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fixed-income derivatives reference Libor or the euro interbank 
offered rate (Euribor), calculated daily at tenors up to a year as 

an average of the rates at which a panel of banks believe they can 
obtain unsecured funding. In the past, these were nearly identical 
to the overnight indexed swap (OIS) rates, which are calculated 
by compounding some rate reflecting the cost of unsecured over-
night interbank lending, such as the federal funds rate or the euro 
overnight index average (Eonia) rate (see figure 1). 

However, since the 2007 subprime crisis, trust has broken 
down between banks and the rates have diverged. As more deriva-
tives became collateralised, their effective funding rate became 
the OIS, while the reference rate remains Libor or Euribor. This 
creates a situation where the value of a product is dependent on 
the corresponding spread.

The Libor-OIS spread – sometimes known as the Lois – is com-
monly explained as a combination of credit and liquidity risk pre-
miums, but the second of these is rarely precisely defined or 
examined carefully. This article presents a stylised equilibrium 
model to find breakeven rates at which banks will lend for a given 
tenor rather than rolling over an overnight rate. In this setup, the 
Lois is a consequence of the skew of a Libor panel representative’s 
credit curve, and the volatility of the spread of its funding rate 
over the overnight rate. The model is calibrated to euro data 
between July 7, 2005 and April 16, 2012.

Equilibrium model
We assume the funding rate of a bank raising €x to roll over its 
current short-term debt Dt at time t is given by an increasing ran-
dom function rt(Dt + x). This represents the annualised rate 
charged to the bank for the last of the x borrowed euros. It is likely 
to be a complicated function of various factors such as the over-
night rate rt, the bank’s credit default swap (CDS) spread, and its 
leverage. The total refinancing cost for a loan of €N is given by 
integrating this function in the x variable from zero to N. As the 
integral of an increasing function this total cost is convex, implying 
the value of the lender’s option not to renew the overnight loan on 
a day-to-day basis, in contrast to a fixed tenor counterpart.

We denote by P and E the actuarial probability measure and 
expectation. Let nt represent the amount of notional that the 
bank is willing to lend at the overnight rate rt between t and t + 
dt. The problem for the bank lending overnight is to maximise its 
expected profit over the whole stochastic process n, which in 
mathematical form is:

  
U r;n( ) := 1

T
E ntrt dt − ρt Dt + x( )dxdt0

nt∫0
T
∫0

T
∫( )←maxn

	
(1)

In contrast, when lending at Libor over a period of length T, a 

bank cannot modify the notional amount N. As the composition 
of the Libor panel is updated at regular time intervals, during the 
life of a Libor loan there is increasing credit risk compared with 
an overnight loan rolled over the same period. The refreshment 
mechanism of the panel guarantees a sustained credit quality of 
the names underlying the rolling overnight loan, whereas the 
Libor loan is contracted once and for all with the initial panellists 
(see Filipović & Trolle, 2011, for a detailed analysis, and further 
developments following (6) below). Accordingly, the default time 
t of the borrower reflects the deterioration of the average credit 
quality of Libor contributors over the tenor. Overnight lending is 
considered default-free, and we assume zero discount rates for 
ease of tractability. 

The related optimisation problem for the bank is then maxim-
ising the expected profit of the bank over the constant amount N, 
which we put in mathematical form as:

  

V L;N( ) := 1
T

E NL T ∧ τ( )(
− ρ Dt + x( )dxdt −1τ<T N0

N
∫0

T∧τ
∫ )←maxN

	

(2)

As we are dealing with short-term debt, we assume no recovery in 
case of default.

We stress that r and n represent stochastic processes in (1) 
whereas L and N are constants in (2). The utility functions of 
the bank that are implicit in (1) and (2) are taken in a standard 
economic equilibrium formalism as Legendre transforms of the 
OIS and Libor cost functions, represented by the integrals over 
x in the right-hand side of (1) and (2) (see Karatzas & Shreve, 
1998). These utility functions are linear to reflect the general 
risk-neutral behaviour of banks when lending, in which gains 
and losses are assessed in terms of actuarial expectations. In 
other words, the choice of banks to lend is driven less by prefer-
ences than by an optimisation of the cost-of-capital and credit 
protection. One could incorporate a concavely distorted utility 
function to account for risk aversion. Such a distortion would 
appear in our model as an increased volatility of capital needs 
and of the corresponding borrowing rate. However, we believe 
that short-term lending decisions are driven more by the esti-
mated cost-of-capital than by a trade-off between interest 
returns and default risk.

Letting U(r) = maxnU(r; n) and V(L) = maxNV(L; N) repre-
sent the best utilities a bank can achieve by lending OIS or 
Libor, respectively, our approach for explaining the Lois con-
sists, given the overnight rate process r, in solving the following 
equation for L:
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	 V L( ) =U r( ) 	 (3)

This equation expresses an equilibrium relation between the util-
ity of lending rolling overnight versus Libor for a bank involved 
in both markets.

To summarise, the analysis consists in comparing the deterio-
ration in creditworthiness of a representative Libor borrower 
with the funding liquidity of a representative Libor lender. Note 
that other issues such as central banks’ policies or possible 
manipulations of the rates are not explicitly stated in the analy-
sis. However, these can be reflected to some extent in the model 
parameterisation that we will specify. Later we shall see that for-
mula (3) equating the optimal expected profits implies a square-
root dependence of the Lois on the tenor T. 
n Credit and funding costs specification. For tractability we 
assume henceforth that the funding rate r is linear in x, that is:

	 ρt Dt + x( ) = αt + βt x 	 (4)

where at = rt(Dt) is the time-t cost-of-capital of the lending bank, 
already with €Dt worth of debt, and the coefficient bt represents 
the marginal cost of borrowing one more unit of notional. For 
instance, at = 2% and bt = 50 basis points means that the last 
euro borrowed by the bank was charged an annualised interest 
rate of two cents, whereas if the bank was indebted by €100 more, 
the next euro to be borrowed would be at an annualised interest 
charge of 2.5 cents.

By (4), we have:

	   
U r;n( ) = 1

T
E rt − αt( )nt − 12βtnt

2⎛
⎝⎜

⎞
⎠⎟ dt0

T
∫

	
(5)

Denoting by lt the intensity of t and letting gt = at + lt and lt = 
e–∫ t0lsds, we also have:

	    
V L;N( ) = 1

T
E L − γ t( )N − 1

2
βtN

2⎛
⎝⎜

⎞
⎠⎟ l t0

T
∫ dt

	
(6)

where a standard credit risk calculation was used to get rid of the 
default indicator functions in (6) (see, for instance, Bielecki & 
Rutkowski, 2002). As explained after (2), the default time t 
reflects the deterioration of the average credit quality of a Libor 
representative borrower during the length of the tenor. Recall the 

classical argumentation of Merton (1974), according to which a 
high-quality credit name has a decreasing CDS curve reflecting 
the expected deterioration of his credit. Consistent with this 
interpretation, the intensity lt of t can be proxied by the slope of 
the credit curve of the Libor representative (and therefore high-
quality) borrower. This is given by the difference between the 
borrower’s one-year CDS spread and the spread of its short-term 
certificate deposits, currently 10 to a few tens of basis points for 
major banks. Accordingly we call lt the credit skew of the Libor 
representative borrower.

Connections with exogenous or endogenous variables can be 
considered. Central banks’ liquidity policies will be reflected in 
the at and bt components of the cost-of-liquidity r in (4). A 
manipulation effect, or incentive for a Libor contributor to bias its 
borrowing rate estimate in order to appear in a better condition 
than it is in reality (Wheatley, 2012), could be modelled by a 
spread in the borrower’s credit risk skew component l.

Lois formula
Problems (1) and (5), and (2) and (6) are respectively solved for 
given r and L as follows. Writing ct := at – rt, the OIS problem (1), 
(5) is resolved independently at each date t according to:

ut rt ;nt( ) = ctnt − 12βtnt
2 ←maxnt

hence the maximum is attained at:

nt
* = ct

βt
and ut rt ;nt

*( ) = ct
2

2βt

The expected profit of the bank over the period [0, T] is:

  
U r( ) = U r;n*( ) = E 1

T
ct
2

2βt
dt0

T
∫

⎛

⎝⎜
⎞

⎠⎟

In the Libor problem (2), (6), we must solve:

   
V L;N( ) = N

T
E L − γ t( )l t dt − 120

T
∫

N 2E
T

βtl t dt ←maxN0
T
∫

hence:
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N* =

E 1
T L − γ t( )l t dt0

T
∫

E 1
T βtl t dt0

T
∫

and:

	    
V L( ) = V L;N*( ) =

E 1
T L − γ t( )l t dt0

T
∫( )2
2E 1

T βtl t dt0
T
∫ 	

(7)

We define R = E1
T
_ ∫ T0rtdt. The rest of the article is devoted to the 

calculation of a stylised Lois defined as (L* – R), where L* is the 
solution to (3) given the process r. This is assumed to exist; note 
that the function V is continuous and increasing in L, so that a 
solution L* to (3) is unique.

First note that in the case l = 0, one necessarily has U(r) ≥ 
V(R), since the constant N * solving the Libor maximisation 
problem (2) is a particular strategy (constant process nt = N *) 
of the OIS maximisation problem (1). As V is an increasing 
function, the indifference pricing equation (3) in turn yields 
that L* ≥ R.

Let V0(⋅; N) be the utility of lending Libor in the case l = 0. 
When l > 0, for each given amount N, one has, via l that is 
present in g in (6), that V(R; N) ≤ V0(R; N) up to the second-order 
impact of lt. Hence V(R) ≤ V0(R) ≤ U(r) follows from the inequal-
ity in the l = 0 case and the fact that t doesn’t appear in U(r; n). 
We conclude that L* ≥ R as before.

For notational convenience, let us introduce the time-space 
probability measures on Ω × [0, T], P

_
, given by the product of P 

times dt/T, along with P^ given by the Radon-Nikodym derivative 
dP^/dP ∝ l. For a process f = ft(w), we denote the corresponding 
time-space averages by:

  
f = Ef = E 1

T
ft dt, f̂ = Êf = E f l

l

⎡
⎣⎢

⎤
⎦⎥0

T
∫

(so, in this notation, R = r
_

). Similarly for processes f, g:

	  
Cov f ,g( ) = E fg( )− EfEg, σ̂ f

2 = Ê f − f̂( )2	
(8)

Since:
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2	credit	and	liquidity	components	of	Lois,	and	R2	of	
regression   

U r( ) = E c2

2β
⎡

⎣
⎢

⎤

⎦
⎥ and V L( ) = l2 L − γ̂( )2

2E βl[ ]
equating V(L*) = U(r) yields:

	   
l2 L* − γ̂( )2 = E βl[ ]E c2

β
⎡

⎣
⎢

⎤

⎦
⎥

	
(9)

in which:

  
E βl[ ]E c2

β
⎡

⎣
⎢

⎤

⎦
⎥ = E c2l⎡⎣ ⎤⎦ −Cov βl, c

2

β
⎡

⎣
⎢

⎤

⎦
⎥

So:

 

l2 L* − γ̂( )2 = lÊ c2⎡⎣ ⎤⎦ −Cov βl, c
2

β
⎡

⎣
⎢

⎤

⎦
⎥

An interesting condition is when the funding rate equals the aver-
age overnight rate, when R = a^  = g^ – l^ , that is, c^ = a^  – r^ = r

_
 – r^. 

Then the previous formula reads:

	  

l L* − R − λ̂( )2 = σ̂c
2 + r − r̂( )2 −Cov β l

l
, c
2

β
⎡

⎣
⎢

⎤

⎦
⎥

	
(10)

A reasonable first approximation is that (r– – r^)2 and the cov-
ariance are negligible in the right-hand side. In particular, 
these terms vanish when the intensity l is zero and the mar-
ginal cost-of-capital coefficient b is constant. For the sake of 
argument, suppose a diffusive behaviour of the instantaneous 
funding spread process ct = at – rt, that is, dct = s*dWt for some 
reference volatility s* and a Brownian motion W. Let us also 
assume a constant credit skew lt = l* of the borrower and a 
constant marginal cost of borrowing b. Neglecting the impact 
of lt = e–l*t ≈ 1 – l*t in (10) (so that P^ ≈ P

_
), it follows that:

 
σ̂c
2 ≈ σc

2 = σ*( )2 E 1
T

Wt
2

0
T
∫ dt = σ*( )2T / 2

and our Lois formula follows from the above as:

	 L* − R ≈ λ* + σ* T / 2 	 (11)

where we take the positive root of (10), L* – R –l^ ≥ 0. This is a natu-
ral assumption as Libor should at least compensate for the credit 
deterioration of the panel over the tenor. From a broader perspec-
tive, according to formula (11), the two key drivers of the Lois are:
n A suitable average l* of the borrower’s credit skew l, which can 
be seen as the intrinsic value component of the Lois and is a bor-
rower’s credit component.
n A suitable volatility s* of the instantaneous funding spread 
process ct. This second component can be seen as the time-value 
of the Lois, interpreted as a lender’s liquidity component.

From a quantitative trading perspective, the formula (11) can 
be used for implying the value s* priced in by the market from 
an observed Lois L* – R, and a borrower’s CDS slope taken as a 
proxy for l*. The value s* implied through (11) can be com-
pared by a bank with an internal estimate of its realised funding 
spread volatility, so that the bank can decide whether it should 
lend Libor or OIS, much like with going long or short an equity 
option depending on the relative position of the implied and 
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realised volatilities of the underlying stock. Another possible 
application of the formula (11) is for the calibration of the vola-
tility s* of the funding spread process ct in a stochastic model 
for the latter, for example, in the context of credit valuation 
adjustment computations (see Crépey, 2012b).
n Numerical analysis. Figure 2 shows euro market time series  
for August 15, 2007 to April 16, 2012 of the intercept, slope and 
R2 coefficients of a linear regression of the Lois term structure 

against √T
_

/
_
3
_

m
__

 or √T
_

/
_
6
_

m
__

, for T varying from one month to one 
year. Choosing √T

_
/
_
3
_

m
__

 or √T
_

/
_
6
_

m
__

, the two most liquid tenors, as 
a regressor only affects the slope coefficient of the regression, by 
a factor of √2

_
, with the inputs chosen as the most liquid part of 

the curve. In our financial interpretation, the intercept repre-
sents the credit component of the Lois (of any tenor T), while 
the slope coefficients represent the liquidity component of the 
Lois for T = 3m or 6m. The red curve on the figure can be 
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viewed as the credit component while the blue and purple curves 
represent the liquidity components of the three- and six-month 
Lois. Before August 2007, the Lois is negligible so that the 
regression (not displayed on the figure) is insignificant. Since 
the advent of the Lois in mid-August 2007, we can distinguish 
three market regimes. In a first phase, until first-quarter 2009, 
the market adapts, with the R2 becoming significant together 
with very large and volatile credit and liquidity Lois compo-
nents. Note in particular the spike of both components at the 
turn of the credit crisis following Lehman’s default in Septem-
ber 2008, during which liquidity in the interbank market dried 
up. Between second-quarter 2009 and mid-2011, the situation 
seems stabilised with an R2 close to one, a liquidity component 
of the order of 30bp on the three-month or 45bp on the six-
month and a much smaller credit component. The ongoing 
eurozone crisis and the US downgrade of mid-2011 prompts a 
third phase with a much higher liquidity component, of the 
order of 60bp on the three-month or 90bp on the six-month. 
This shows banks’ increasing difficulties in funding, for instance 
due to stricter repo eligibility requirements. To illustrate the 
three market regimes in this analysis, figure 3 shows the fit 
between a square-root term structure and the empirical Lois 
term structure corresponding to the Euribor/Eonia-swap data 
of August 14, 2008, April 28, 2010 and April 16, 2012 (data of 
the right panel in figure 1). The last two terms that we neglected 
in (10) to deduce (11) are a possible explanation for (minor) 
departures of the actual Lois spread curve from the theoretical 
square-root term structure implied by (11).

The simplicity of the model means the credit component of Lois, 
the red line in figure 2, is somewhat volatile, but appears broadly 
reasonable for a credit skew, as interpreted as the difference between 
the one-year CDS spread and the short-term certificate deposit 
credit spread of a major bank. The estimate for s* – the coefficient 
of the regression against √T

_
/2
__

, obtained by doubling the corre-
sponding coefficient for that against √T

_
/
_
6
_

m
__

, in purple on figure 2 
– ranges between 100bp and 200bp. This is reasonably in line with 
the volatilities of major banks’ CDS spreads – certainly a reasona-
ble lower bound, as funding spreads are complex and may depend 
on other less volatile inputs.

Conclusion
Since the 2007 subprime crisis, OIS and Libor markets (Eonia 
and Euribor in the euro market) have diverged. We have shown 
that this can be explained in a simple model in which banks 
optimise their lending between Libor and OIS markets, and so 
are led to apply a spread over the OIS rate when lending at 
Libor. This Lois can be considered as consisting of two compo-
nents: one corresponding to the credit skew lt of a representa-
tive Libor borrower in an interbank loan, and one correspond-
ing to liquidity – in the sense of the volatility of the funding 
spread – of a representative Libor lender over the overnight 
interbank rate. Assuming a diffusive evolution of this funding 
spread ct, the above-mentioned optimisation results in a square-
root term structure of the Lois given by the formula (11). The 
intercept l* can be proxied by the slope of a representative Libor 
credit curve and the coefficient s* is a volatility of ct. These the-
oretical developments are corroborated by empirical data from 
second-half 2007 to second-half 2012 on the euro market stud-
ied in this article. The Lois is explained by credit and liquidity 
until the beginning of 2009, and dominantly explained by 
liquidity since then. Residual discrepancies between the theory 
and the data can be explained by the existence of other features 
such as Libor manipulations, which could be included in the 
methodology in future work. The equilibrium approach of this 
article allows a bank to in principle monetise the Lois, by prefer-
ably lending Libor (respectively OIS) whenever its internally 
estimated funding spread is statistically found less (respectively 
more) volatile than s* implied from the market through the 
Lois formula (11). Another application of this formula is for the 
calibration or estimation of the volatility s* of the funding 
spread process ct in a stochastic model for the latter. n
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