Portfolio Optimization

Niels Stchedroff

Riskcare, London, e-mail: niels.stchedroff@riskcare.com

Abstract

Portfolio optimization is computationally intensive and has potential for
performance improvement. This paper examines the effects of evaluating
large numbers of proposed solutions in parallel for use with direct search
optimization. This leads to a method that has considerable performance
increase. A GPU implementation demonstrates an order of magnitude per-
formance improvement over the best available multi-threaded CPU. The new
algorithm and GPU combined offer a performance increase of more than
60x compared with CPU.

Keywords

GPU, CUDA, portfolio, optimization, multi-directional, covariance

Introduction

Assuming we have a portfolio consisting of n risky stocks, no risk-free asset,
and (positive definite) VCV matrix o, our objective is to find the vector of
portfolio weights w that minimizes the total portfolio variance.We there-
fore need to find the global minimum of the objective function:

flw)=V(w, o)=w' cw (1)

where the prime denotes a transpose. The constraint we impose is that the
portfolio weights must sum to one, i.e., 1'w = 1, where 1 denotes a vector
whose elements are all equal to 1.

This paper examines the possibilities for increasing computational effi-
ciency by evaluating multiple values for w in parallel. This is achieved by
applying direct search techniques to the optimization.

Direct search methods

Direct search (the general class of optimization methods of which multi-
directional [2] optimization is an example) has undergone a renaissance
in the last two decades [1]. This is down to a better understanding of the
mathematics underpinning the Nelder-Mead [3] and the multi-direc-
tional methods. They become effective when the problem is sufficiently
complex or computationally difficult such that a perfect answer is
unachievable [1].

Direct search methods do not rely on the objective function’s derivatives
or numerical approximation. The function to be optimized may be a “black
box,” with only the input parameters and the resultant value exposed to the
optimization method [4].

52

The effectiveness of quasi-Newton methods and the availability of soft-
ware tools that ease their use has caused direct search techniques to be
overshadowed [1,5]. However, direct search techniques are invaluable [1] for
problems that meet the following conditions:

* Calculation of f(x) is very expensive or time-consuming.

¢ Exact first partial derivatives of f(x) cannot be determined.

¢ Numerical approximation of the gradient of f(x) is expensive in terms
of time/resources.

* f(x)is noisy, due to source data or the nature of the algorithm.

Two direct search methods of interest are the multi-directional search
(MDS) method of Torczon [4,6,7] and the Nelder-Mead method [4,5]. Both
MDS and Nelder-Mead are simple to code and analyze. It has been found
that the Nelder-Mead algorithin (unlike MDS) can converge to non-
minimizers when the dimensions of the problem are large enough [5,7].

For this reason, MDS was selected as the algorithm of choice for this
work.

Both methods use an n X n matrix (simplex). This represents a starting
point. Each row in the simplex represents the n input values for the function
in question. The start point is randomly generated, within the required con-
straints for the input variables.

The best set of input values (i.c., the ones giving the smallest result) in
the simplex is located and used to generate possible new values for each vari-
able. Several different simplices are generated and evaluated against each
other, as a simple step in the algorithm. The best is taken as the input for the
nextiteration.

This process of finding the best and generating a new simplex from
it is continued until it is judged that an optimum value has been found.
This means that for each iteration, n sets of test values must be evaluated a
number of times.

MDS in detail
S=(v,..v) (2)

where S is the simplex. v, ..., v, are the vertices, where a vertex is defined as
avector of length n representing one possible set of portfolio weights, where
v, is the best vertex found so far.

Three trials are made - reflection (R), expansion (E), and contraction (C).

R=(r,..1) (3)

WILMOTT magazine

TECHNICAL PAPER

where
r=vy=(V,=v,) (4)
E=(e,..e) (5)

where
e=(1—p)- v+, (6)

and y is the expansion coefficient. Acommon default value is 2.0 [2].

where
¢=(1+86)v,—0-r (8)

and 8 is the contraction coefficient. Acommon default value is 0.5 [2]. Then
the updated simplex is computed as S,

IFR,, <flv,) and £, >=fiv)

.

then S =R.
If R, <flv,) and E <flv)
then S =E.

‘next

Otherwise, S C

next

Evaluation

We have seen in the previous section that we need to evaluate the objective
function atn vectices for each evaluation of the simplex. This naturally leads
to the suggestion that we consider a modified version where w isannxn
matrix itself. This can be represented in matrix format as below:

i
R =S50S 9)
Jn
where
fivee £,

is the set of objective function values for the trial weights (vertices):

At firstsight this might seem an inefficient method of calculation - we
are throwing away:

(n-n)j—n

values in the final result. However, as we shall see, the performance issues
are not obvious.

Weights

In the simplest formulation, the only constraint is that the weights sum to 1:
n
Z wp = 1.0
10
pe (10)

The approach taken is to sum the actual weights, and use that value to
scale the weights to 1.0. We can calculate the scale on the matrix of weights
by multiplying by a vector of 1s:

WILMOTT magazine

v 1
v (11)
VT 1

We can carry out the scaling by calculating the scaling factors with
eq. (11), after each stage in the multi-directional algorithm.

Implementation

The problem has been reduced to two matrix multiplications, a matrix
transposition, vector/matrix multiplication, and a vector/vector dot product
multiplication. In the case of coding for a BLAS library, the transposition is
handled by the settings for the DGEMM (or SGEMM) function. This means
that for a BLAS, the core of the problem can be coded with two calls. The scal-
ing operations are trivial in performance terms.

Various trials were run in developing this method. The discovery that the
second matrix multiplication was more efficient in terms of time taken was
a surprise-the original intention was to simplify implementation. The calcu-
lation times were tested using the Intel MKL BLAS library running on an i7
920 and on an NVIDIA C1060 GPU running the CUBLAS BLAS.

Ofinterest is the fact that little or no improvement is seen when running
this calculation in Octave — which uses an unoptimized single-threaded ver
sion of the ATLAS BLAS for matrix operations. This strongly suggests that
the performance gains are from the levels of optimization possible between
matrix‘matrix and matrix‘vector calculations in the high-performance
libraries (CUBLAS and Intel MKL) as shown in Figure 1. The initial very high

Figure 1: Performance improvement of the suggested method compared to
using vector multiplications.

1000
+ Octave
-
b = C1060 - Float
]
g + Intel MKL
- s
£ 100
§ 1]
@
b
2 .
= = .
= "y, " my
z 10 e — My
- A U Iy, VUV TYSTYYYY Lhdaasiias
: s o o S
£ P . =
2 g by
£ = BT s e e L adtie e o
= & 4 4®
g 1 B
s
£
£
&
0.1

(] 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Problem Size

53

Figure 2: Performance of GPU vs. CPU for matrix*matrix BLAS operations.

14
g 12
g0 WWCAWA:
s sl
s W y
3 6
@
g 4
2 2
o
0l

2400
2600
2800

Matrix Size

gains for GPU are caused by the massive reduction in the number of kernels
to be launched to complete the calculation.
The reason for the gain is that

T=2T, (12)
L=nT+T,) (13)
T<T, (14)

for the high-performance BLAS options, where T, is the time taken for

the suggested method, T, is the time taken for the original method, T, is
the time taken for a matrix"matrix operation, T, is the time taken for a
vector'vector operation,and T, is the time taken for a matrix'vector opera-
tion.

In terms of raw speed of GPU vs. CPU, the GPU is around nine times faster
for computing matrix multiplications (see Figure 2). This is a severe test; the
CPU s a high-end device, and the GPU is not the latest hardware. Many com-
parisons of GPU vs. CPU hardware use single-thread CPU code, whereas this
case is a truly competitive comparison.

Applying multi-directional search on the GPU

With the potential performance outlined above, it seemed likely that the
results of applying this evaluation method would be interesting. The MDS
transformations were implemented on GPU, as well as the evaluation
method outlined above. The selection of thenew best simplex was done on
the CPU - a naturally single-thread function. All that the CPU is required to
dois decide which path to follow — a comparison of two numbers.

GPU performance analysis
The scaling and MDS transformations were extremely efficient - they take
on average less than 10% of the execution time for each iteration of the MDS
algorithm. The other 90% is consumed by the evaluation. For example, for a
583 x 583 covariance matrix, the MD transformation took 0.135697 ms, the
scaling 0.196647 ms, while the evaluation took 3.718785 ms.

The efficiency of the MD transformations on GPU boosts the overall per-
formance vs. CPU to 10X (see Figure 3). Again, it should be noted that this is
using a high-performance CPU with a top-notch BLAS library.

54

Figure 3: Performance of GPU vs. CPU for MDS.

14
L 4
12 £
< 0,!0: .«W’!OQE% b :
9 10 = - - .
g1
fLLS
g s
g Eyge ¥
- +
g 6
H
£
£
2 4
&
2
it 77—
W~ R R R R NN NN W oW oW ow BB B BoU
o U O N U1 N O N U1 N O N Ul N O N U N O
8 8 8 % & 3 8 B & a8 % & a8 nh g a 8
8 88 8 8 88 8 888 8 8 8 8 ¥ 8
Matrix Size

Figure 4: MDS performance on GPU for a 583-item portfolio.

0.000009

0.000008

0.000007

0.000006

0.000005

0.000004

0.000003

Smallest variance found

S

0.000002 L’

0.000001

o

oM~ T O NS OMNMOLWN N oo~ Mo WA~
ANN MM TN YO ~000NO0 A NN M
Ao oH oA

Time in seconds

The lower relative performance of GPU for portfolios smaller than 500
is due to the GPU not being fully loaded. If portfolios of this size are of par-
ticular interest, then an enhancementwould be to compute the reflection,
expansion, and contraction steps in parallel on the GPU. This would increase
utilization on the GPU, bringing performance back to the 10x level.

Application in action

Avariety of sizes of portfolio were run. For a 583-item portfolio (created
from UK FTSE data), the minimum was reached in under 60 seconds, and
the minimum variance for the weights selected was an order of magnitude
smaller than that produced by a genetic algorithm optimizer. The MDS opti-
mizer produced consistent results when started from different initial points
(see Figure 4), showing a strong and rapid optimization. [t was noticeable
that the first iteration returned a result only 4 times greater than the final
resultin less than 1 second.

WILMOTT magazine

Returns vs. variance
Following the success of the methods outlined, when used for the simple
portfolio optimization problem (1), the work was extended to include
returns.

We define the vector of returns such that:

1=t 1) (15)

The mean return A, 1s given by

u,=u"w (16)
where w is the vector of weights for the assets that we are evaluating. If the
risk-free rate of return is r, then the Sharpe ratio is defined as

S=(u,~ 1o, (17)

where o‘Pis thevariance of return of the portfolio as calculated in eq. (1).
Then the portfolio w* with the optimal risk/return trade-offis the one with
the highest Sharpe ratio, and is given by the solution to the following opti-
mization problem:

max$ (18)
w'1=1 (19)
w, >=1b, (20)
w, <= ub, (21)

where 1is a column vector of 1s, Ib,and ub, denote the individual lower
bound and upper bound, respectively. The bounds were implemented by
giving a large penalty to sets of weights that exceeded them. The penalty

is proportional to the amount that the given bounds are exceeded by. This
establishes a trust region [8], which is highly effective in ensuring that the
optimization algorithm tends toward solutions within the specified region.

Validation

When run for a 49-asset portfolio (picked from FTSE stocks randomly), the
Sharpe ratio optimization reached a stable value in less than 3 seconds. The
risk-free interest rate was taken as 0.5%.

The results were compared with a reference MATLAB implementation,
using the fimincon optimization function (see Table 1).

The efficient frontier was computed, and the CAL (capital allocation
line) was plotted (see Figure 5). As expected, the results of the optimization
matched the tangency portfolio values.

To evaluate performance for a large portfolio, an optimization was run
on a 610-asset portfolio, selected from FTSE stocks. This achieved a stable
Sharpe value in approximately 120 seconds. Each iteration took approxi-
mately 15 milliseconds.

Table 1: Sharpe ratio optimization results.

GPU MATLAB
Mean
return (p) 1.068057 1.065769
(o 0.006045 0.006038
Sharpe 175.844 175.670008

WILMOTT magazine

Figure 5: Efficient frontier for the 49-asset portfolio.
1.50

/ = Efficient Frontier =~ == CAL
1.40 /
130

1.20

€ 110
: [
-
e I\
0.90 / \
o / \
0.70 /
0.60 T T T T ,
o o o o o o
o o o o o o
o o = = N N
o w o w o i
o o o o o o
Sigma
Conclusions

Avery noticeable speed-up has been obtained when evaluating trial values
for the weights in blocks, for high-quality BLAS solutions. In addition, this
method drastically simplifies the coding problem to a few standard calls to
a BLAS library. This performance gain can be exploited by direct search opti-
mization techniques.

Multi-directional search (MDS) was implemented and demonstrated as
suitable for the task, with stable performance and high speed. When imple-
mented on GPU, a 10x speed-up is seen, compared to a multi-threaded imple-
mentation of the same algorithm on a high-end CPU.

Combining GPU and the new algorithm gives a speed-up of more than
60x over a CPU running the simple line-by-line evaluation of the simplex
- even with optimal multi-threaded code on the CPU.

Acknowledgments

Special thanks are due to my colleague Jimmy Law at Riskcare, who wrote
the MATLAB reference implementation and provided help with the theoreti-
cal side of the work.

Niels Stchedroff is a Senior Consultant for Riskcare. He has a BSc in Computer Science
from University College London and an MPhil in Operations Research from Southampton
University.

REFERENCES

[11M.H. Wright. 1996. Direct search methods: Once scorned, now respectable. In
Numerical Analysis 1995 (Proceedings of the 1995 Dundee Biennial Conference on
Numerical Analysis), pp. 191-208. Addison Wesley Longman, Harlow, UK.

55

TECHNICAL PAPER

[2]V. Torczon. 1991. On the convergence of the multi-directional search algorithm. SIAM
Journal of Optimization, 1:123-145.

[31J.A. Nelder and R. Mead. 1965. A simplex method for function minimization. Computer
Journal, 7:308-313.

[4] C.T. Kelley. 1999. lterative Methods for Optimization. Society for Industrial and Applied
Mathematics.

[5] R-M. Lewis, V. Tarczon, and M.W. Trosset. 2000. Direct search methods: Then and now.

Journal of Computational and Applied Mathematics, 124:191-207.

56

[6] E. Boyd, K.W. Kennedy, R.A. Tapia, and V.J. Torczon. 1989. Multi-directional search: A
direct search algorithm for parallel machines. Technical report, Rice University.

[71V. Torczon. 1989. A Direct Search Algorithm for Parallel Machines. PhD thesis, Rice
University.

[B1Y. Yuan. 1999. A review of trust region algorithms for optimization. In IC/AM 99:
Proceedings of the Fourth International Congress on Industrial and Applied Mathematics.
Oxford University Press.

WILMOTT magazine

Book Club

Share our passion for great writing —with Wiley’s list of titles for independent thinkers ...

E’N‘EA INVESTMENT SERIES

Turning students into protessionals

Wiley Global Finance and the Chartered Financial Analyst Institute® are proud to present the CFA
Institute Investment Series, bringing together highly regarded academics and financial professionals to
create essential volumes on critical topics in finance.

In each CFA Institute Investment Series book, thought leaders provide insight into theory and practice
of important issues in finance. The books are ideal for the graduate-level finance student as well as the
industry practitioner.

. i IES
INVESTMENT SERIES NVESTMENT SER

EQUITY | MANAGING W ' INTERNATIONAL
ASSET INVESTMENT FINANCIAL

STATEMENT
VALUATION PORTFOLIOS “ANALYSIS

SECOND EDITIO
, THIRD EDITION

Q - D
E ~ \ . ‘ f

YoM E P, A/ g CFA/Thomas Rabinsan, gy, ohn D. Stawe, gy
v J CRA/
. Stowe, Gy
z

_ -

978-0-470-57143-9 ¢ Hardback * 464 pages 978-0-470-08014-6 » Hardback ¢ 960 pages 978-0-470-91662-9 » Hardback ¢ 1040 pages
March 2010 ¢ £65:00/€76:00 £39.00/€45.60 April 2007 » £70:00/€80:00 £42.00/€48.00 May 2012 * £65:00/€76:00 £39.00/€45.60

Tp view the full series and access free content WILEY Global Finance
Vi1sit us at WWW.Wlley.COIIl/ gO/ cfa WHERE DATA FINDS DIRECTION

When you subscribe to Wilmott magazine you will automatically become a member of the Wilmott Book Club and you'll be eligible for 40 per cent discount on
SAVE 4 0 O/ specially selected books in each issue when you order direct from www.wiley.com - just quote promotion code WBC40 when you order.
o The titles will range from finance to narrative non-fiction. For further information, call our Customer Services Department on 44 (0)1243 843294, or visit

wileyeurope.com/go/wilmott or wiley.com (for North America)

