A.1)

(W
n
,W

r
,W

I
) is a three-dimensional Brownian motion whose components have 

the following instantaneous correlations: r
nr

,r
rI
,r

nI
.

Setting, for x ∈{n,r}, 

Bx (t, T) = 1 − e−ax(T−t)

ax

So spot CPI will be

 
I (T) = I (t) exp

(∫ T

t
[n (s) − r (s)] ds − 1

2
σ 2

I (T − t) + σI [WI (T) − WI (t)]
)

 (A.2)
 

Let us define the forward CPI at time t for maturity T
i
 by I(t,T

i
) = EQn

i 

[I(T
i
)|F

t
], where  EQn

i  denotes expectation under the T
i
–forward measure and 

F
t
 denotes the information available in the market at time t. Denote by P

n
(t,T

i
) 
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the (nominal) zero-coupon bond price at time t with maturity T
i
. And for-

ward CPI ratio at time t for period from T
0
 to T

N
 as

 
γ (t, T0 :TN) = EQ N

n

[
I(TN)

I(T0)

∣∣∣∣Ft

]
= J (t, TN)

J (t, T0)
eC(t,T0:TN)

 (A.3)

where C(t,T
0
:T

N
) is the convexity adjust term for the, which can be found in 

literature Mercurio (2005) and will also be shown later in this section.
Then consider the measure Q

r
N associated with the numeraire

 Z (t) = Pn (t, TN) γ (t, T0 :TN)  (A.4)

and defined by 

 

dQ N
r

dQ N
n

= Z (TN) Pn (t, TN)

Z (t) Pn (TN, TN)
= γ (TN, T0 :TN) Pn (t, TN)

Pn (t, TN) γ (t, T0 :TN)

=
IN
I0

γ (t, T0 :TN)
=

IN
I0

J(t,TN)

J(t,T0)
eC(t,T0:TN)  (A.5)

 

Then the expectation of    
I(T

i
)
 ____ I(T

i–1
)    under Q

r
N measure is defined as

 
EQ N

n

(
I (TN)

I (T0)

I (Ti)

I (Ti−1)

∣∣∣∣Ft

)
= J (t, TN)

J (t, T0)
eC(t,T0:TN)EQ N

r

(
I (Ti)

I (Ti−1)

∣∣∣∣Ft

)
 (A.6)

EQ N
r

(
I (Ti)

I (Ti−1)

∣∣∣∣Ft

)
= EQ N

r

(
exp

{∫ Ti

Ti−1

[n(s) − r(s)]ds − 1

2
σ 2

I (Ti − Ti−1) + σI[WI(Ti) − WI(Ti−1)]

}∣∣∣∣Ft

)
 (A.7)

Consider for x ∈{n,r},∫ Ti

Ti−1

x (s)ds = Gx (Ti−1, Ti) + 1 − e−ax(Ti−Ti−1)

ax
x (Ti−1)

+ σx

ax

∫ Ti

Ti−1

[
1 − e−ax(Ti−s)] dWx (s)

and 

x (Ti−1) = Hx (t, Ti−1) + σx

∫ Ti−1

t
e−ax(Ti−1−s)dWx (s)

where G
x
(T

i–1
, T

i
) and H

x
 (t, T

i–1
) are deterministic functions.

Then 

EQ N
r

(
I (Ti)

I (Ti−1)

∣∣∣∣Ft

)

= F(t, Ti, Ti−1)EQ N
r

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

exp

{
1−e−an (Ti−Ti−1)

an
σn
∫ Ti−1

t e−an(Ti−1−s)dWn(s)

+ σn
an

∫ Ti
Ti−1

[1 − e−an (Ti−s)]dWn(s)

}
·

exp

{
− 1−e−ar (Ti−Ti−1)

ar
σr
∫ Ti−1

t e−ar (Ti−1−s)dWr(s)

− σr
ar

∫ Ti
Ti−1

[1 − e−ar (Ti−s)]dWr (s)

}
·

exp

{
σI
∫ Ti

Ti−1
dWI(s)

}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ft

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
 

 (A.8)

where F(t,T
i
,T

i-1
) is deterministic function. We already know the answer of

EQ i
n

(
I (Ti)

I (Ti−1)

∣∣∣∣Ft

)

= F(t, Ti−1, Ti)E
Q i

n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

exp

{
1−e−an (Ti−Ti−1)

an
σn
∫ Ti−1

t e−an(Ti−1−s)dWn(s)

+ σn
an

∫ Ti
Ti−1

[1 − e−an(Ti−s)]dWn(s)

}
·

exp

{
− 1−e−ar (Ti−Ti−1)

ar
σr
∫ Ti−1

t e−ar (Ti−1−s)dWr(s)

− σr
ar

∫ Ti
Ti−1

[1 − e−ar (Ti−s)]dWr(s)

}
·

exp

{
σI
∫ Ti

Ti−1
dWI(s)

}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ft

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
 

 (A.9)

where Q
n
i means the under the zero coupon P

n
(t,T

i
) measure. When we do measure 

change from Q
n
i to  Q

r
N, we are really just change the drift term for any process W

x
.

Consider the drift change based on measure change is

Drift
(
Wx; Q N

r

) = Drift
(
Wx; Q i

n

)+ d

〈
Wx, ln

(
Pn (·, TN) γ (·, T0 :Tn)

Pn (·, Ti)

)〉
t

/
dt

And W
x
 is normally distributed under either measure, and Let M is the term 

within the bracket in equation (A.8) then

 
EQ N

r

(
I (Ti)

I (Ti−1)

∣∣∣∣Ft

)
= F (t, Ti−1, Ti) exp

[
EQ N

r (M|Ft) + 1

2
VarN

r (M|Ft)

]
 (A.10)

 

 

EQ i
n

(
I (Ti)

I (Ti−1)

∣∣∣∣Ft

)
= F (t, Ti−1, Ti) exp

[
EQ i

n (M|Ft) + 1

2
Vari

n (M|Ft)

]
 (A.11)

 

Consider the measure change does not change the variance Var 
r
N(M|F

t
) = 

Var
n
i(M|F

t
) we get

 
EQ N

r

(
I(Ti)

I(Ti−1)

∣∣∣∣Ft

)
= EQ i

n

(
I (Ti)

I (Ti−1)

∣∣∣∣Ft

)
exp[EQ N

r (M|Ft) − EQ i
n (M|Ft)]  (A.12)

Since we already know the result EQi
n
 (   I(Ti

)
 ____ I(T

i-1
)   |F

t
) then we only need to calculate 

the drift terms
Consider(

d

〈
Wn, ln

(
pn (·, TN) γ (·, T0 :TN)

pn (·, Ti)

) 〉
t

)/
dt

=
{−Br (t, TN) ρnrσr + Bn (t, Ti) σn + ρnlσl, t ≥ T0

−[Br (t, TN) − Br (t, T0)]ρnrσr + [Bn (t, Ti) − Bn (t, T0)]σn, t < T0(
d

〈
Wr, ln

(
pn (·, TN) γ (·, T0 :TN)

pn (·, Ti)

) 〉
t

)/
dt

=
{−Br (t, TN) σr + Bn (t, Ti) ρnrσn + ρrlσl, t ≥ T0

−[Br (t, TN) − Br (t, T0)]σr + [Bn (t, Ti) − Bn (t, T0)]ρnrσn, t < T0(
d

〈
Wr, ln

(
pn (·, TN) γ (·, T0 :TN)

pn (·, Ti)

) 〉
t

)/
dt

=
{−Br (t, TN) ρrlσr + Bn (t, Ti) ρnlσn + σl, t ≥ T0

−[Br (t, TN) − Br (t, T0)]ρrlσr + [Bn (t, Ti) − Bn (t, T0)]ρnlσn, t < T0
 (A.13)
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We can add in the convexity adjust term for the YOY swap, which can be 
found in the literature (Mercurio, 2005): 

EQ i
n

(
I (Ti)

I (Ti−1)

∣∣∣∣Ft

)
= J (t, Ti)

J (t, Ti−1)
eC(t,Ti−1:Ti)

with 

C (t, Ti−1 : Ti) =
∫ Ti−1

t
ds
[
(Br (s, Ti−1) σr − Br (s, Ti) σr )(Br (s, Ti−1)σr − Bn (s, Ti−1) ρnrσn)

− (Br (s, Ti−1) σr − Br (s, Ti) σr)ρrIσI
]

 (A.14)
We get the final answer considering T

0 
≤ T

i − 1 < T
i 
≤ T

N
:

EQ N
r

(
I(Ti)

I(Ti−1)

∣∣∣∣Ft

)
= J (t, Ti)

J (t, Ti−1)
exp

[∫ Ti−1

t
dsX (s, Ti−1, Ti) +

∫ T0

t
dsỸ (s, T0, Ti−1, Ti, TN)

+
∫ Ti−1

max(t,T0)

dsY (s, Ti−1, Ti, TN) +
∫ Ti

Ti−1

dsZ (s, Ti, TN)

]
 (A.15)

with

X(s, Ti−1, Ti) = (Br(s, Ti−1)σr − Br(s, Ti)σr)(Br (s, Ti−1)σr − Bn(s, Ti−1)ρnrσn)

− (Br(s, Ti−1)σr − Br(s, Ti)σr )ρrIσI

Y(s, Ti−1, Ti, TN) = (Bn(s, Ti)σn − Bn(s, Ti−1)σn)(Bn(s, Ti)σn − Br(s, TN)ρnrσr + ρnIσI)

− (Br(s, Ti)σr − (Br (s, Ti−1)σr)(Bn(s, Ti)ρnrσn − Br(s, TN)σr + ρrIσI)

Ỹ(s, T0, Ti−1, Ti, TN) = (Bn(s, Ti)σn − Bn(s, Ti−1)σn)([Bn(t, Ti)

− Bn(t, T0)]σn − [Br(t, TN) − Br(t, T0)]ρnrσr)

− (Br(s, Ti)σr − Br(s, Ti−1)σr )([Bn(t, Ti) − Bn(t, T0)]ρnrσn − [Br (t, TN)

− Br(t, T0)]σr)

Z(s, Ti, TN) = Bn(s, Ti)σn[Bn(s, Ti)σn − Br(s, TN)ρnrσr + ρnIσI]

− Br(s, Ti)σr [Bn(s, Ti)ρnrσn − Br(s, TN)σr + ρrIσI]

+ σI(Bn(s, Ti)ρnIσn − Br(s, TN)ρrIσr) + σ 2
I

 (A.16)

Appendix B
Expectation of    

I(T
i
)
 ____ I(T

i–1
)    under Q

r
N measure for market model

Let’s define the forward CPI ratio:Y
i
 =     

I(T
i
)
 ____ I(T

i-1
)  , and assume the dynamics under 

the forward zero-coupon P
n
 (t,T

i
) measure is

 

dYi (t)

Yi (t)
= · · · dt + σ Y

i (t) 1{t<Ti}dWi  (B.1)

The CPI index

 
IN = I (TN) = CPIN

CPI0
=

N∏
i=1

Yi  (B.2)

And the dynamic is

dIN (t) = · · · dt + IN (t)
N∑

i=1

σ Y
i (t) 1{t<Ti}dWi (t) = · · · dt + IN (t)

N∑
i=β(t)

σ Y
i (t)dWi(t)

 (B.3) 

β(t) is the index which is just later than time t.  Under P
n
(t, T

N
) measure I

N
 is 

martingale, so the …dt term is 0.
Let’s assume the forward Libor rates is defined as

 Fi (t) = (Pn (t, Ti−1) − Pn (t, Ti)) / (τiPn (t, Ti))  (B.4) 

And the dynamic is

 

dFi (t)

Fi (t)
= σ F

i (t)dWF
i  (B.5) 

Then under  P
n
 (t,T

N
) measure

dYi (t)

Yi (t)
= · · · dt −

N∑
j=i+1

τjFj (t) σ F
j (t)

1 + τjFj (t)
ρ

F,Y
ji σ Y

i (t) 1{t<Ti}dt + σ Y
i (t) 1{t<Ti}dWi

 (B.6) 

Then under Q
r
N measure

dYi(t)

Yi(t)
= · · · dt −

N∑
j=i+1

τjFj(t)σ F
j (t)

1 + τjFj(t)
ρF,Y

ji σ Y
i (t)1{t<Ti}dt +

N∑
j=β(t)

σ Y
j (t)σ Y

i (t)1{t<Ti}ρi,jdt

+ σ Y
i (t) 1{t<Ti}dwi

 
(B.7)

 

To derive the …dt term in the above equation, we need to derive the dynamic 
of 

 

dYi (t)

Yi (t)
= · · · dt + σ Y

i (t) 1{t<Ti}dWi  (B.8)
 

Consider

 

dIi−1 (t) = Ii−1 (t)
i−1∑

j=β(t)

σ Y
j (t) dWj (t)

 (B.9)
 

So under P(0,T
i
) measure

 

dIi−1 (t)

Ii−1 (t)
= −

i−1∑
j=β(t)

τiσ
F
i (t) Fi (t)

1 + τiFi(t)
σ Y

j (t) ρF,Y
i,j dt +

i−1∑
j=β(t)

σ Y
j (t)dWj (t)  (B.10)

dYi (t)

Yi (t)
=

d Ii(t)
Ii−1(t)
Ii(t)

Ii−1(t)

= dIi (t)

Ii (t)
− dIi−1 (t)

Ii−1 (t)
− dIi (t)

Ii (t)

dIi−1 (t)

Ii−1 (t)
+ dIi−1 (t)

Ii−1 (t)

dIi−1 (t)

Ii−1 (t)

= τiσ
F
i (t) Fi (t)

1 + τiFi (t)

i−1∑
j=β(t)

σ Y
j (t)ρF,Y

i,j dt − σ Y
i (t)

i−1∑
k=β(t)

σ Y
k (t)ρi,kdt + σ Y

i (t) dWi (t)

 
 (B.11)

Finally we can get the dynamic of    
I(T

i
)
 ____ I(T

i–1
)    under Q

r
N measure

dYi (t)

Yi (t)
= τiσ

F
i (t) Fi (t)

1 + τiFi (t)

i−1∑
j=β(t)

σ Y
j (t)ρF,Y

i,j dt − σ Y
i (t)

N∑
j=i+1

τjFj (t) σ F
j (t)

1 + τjFj (t)
ρF,Y

ji 1{t<Ti}dt

+ σ Y
i (t)

N∑
j=1

σ Y
j (t)1{t<Ti}ρi,jdt + σ Y

i (t) 1{t<Ti}dWi

 (B.12)

From here we can see the measure change just have impact on the 
 expectation but not on variance in market model.W
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