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Abstract
We first define and derive general properties of negative probabilities. We 
then show how negative probabilities can be applied to modeling financial 
options such as Caps and Floors. In trading practice, these options are typi-
cally valued in a Black–Scholes–Merton framework, assuming a lognormal 
distribution for the underlying interest rate. However, in some cases, such 
as the 2008/2009 financial crisis, interest rates can get negative. Then the 
lognormal distribution is inapplicable. We show how negative probabilities 
associated with negative interest rates can be applied to value interest rate 
options. A model in VBA, which prices Caps and Floors with negative prob-
abilities, is available upon request. A follow up paper will address bigger 
than unity probabilities in financial modeling. 

Keywords
negative probabilities, negative interest rates, lognormal distribution, Caps, 
Floors

JEL Classification: C10

1. Introduction
The classical probability theory is applied in most sciences and in many of 
the humanities. In particular, it is successfully used in physics and finance. 
However, physicists found that they need a more general approach than the 
classical probability theory. The first was Eugene Wigner (1932), who intro-
duced a function, which looked like a conventional probability distribution 
and has later been better known as the Wigner quasi-probability distribu-
tion because in contrast to conventional probability distributions, it took 
negative values, which could not be eliminated or made nonnegative. The 
importance of Wigner’s discovery for foundational problems was not recog-
nized until much later. Another outstanding physicist, Nobel Laureate Dirac 
(1942) not only supported Wigner’s approach but also introduced the physi-
cal concept of negative energy. He wrote: “Negative energies and probabilities 
should not be considered as nonsense. They are well-defined concepts mathematically, 
like a negative of money” (referring to debt).

 

Negative Probabilities in Financial 
Modeling

After this, negative probabilities slowly but steadily have become more 
popular techniques in physics. Maurice Bartlett (1945) worked out the 
 mathematical and logical consistency of negative probabilities. However, he 
did not establish a rigorous foundation for negative probability utilization. 
Andrei Khrennikov published numerous papers going back to 1982 related 
to negative probabilities, some endorsed by Andrey Kolmogorov. In a 2007 
interview Khrennikov discusses the p-adic model and finds that negative 
probabilities ‘appear quite naturally’ in this framework. In 2009 Khrennikov 
provides the first rigorous mathematical theory of negative probabilities in 
the setting of p-adic analysis. 

Negative probabilities are also used in mathematical finance. The con-
cept of risk-neutral or pseudo probabilities is a popular concept and has 
been numerously applied, for example, in credit modeling by Jarrow and 
Turnbull (1995), and Duffie and Singleton (1999). Espen Haug (2004) is the 
first author to explicitly support negative probabilities in financial mod-
eling. He shows that negative probabilities can naturally occur, for exam-
ple in the binomial CRR model, which is a discrete representation of the 
Black–Scholes–Merton model discussed below. Haug argues that rather than 
disregarding the whole model or transforming the negative probabilities to 
positive ones, negative probabilities can be a valuable mathematical tool in 
financial models to add flexibility. 

Negative probabilities are able to model a random process if that proc-
ess might become negative in rare events. In this paper we demonstrate this 
using negative interest rates. More generally, negative probabilities might 
also be applied to any random process where limited liability doesn’t elimi-
nate losses in all states. For example, suppose an enterpreneur owns compa-
nies x and y. If company x defaults and has net liabilities, assets of company 
y might have to be liquidated to cover the liabilities of x. Hence we can argue 
that the price of x can de facto become negative. In this paper we will con-
centrate on negative interest rates and show how they can be modeled with 
negative probabilities. 

The remaining paper is organized as follows. In Section 2, we resolve the 
mathematical issue of the negative probability problem. We build a math-
ematical theory of extended probability as a probability function, which 
is defined for real numbers and can take both positive and negative values. 
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Thus, extended probabilities include negative probabilities. Different prop-
erties of extended probabilities are found. In Section 3, we give examples of 
negative nominal interest rates in financial practice and show problems of 
current financial modeling of negative interest rates. In Section 4, we build a 
mathematical model for Caps and Floors integrating extended probabilities 
into the pricing model to allow for negative interest rates. Conclusions are 
given in Section 5. A follow up paper will specify >1 probabilities and apply 
them to financial options. 

2. Mathematical theory of extended probability 
In 2009, Andrei Khrennikov derived a rigorous mathematical theory of 
negative probabilities in his textbook in the framework of p-adic analysis. 
Our derivation of negative probabilities is in the conventional setting of real 
numbers.

Extended probabilities generalize the standard definition of a probabil-
ity function. At first, we define extended probabilities in an axiomatic way 
and then develop application of extended probabilities to finance.

To define extended probability, EP, we need some concepts and construc-
tions, which are described below. Some of them are well-known, such as, for 
example, set algebra, while others, such as, for example, random antievents, 
are new. 

We remind that if X is a set, then |X| is the number of elements in (cardi-
nality of) X (Kuratowski and Mostowski, 1967). If A ⊆ X, then the complement 
of A in X is defined as C

X  
A = X\A.

A system B of sets is called a set ring (Kolmogorov and Fomin, 1989) if it 
satisfies conditions (R1) and (R2):

(R1) A, B ∈ B implies A ∩ B ∈ B.
(R2) A, B ∈ B implies A Δ B ∈ B where A Δ B = (A\B) ∪ (B\A).
For any set ring B, we have ∅ ∈ B and A, B ∈ B implies A ∪ B, A\B ∈ B. 
Indeed, if A ∈ B, then by R1, A\A = ∅ ∈ B. If A, B ∈ B, then A\B = ((A\B) ∪ 

(B\A)) ∩ A ∈ B. If A, B ∈ B and A ∩ B = Ø, then A Δ B = A ∪ B ∈ B. It implies that 
A ∪ B = (A\B) ∪ (B\A) ∪ (A ∩ B) ∈ B. Thus, a system B of sets is a set ring if and 
only if it is closed with respect union, intersection and set difference.

Example 2.1. The set CI of all closed intervals [a, b] in the real line R is a 
set ring.

Example 2.2. The set OI of all open intervals (a, b) in the real line R is a set 
ring.

A set ring B with a unit element, i.e., an element E from B such that 
for any A from B , we have A ∩ E = A, is called a set algebra (Kolmogorov and 
Fomin, 1989).

Example 2.3. The set BCI of all closed subintervals of the interval [a, b] is a 
set algebra.

Example 2.4. The set BOI of all open subintervals of the interval [a, b] is a 
set algebra.

A set algebra B closed with respect to complement is called a set field.
Let us consider a set Ω, which consists of two irreducible parts (subsets) 

Ω+ and Ω–, i.e., neither of these parts is equal to its proper subset, a set F of 
subsets of Ω, and a function P from F to the set R of real numbers. 

Elements from F, i.e., subsets of Ω that belong to F, are called random 
events. 

Elements from F+ = {X ∈ F; X ⊆ Ω+} are called positive random events. 

Elements from Ω+ that belong to F+ are called elementary positive random 
events or simply, elementary positive random events. 

If w ∈ Ω+, then –w is called the antievent of w.
Elements from Ω– that belong to F – are called elementary negative random 

events or elementary random antievents. 
For any set X ⊆ Ω+, we define 

X + = X ∩ Ω+,
X – = X ∩ Ω –,

–X = {–w; w ∈ X}

and

F – = {–A; A ∈ F +}

If A ∈ F + , then –A is called the antievent of A.
Elements from F – are called negative random events or random antievents. 

Definition 1. The function P from F to the set R of real numbers is called a 
probability function, if it satisfies the following axioms: 

EP 1 (Order structure). There is a graded involution α: Ω → Ω, i.e., a 
 mapping such that α2 is an identity mapping on Ω with the following prop-
erties: α(w) = –w for any element w from Ω, α(Ω+) ⊇ Ω–, and if w ∈ Ω+, then 
α(w) ∉ Ω+.

EP 2 (Algebraic structure). F + ≡ {X ∈ F; X ⊆ Ω+} is a set algebra that has Ω+ as 
a member. 

EP 3 (Normalization). P(Ω+) = 1. 

EP 4 (Composition) F ≡{X; X+⊆ F+ & X –⊆ F – & X + ∩ –X – ≡ ∅ & X – ∩ –X + ≡ ∅}.

EP 5 (Finite additivity) 
P(A ∪ B) = P(A) + P(B)
for all sets A, B ∈ F such that 
A ∩ B ≡ Ø

EP 6 (Annihilation). {v
i
 , w, –w ; v

i
 , w ∈ Ω & i ∈ I} = {v

i
; v

i
 ∈ Ω & i ∈ I} for any 

element w from Ω. 
Axiom EP6 shows that if w and –w are taken (come) into one set, 

they annihilate one another. Having this in mind, we use two equality 
symbols = and ≡. The second symbol means equality of elements of sets. 
The second symbol also means equality of sets, when two sets are equal 
when they have exactly the same elements (Kuratowski and Mostowski, 
1967). The equality symbol = is used to denote equality of two sets with 
annihilation, for example, {w, –w} = Ø. Note that for sets, equality ≡ 
implies equality =.

For equality of numbers, we, as it is customary, use symbol =. 

EP 7. (Adequacy) A = B implies P(A) = P(B) for all sets A, B ∈ F. 
For instance, P({w, –w}) = P(Ø) = 0.

EP 8. (Non-negativity) P(A) ≥ 0, for all A ∈ F+. 
It is known that for any set algebra A, the empty set Ø belongs to A and 

for any set field B in Ω, the set Ω belongs to A (Kolmogorov and Fomin, 1989).

Definition 2. The triad (Ω, F, P) is called an extended probability space.

Definition 3. If A ∈ F, then the number P(A) is called the extended 
 probability of the event A.

Let us obtain some properties of the introduced constructions. 

Lemma 1. α(Ω+) ≡ –Ω+ ≡ Ω– and α(Ω–) ≡ –Ω– ≡ Ω+. 
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Proof. By Axiom EP1, α(Ω+) ≡ –Ω+ and α(Ω+) ⊇ Ω–. As Ω ≡ Ω+ ∪ Ω– , Axiom 
EP1 also implies α(Ω+) ⊆ Ω–. Thus, we have α(Ω+) ≡ Ω–. The first part is proved.

The second part is proved in a similar way.
Thus, if Ω+ = {w

i
 ; i ∈ I}, then Ω– = {–w

i
 ; i ∈ I }.

As α is an involution of the whole space, we have the following result. 

Proposition 1. α is a one-to-one mapping and |Ω+| = |Ω–|.

Corollary 1. (Domain symmetry) w ∈ Ω+ if and only if –w ∈ Ω–. 

Corollary 2. (Element symmetry) – (–w ) = w for any element w from Ω. 

Corollary 3. (Event symmetry) – (–X ) ≡ X for any event X from Ω. 

Lemma 2. α(w) ≠ w for any element w from Ω. 
Indeed, this is true because if w ∈ Ω+, then by Axiom EP1, α(w) ∉ Ω+ and 

thus, α(w) ≠ w. If w ∈ Ω–, then we may assume that α(w) = w. However, in this 
case, α(v) = w for some element v from Ω+ because by Axiom EP1, α is a projec-
tion of Ω+ onto Ω–. Consequently, we have

α(α(v)) = α(w) = w
However, α is an involution, and we have α(α(v)) = v. This results in the 

equality 
v = w
Consequently, we have α(v) = v. This contradicts Axiom EP1 because 

v ∈ Ω+. Thus, lemma is proved by contradiction.

Proposition 2. Ω+ ∩ Ω– ≡ Ø.

Proposition 3. F+ ⊆ F , F – ⊆ F and F ⊆ F+ ∪ F –.
Corollary 1 implies the following result.

Proposition 4. X ⊆ Ω+ if and only if –X ⊆ Ω–. 

Proposition 5. F – ≡ {X ∈ F; X ⊆ Ω–} = F ∩ Ω–. 

Corollary 4. F+ ∩ F– ≡ Ø. 
Axioms EP6 implies the following result.

Lemma 3. X ∪ –X = Ø for any subset X of Ω. 
Indeed, for any w from the set X, there is –w in the set X, which annihi-

lates w.
Let us define the union with annihilation of two subsets X and Y of Ω by 

the following formula:
X + Y ≡ (X ∪ Y)\[(X ∩ –Y) ∪ (–X ∩ Y)]
Here the set-theoretical operation\represents annihilation, while sets 

X ∩ –Y and X ∩ –Y depict annihilating entities. 
Some properties of the new set operation + are the same as properties of 

the union ∪, while other properties are different. For instance, there is no 
distributivity between operations + and ∩.

Lemma 4. a) X + X ≡ X for any subset X of Ω;
 b) X + Y ≡ X + Y for any subsets X and Y of Ω;
 c) X + Ø ≡ X for any subset X of Ω;
 d) X + (Y + Z) ≡ (X + Y) + Z for any subsets X , Y and Z of Ω;
 e) X + Y ≡ X ∪ Y for any subsets X and Y of Ω+ (of Ω–);

Lemma 5. a) Z ∩ (X + Y ) ≠ Z ∩ X + Z ∩ Y; 
 b) X + (Y ∩ Z) ≠ (X ∩ Y) + (X ∩ Z).

Lemma 6. A ∩ B ≡ (A+ ∩ B+) + (A– ∩ B–) for any subsets A and B of Ω.
Indeed, as A ≡ A+ ∪ A– and B ≡ B+ ∪ B–, we have 
A ∩ B ≡ (A+ ∪ A– ) ∩ (B+ ∩ B–) ≡

(A+ ∩ B+) ∪ (A+ ∩ B–) ∪ (A– ∩ B+) ∪ (A– ∩ B–) ≡
(A+ ∩ B+) + (A– ∩ B–)
because (A+ ∩ B–) ≡ Ø and (A– ∩ B+) ≡ Ø. 
In a similar way, we prove the following results.

Lemma 7. A\B ≡ (A+\B+) + (A–\B–) for any subsets A and B of Ω.

Lemma 8. X ≡ X+ + X– = X + ∪ X– for any set X from F.

Lemma 9. A + B ≡ (A+ + B+) + (A–+ B–) for any sets X and Y from F.
Axioms EP6 and EP7 imply the following result.

Proposition 6. P(X + Y) = P(X ∪Y) for any two events X and Y from Ω. 

Lemma 10. P(∅) = 0. 
Properties of the structure F + are inherited by the structure F.

Theorem 1. (Algebra symmetry) If F + is a set algebra (or set field), then F is a 
set field (or set algebra) with respect to operations + and ∩. 

Proof. At first, we prove that F– is a set algebra (or set field). 
Let us assume that F + is a set algebra and take two negative random 

events H and K from F –. By the definition of F –, H = –A and K = –B for some 
positive random events A and B from F+. Then we have

H ∩ K = (–A) ∩ (–B) = –( A ∩ B)
As F + is a set algebra, A ∩ B ∈ F+. Thus, H ∩ K ∈ F–. 
In a similar way, we have

H ∪ K = (– A) ∪ (–B) = –( A ∪ B)
As F + is a set algebra, A ∪ B ∈ F+. Thus, H ∪ K ∈ F–. 

By the same token, we have H\K ∈ F–.
Besides, if F+ has a unit element E, then –E is a unit element in F–. 
Thus, F – is a set algebra. 
Now let us assume that F + is a set field and H ∈ F –. Then by the definition 

of F –, H = –A for a positive random event A from F+. It means that CΩ+
A = Ω+\A 

∈ F+. At the same time, 
CΩ–

H = Ω–\H = (–Ω+ )\(–A) = –(Ω+\A) = –CΩ+
A

As CΩ+
A belongs to F+, the complement CΩ–

H of H belongs to F–. 
Consequently, F – is a set field.

Let us once more assume that F+ is a set algebra and take two random 
events A and B from F. Then by Theorem 1, F – is a set algebra. By Lemma 8, 
A ≡ A+ + A– and B ≡ B+ + B–. By Axiom EP4, A+, B+ ∈ F +, A–, B– ∈ F –, while by 
Proposition 2, A + ∩ A – ≡ ∅, B + ∩ B – ≡ ∅, A ≡ A+ ∪ A–, and B ≡ B+ ∪ B–. 

By Lemma 6, A ∩ B ≡ (A+ ∩ B+) + (A– ∩ B–). Thus, (A ∩ B)+ ≡ A+ ∩ B+ and 
(A ∩ B)– ≡ A– ∩ B–. As F + is a set algebra, (A ∩ B)+ ≡ A+ ∩ B+∈ F +. As it is proved 
that F – is a set algebra, (A ∩ B)– ≡ A– ∩ B–∈ F –. Consequently, A ∩ B ∈ F.

By Lemma 7, A\B ≡ (A+\B+) + (A–\B–). Thus, (A\B)+ ≡ A+\B+ and (A\B)– ≡ A–\B–. 
As F + is a set algebra, (A\B)+ ≡ A+\B+∈ F+. As it is proved that F – is a set algebra, 
(A\B)– ≡ A–\B–∈ F –. Consequently, A\B ∈ F.

By Lemma 9, A + B ≡ (A+ + B+) + (A– + B–). Thus, (A + B)+ ≡ A+ + B+ and (A + B)– ≡ 
A– + B–. As F + is a set algebra, (A + B)+ ≡ A+ + B+ ≡ A+ ∪ B+∈ F +. As it is proved that 
F – is a set algebra, (A + B)– ≡ A– + B– ≡ A– ∪ B– ∈ F –. Consequently, A + B ∈ F.

Besides, if F + has a unit element E, then –E is a unit element in F – and 
E ∪ –E is a unit element in F.

Thus, F is a set algebra. 
Now let us assume that F + is a set field and A ∈ F. Then as it is 

 demonstrated above, F – is a set field. By Lemma 8, A ≡ A+ + A–. By 
Proposition 2, Ω+ ∩ Ω– = Ø, we have

CΩA = CΩ+
A + CΩ–

A
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Then CΩ+
A belongs to F + as F + is a set field and as it is proved in Theorem 1, 

CΩ–
A belongs to F –. Consequently, CΩA belongs to F – and F – is a set field.
Theorem is proved.

3. Negative interest rates and the problem of their 
modeling 
Negative probabilities can help to model interest rates and interest rate 
derivatives. To show this, let us start with the equation

 Real interest rate = Nominal interest rate – Inflation rate (1)

where the nominal interest rate is the de facto rate, which is received by 
the lender and paid by the borrower in a financial contract. For example, 
the nominal interest rate is the rate, which the lender receives on a saving 
account or the coupon of a bond. From equation (1) we see that a real inter-
est rate can easily be negative and in reality often is. For example, if the 
nominal interest rate on a savings account is 1% and the inflation rate is 3%, 
naturally, the real interest rate, i.e. the inflation adjusted rate of return for 
the lender is –2%.

3. 1. Examples of negative nominal interest rates 
However, in rare cases, also the nominal interest rate can be negative. 
An example of this would be that the lender gives money to a bank, and 
additionally pays the bank an interest rate. This happened in the 1970s in 
Switzerland. The lender had several motives 

 a) Switzerland is considered an extremely safe country to place capital 
 b) Investors were speculating on an increase of the Swiss franc 
 c) Some investors avoided paying taxes in their home country 

Another example of negative nominal interest rates occurred in Japan 
in 2003. Banks lent Japanese Yen and were willing to receive a lower Yen 
amount back several days later. This means de facto a negative nominal 
interest rate. The reason for this unusual practice was that banks were eager 
to reduce their exposure to Japanese Yen, since confidence in the Japanese 
economy was low and the Yen was assumed to devalue. 

Similarly, in the US, from August to November 2003, ‘repos’, i.e. repurchase 
agreements traded at negative interest rates. A repo is just a collateralized loan, 
i.e. the borrower of money gives collateral, for example a Treasury bond, to the 
lender for the time of the loan. When the loan is paid back, the lender returns 
the collateral. However, in 2003 in the US, settlement problems when return-
ing the collateral occurred. Hence the borrower was only willing to take the 
risk of not having the collateral returned if he could pay back a lower amount 
than originally borrowed. This constituted a negative nominal interest rate. 

A further example of the market expecting the possibility of negative 
nominal interest rates occurred in the worldwide 2008/2009 financial crisis, 
when strikes on options on Eurodollars Futures contracts were quoted above 
100. A Eurodollar is a dollar invested at commercial banks outside the US. A 
Eurodollar futures price reflects the anticipated future interest rate. The rate 
is calculated by subtracting the Futures price from 100. For example, if the 3 
month March Eurodollar future price is 98.5, the expected interest rate from 
March to June is 100 – 98.5 = 1.5, which is quoted in per cent, so 1.5%. In March 
2009, option strikes on Eurodollar future contracts were quoted above 100 on 
the CME, Chicago Mercantile Exchange. This means that market participants 
could buy the right to pay a negative nominal interest on US dollars in the 

future if desired. The reason for this unusual behavior is that investors wanted 
to invest in the safe haven currency US dollar even if they had to pay for it. 

3.2. Modeling interest rates
In finance, interest rates are typically modeled with a geometric Brownian 
motion, 

 
dr

r
= μrdt + σrε

√
dt  (2)

dr: change in the interest rate r
μ

r
: drift rate, which is the expected growth rate of r, assumed non-sto-

chastic and constant 
dt: infinitely short time period
σ

r
: expected volatility of rate r, assumed non-stochastic and constant

ε: random drawing from a standardized normal distribution. All draw-
ings at times t are iid.

In equation (2), the first term on the right hand side gives the average 
expected growth rate of r. The second term on the ride side adds stochastic-
ity to the process via ε, i.e. provides the distribution around the average 
growth rate. Importantly, from equation (1) we can observe that the relative 
change dr/r is normally distributed, since ε is normally distributed. If the 
relative change of a variable is normally distributed, it follows that the vari-
able itself is lognormally distributed with a pdf 

 
1

xσ
√

2π
e− 1

2

(
ln(x)−μ

σ

)2

 (3)

In the equation (3), μ and σ are the mean and standard deviation of ln(x) 
respectively. Figure 1 shows a lognormal distribution.

The logarithm of a negative number is not defined, hence with the pdf 
equation (3), negative values of interest rates cannot be modeled. However, 
as discussed above, negative interest rates do exist in the real financial 
world. Here negative probabilities come into play. We will explain this with 
options on interest rates. 

4. How negative probabilities allow more adequate 
interest rate modeling 

4.1. Modeling interest rate options
The two main types of options are call options and put options. A call 
option is the right but not the obligation to pay a strike price and receive an 

Figure 1: Lognormal distribution with μ = 0 and r =1.
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 underlying asset. A put option is the right but not the obligation to receive a 
strike price and deliver an underlying asset. 

In the interest rate market, the main types of options are Caps and Floors, 
Bond options, and Swap options. A Cap is a series of Caplets and a Floor is a 
series of Floorlets. We will discuss Caplets and Floorlets in this paper. 

Caplets and Floorlets are typically valued in the Black–Scholes–Merton 
framework:

 Caplet 
ts,tl

 = m PA e–rl tl {r
f
 N(d

1
) – r

k
 N(d

2
)} (4)

 Floorlet 
ts,tl

 = m PA e–rl tl {r
k
 N(–d

2
) – r

f
 N(–d

1
)} (5)

where d1 = ln(
rf
rk

)+ 1
2 σ2tx

σ
√

tx
i

 and d
2
 = d

1
 – σ

√
tx

Caplet 
ts,tl

: option on an interest rate from time t
s
 to time t

l
, t

l
 > t

s
, i.e. the 

right but not the obligation to pay the rate r
K
 at time t

l
. 

Floorlet 
ts,tl

: option on an interest rate from time t
s
 to time t

l
, t

l
 > t

s
, i.e. the 

right but not the obligation to receive the rate r
K
 at time t

l
. 

m: time between t
s
 and t

l
, expressed in years

PA: principal amount 
t

x
: option maturity, t

x
 ≤ t

s
 < t

l

r
f
: forward interest rate, derived as rfts,tl

=
(

dfts
dftl

− 1
) (

1
tl−ts

)
w where df is a 

discount factor, i.e. df
ty 

= 1/(1+r
y
). 

r
K
: strike rate i.e. the interest rate that the Caplet buyer may pay and the 

Floorlet buyer may receive from time t
s 
to time t

l
. 

Equations (4) and (5) give the arbitrage-free tradable price of a Caplet and 
a Floorlet in the Black–Scholes–Merton framework. Partially differentiating 
equations (4) and (5) results in the risk parameters, which underlie hedging 
the risks of Caplets and Floorlets. See www.dersoft.com/greeks.doc for details. 

The functions (4) and (5) satisfy the famous Black–Scholes–Merton PDE 

 D =   ∂D
 ___ ∂t     
1
 __ i   +   ∂D

 ___ ∂S   S +   1 __ 2     ∂
2D
 ___ ∂S2     1 __ 
i
   σ2S2 (6)

D: financial derivatives as for example a Caplet or a Floorlet
i: discount rate
S: modeled variable
σ: volatility of S
showing that the equations (4) and (5) are arbitrage free1. 

4.2. Applying negative probabilities to Caplets and Floorlets
Our original problem is that the market applied lognormal distribution, 
which is underlying the valuation of interest rate derivatives, cannot model 
negative interest rates. Several solutions to this problem are possible. 

 1) We can model interest rates with an entirely different distribution 
as for example the normal distribution, which allows negative inter-
est rates. This is done by Vasicek (1977), Ho and Lee (1986), and Hull 
and White (1990). However, empirical data shows that interest rate 
distribution is far from normal, see for example Chen and Scott 2002. 
Thus, the suggested solutions do not correctly reflect the reality. One 
could further argue that the use of the empirical interest rate distri-
bution should underlie the option valuation process, as for example 
applied in the Omega function (see Keating and Shadwick 2002). 
However, there are two drawbacks of this approach. a) The empirical 
distribution might not be a good indication of future interest rate 
distributions. b) Numerical methods as Monte Carlo are necessary to 
value the option. Our approach outlined in point 3) below results in a 
convenient closed form for solution. 

 2) We can add a location parameter to the lognormal  distribution. Hence 

equation (3) 1
xσ

√
2π

e
− 1

2

(
ln(x)−μ

σ

)2

 becomes 1
(x−α)σ

√
2π

e
− 1

2

(
ln(x−α)−μ

σ

)2

, 

where α is the location parameter. For α > 0, the lognormal distribu-

tion is shifted to the left. As a result, the probability distribution 
allows negative interest rates with a positive probability while main-
taining the skew and kurtosis of the lognormal distribution. The 
problem is that shifting the entire probability distribution means 
also shifting the initial current value of the interest rate r. Hence the 
modeled starting value of r will be different from the current mar-
ket interest rate r. This is inconsistent, especially for American style 
options, which determine early exercise opportunities. 

 3) A consistent way to model options on negative interest rates is to 
apply negative probabilities to equations (4) and (5). We add a param-
eter β to equations (4) and (5) and for simplicity we set m = 1 and PA =1. 
Hence we derive

 Caplet 
ts,tl

 = e–rl tl {r
f
 [N (d

1
)–β] – r

k
 [N(d

2
)–β]} β ∈ ℜ (7)

 Floorlet 
ts,tl

 = e–rl tl {r
k
 [N(–d

2
)–β] – r

f
 [N(–d

1
)–β]} (8)

where 

,

d1 = ln
(

rf
rk

)
+ 1

2 σ2tx

σ
√

tx
 and d

2
 = d

1
 – σ

√
tl  

This brings us to negative probabilities which imply negative interest 
rates. Let’s show this. From basic option theory we know that the value of a 
Caplet is divided into intrinsic value IV and time value TV:

 Caplet 
ts,tl

 = IV
Caplet

 + TV
Caplet 

≥ 0 (9)

The intrinsic value is defined 

 IV
Caplet

 = max (r – r
K
, 0)   (10)

where r is the current value of the underlying interest rate. 
Let’s investigate the case of the Caplet being in-the-money and the 

Floorlet being out-of the money, i.e. r > r
K
.2 Hence equation (10) changes to 

 IV
Caplet

 = r – r
K
 (11)

Since a Caplet does not pay a return, the time value of a Caplet is bigger 
than 0,

 TV
Caplet 

≥ 0  (12)

With a positive β, negative probabilities may emerge for certain input 
parameter constellations of in equations (7) and (8). I.e. N(d

1
)– β, N(d

2
)– β, 

N(–d
2
)– β and N(–d

1
)– β may become negative. In this case, from equations 

(7) and (8), the resulting Caplet price can become, especially for low implied 
volatility, smaller than the intrinsic value, i.e. Caplet 

ts,tl
< IV

Caplet
 . From equa-

tions (9), (11), and (12), this implies that r < 0 for small r
K
. Hence we have an 

extension of the lognormal distribution, with negative probabilities associ-
ated with negative values for r (see Figure 2). 

The higher the value of β, the more likely it is that negative probabilities 
with associated negative interest rates will emerge. This lowers Caplet prices 
and increases the Floorlet price, which is a desired result, since it adjusts 
the Caplet and Floorlet prices for the possibility of negative interest rates. 
The magnitude of the parameter β, that a trader applies, reflects a trader’s 
opinion on the possibility of negative rates. A trader will use more extreme 
β-values if he/she believes strongly in the possibility of negative interest 
rates, vice versa. 
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Figure 2: Extended distribution with negative probabilities associated 
with negative interest rates.

ENDNOTES
1. For a derivation of equation (6) see www.dersoft.com/BSMPDEgeneration.pptx. For a proof 
that the functions (4) and (5) satisfy the PDE (6), see www.dersoft.com/bspdeproof.doc 
2. In a follow up paper we will discuss the case r < r

K
 and bigger than unity probabilities.
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w

5. Concluding Summary
We have defined extended probabilities, which include negative probabili-
ties, and derived their general properties. Then we have applied extended 
probabilities to financial modeling. We have shown that negative nominal 
interest rates have occurred several times in the past in financial practice, 
as in the 2008/2009 global financial crisis. This is inconsistent with the 
conventional theoretical models of interest rates, which typically apply a 
lognormal distribution. In particular, when Caps and Floors are valued in a 
lognormal Black–Scholes–Merton framework, then the probability of nega-
tive interest rates is zero. Here negative probabilities come into play. We have 
shown that integrating negative probabilities in the Black–Scholes–Merton 
framework allows to consistently model negative nominal interest rates, 
which exist in financial practice. 
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