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Abstract

The Black-and-Scholes formula provides a correspondence between the
price of a plain option and the underlying asset volatility. Volatilities
implied from prices of quoted plain options are, in general, not constant
and depend on the strike and maturity of the option. We describe a
new construction of an implied volatility surface from a discrete set of
implied volatilities which is arbitrage-free and satisfies some smoothness
conditions. Our algorithm allows the calibration to the smile of the local
volatility model, a standard extension of the Black-and-Scholes model
known to be hard to calibrate in practice. Plain options prices calculated
from our local volatility surface using deterministic schemes or Monte
Carlo simulation closely match input prices. This allows the pricing of
exotic options in a way consistent with the price of quoted plain options.

1 Introduction

Plain or vanilla European options deliver payoffs dependent on the underlying
asset price at the option maturity. The Black-and-Scholes formula determines
the price of a vanilla European option by assuming the underlying volatility to be
constant. It is well known, however, that implied volatilities of quoted European
options are non-constant and depend both on the strike and maturity of the
option, a phenomenon often referred to as the ”smile”. Various models based on
jump-diffusion, local or stochastic volatility, have been proposed to explain and
calibrate the smile (see (Andersen and Andreasen 2000, Derman and Kani 1994,
Dumas, Fleming and Whaley 1998, Dupire 1994, Heston 1993, Lagnado and
Osher 1997, Li 2001, Rebonato 1999, Rubinstein 1994) and references therein.)
Several problems arise in the presence of smile. First, arbitrage may exist among
the quoted options. Another problem is to price European options for strikes
and maturities not quoted in the market. Standard interpolation techniques
may give rise to arbitrage in the interpolated volatility surface even if there is
no arbitrage in the original set. A related problem is to price non-vanilla options
by taking the smile into account.

This paper presents a new interpolation method for implied volatilities. If
the market volatilities are arbitrage-free we calculate an interpolating surface of
the market volatilities for all strikes and maturities up to the last maturity that
is arbitrage-free and satisfies some smoothness conditions. The basis block for



our interpolation is a single-maturity interpolation with the following properties
(the first holds only if there are no absolute discrete dividends):

e If the input implied volatilities are constant so are the interpolated volatil-
ities.

e The second derivative of the call price with respect to the strike is positive
and continuous, as shown by numerical experiments.

The motivation behind the second property is that the second derivative of the
call price is proportional to the implied density of the spot.

Our single-maturity interpolation does not depend on the shape of the dis-
crete volatilities and applies to index, equity, forex and interest rate options. It
takes seconds to calibrate a 10 x 10 volatilities matrix on a 800 Mhz processor
and the quality of the fit is excellent. While our interpolation is of indepen-
dent interest one of its main applications is the calibration of the local volatil-
ity model (Derman and Kani 1994, Dupire 1994, Rubinstein 1994), where the
volatility of the spot is a deterministic function of the spot and time. The local
volatilities can be calculated from the implied volatility surface via Dupire’s
formula (Dupire 1994) which is very sensitive to the interpolation used. It is
well known (Avellaneda, Friedman, Holmes and Samperi 1997) that, for stan-
dard interpolation methods, Dupire’s formula often leads to instabilities in the
local volatilities. Our interpolated volatility surface has been designed to cali-
brate Dupire’s model. Numerical experiments show that prices of plain options
calculated via our local volatility surface and deterministic schemes or Monte
Carlo simulation are very close to input prices. This allows the pricing of exotic
options, including options on several assets, in a way consistent with the smile.

An alternative approach (Achdou and Pironneau 2002, Avellaneda, Fried-
man, Holmes and Samperi 1997, Coleman, Li and Verma 1999, Crépey 2003a,
Crépey 2003b, Lagnado and Osher 1997) to calibrating Dupire’s model is to cal-
culate directly a local volatility surface that satisfies a regularity condition and
produces prices close to input prices. This approach generates an arbitrage-free
implied volatility surface but is more time-consuming than ours.

The rest of the paper is organised as follows. Section 2 contains prelim-
inary results. Section 3 gives an arbitrage-free one-dimensional interpolation
which has a provably continuous first derivative. Section 4 gives an arbitrage-
free one-dimensional interpolation which numerical experiments show to have
a continuous second derivative. Section 5 describes our two-dimensional inter-
polation algorithm and its application to the local volatility model. Sections 2
through 5 assume we are in the equity market and there are no interest rates
and no dividends. We point out how dividends and interest rates are taken into
account in Section 6. We show in Section 7 that our method can be used in
the forex market and, in the one-dimensional case, in the interest rate market.
An example from (Avellaneda, Friedman, Holmes and Samperi 1997) on the
USD/DEM exchange rate is given in Section 8. An example on the S&P 500
has been given in a short version of our paper (Kahale 2004). Section 9 contains
concluding remarks.



2 Preliminaries

We use the following definition of arbitrage, which is slightly different from the
one usually found in the literature. We define an arbitrage as a self-financing
portfolio of securities that has a negative value today and a nonnegative value
at a given time in the future independently of the market behavior. Thus one
is certain to make profit by buying such a portfolio.

It can been shown that if the input implied volatilities are given for all
maturities and strikes there is no arbirage in the input if and only if the following
conditions hold:

1. For a given maturity the call price is non-increasing and convex with
respect to the strike.

2. The call price is a non-decreasing function of time.

The convexity condition follows from the convexity of the payoff at maturity.
Based upon this result one can find in linear time whether there exists an ar-
bitrage within a discrete set of implied volatilities. In particular the following
can be shown in the one-dimensional case.

Lemma 1. Consider a sequence (k;, ¢;)o<i<n+t1 Such that
OZCn+1:k0<I€1<-~-<kn<kn+1200 (1)

and c;, 0 <1i<n, is the price of a call with strike k;. There is no arbitrage
among these prices if and only if cy is equal to the current spot, ¢, > 0 and

1< GizCin Cit1 — G
T ki ki1 T ki — Ky

<0forl1<i<n. (2)

3 A one-dimensional C'! interpolation method

We give in this section a C' arbitrage-free interpolation method for a given
maturity. Like the cubic interpolation, our method is based on the concatenation
of several functions. Moreover, these functions are convex. Our construction
is inspired from the Black-and-Scholes formula. We start with the following
lemma:

Lemma 2. Given f >0, X >0, a and b, the function
c(k) =cfxmap(k) = fN(d1) — kN(d2) + ak + b, (3)

where

_ log(f/k) +32/2

- b3

and dy = dy — 3, is a convex function of k for k > 0.

dy

Proof. As in the Black-and-Scholes formula, we can check that the second
derivative is positive using simple differentation:

k) = —N(d)+a (4)
(k) = N,g” (5)
]



Lemma 3. Let g be a real function defined for all real numbers such that ¢'(x)
exists and is positive for any real number x and 1/g’ is strictly convex. For
A €]0,1[ and any real numbers zo < x1, the function h(a) = g(Ag~'(a + o) +
(1-=X)g~Y(a+z1))—a has a positive derivative with respect to a on the (possibly
empty) interval on which it is defined.

Proof. Let y = g~ 1(a + z¢) and z = g~ (a + z1). By standard calculus

A1)
gy 9()

h'(a) = g' Ay + (1= A)2)( )—1

The equation h'(a) > 0 is equivalent to

A 1A 1
g 9= " g+ (1-N)z)’

which follows from the strict convexity of 1/¢’. O

Theorem 1. For all real numbers ko, k1, co, c1, ¢, and ¢} such that 0 < ko <

k1 and
C1 —Co

/ / /
< < <1 6
- ko € + ¢ (6)
there exists a unique vector (f,3,a,b) with f > 0, ¥ > 0 such that the func-
tion ¢ = cfx.q,p Satisfies the following conditions: c(ko) = co, c(ki) = c1,

(ko) = ¢ and ¢/ (k1) = . The vector (f,X,a,b) is continuous with respect to
(ko, k1, co,c1,¢(,¢y) and can be calculated numerically.

Proof. Given a €]c}, 1+ cf[, let d3, d3, o and 8 be the unique reals numbers
such that 4
¢, =—N(dy) +a (7)

K3

and '
dy = alog(k;) + 3,

for i € {0,1}. The existence of d} is a consequence of the inequalities ¢} < a <
¢t + 1 which follow from Eq. 6. Since ¢ < ¢; we have dJ > d} by Eq. 7, and
thus
s
log(ko) — log(k1)

Hence there exist f > 0 and ¥ > 0 such that « = —1/¥ and 8 = (log f)/X—%/2.

It follows that tog(f /) 2
; og i) — 2°/2

dy = > . (9)
Note that db, a, 3, f and ¥ are continuous functions of a as a ranges in |}, 1+cp].
Consider the function ¢ = ¢y 5 4,5, where b is chosen so that c¢(ko) = co. It follows
from Eqgs. 9 and 4 that ¢/(k;) = —N(d})+a, and so ¢/(k;) = ¢, by Eq. 7. We now
show that, for some a €]¢}, 1+cg[, (k1) = ¢1. The ratio (e(k1)—c(ko))/ (k1 —ko)
is a continuous function of a. It follows from Eq. 4 that, for kg < k < k1,

< 0. (8)

dk)=a—-NOAN"Ya—cp) +(1-NN"a—d)),

where A = log(k1/k)/log(k1/ko). By applying Lemma 3 to the Normal function,
we infer that ¢/(k) is a strictly decreasing and has a negative derivative with



respect to a. The same holds for the ratio (c(k1) — c(ko))/(k1 — ko). When
a— ¢y, (k) — ¢ for k # ko. It follows that

c(k1) — e(ko)

/ /
— C1 as a — Cq.
kl_ko 1 1

Similarly,
c(k1) — c(ko)
k1 — ko

By continuity and Eq. 6, there exists ag €]}, 1 + ¢ such that, for a = ay,

c(ky) — e(ko) _a—cd
k1 — ko ki —ko

— ¢ as a — 1+ .

Since c(ko) = co, the equality c¢(k1) = ¢1 holds for a = ag. Standard algorithms
for inverting functions (Press, Flannery, Teukolsky and Vetterling 1993) can
be used to calculate ag numerically. The uniqueness and continuity of ag with
respect to (ko, k1, co, c1,¢p, ¢;) follows from the fact that the derivative of the
ratio (c(k1) — c(ko))/(k1 — ko) is negative with respect to a. O

Theorem 1 gives an interpolation method between two strikes. We extend
it below to extrapolate the call prices below or beyond a certain strike. The
extrapolation method satisfies limit conditions that also hold in the constant-
volatility case.

Lemma 4. For all real numbers ko, co, and ¢y such that 0 < ko, —1 < ¢ <0
and ¢y > 0 there exist two unique parameters f > 0 and X > 0 such that the
function ¢ = cf 50,0 satisfies the following conditions: c(ko) = co, ¢ (ko) = c§.
Moreover c(k) — 0 and ¢/(k) — 0 as k — oo. The vector (f,%) is continuous
with respect to (ko, co,cp) and can be calculated numerically.

Proof. Let dJ be the unique real number such that ¢ = —N(d3). For ¥ > 0,
let f = koexp(Xdy + X?/2). The function ¢ = cf 50,0 has a derivative equal to
¢y at ko. As ¥ — 0, c(ko) — 0 and, as & — oo, ¢(ko) — oo. Thus c(ko) = co
when ¥ = ¥, for some ¥y > 0. In order to show the uniqueness of ¥y we prove
that c(ko) has a positive derivative with respect to . Let d; = d9 + %, so that
c(ko) = fN(dy) + kocp. The logarithmic derivative of fN(d;) with respect to 3
is N'(d1)/N(dy1) + di, which is positive by standard calculus. The uniqueness
and continuity of ¥y with respect to (ko, co, cj) follows. The calculation of the
limits of ¢(k) and ¢/(k) as kK — oo follows by standard arguments. O

Lemma 5. For all real numbers ki, ¢y, ¢1 and ¢} such that 0 < ky and

C1 — C
1< 12

< <0, (10)
1

there exist three unique parameters f > 0, ¥ > 0 and b such that the function

¢ =cyx0p satisfies the following conditions: c(k) — co as k — 0, (k1) = ¢},

c(k1) = c1. Moreover, (k) — —1 as k — 0. the vector (f,%,b) is continuous

with respect to (ki,co,c1,c)) and can be calculated numerically.



Proof. Let d} be the unique real number such that ¢j = —N(d}). For ¥ > 0 let
f = ki exp(2d; + %%/2) (11)

and
b= Co — f (12)

The function ¢ = ¢ 5 04 has a derivative equal to ¢ at ki. Moreover, (c(k), ' (k)) —
(co,—1) as k — 0 by standard calculations. It remains to show that c(k1) = ¢;
for some ¥ > 0. Since c(k1) = fN(d1) + kici + b, with d; = d} + 3,

c(k1) —co = —fN(—d} — %) + k1] (13)
by Eq. 12. Eq. 11 determines f as a function of 3. As ¥ — 0, f — k1 and
c(ky) —co — —k1N(—=d}) + ki) = —k;.
Since N(z) ~ N'(z)/|z| as  — —oo,
c(k1) — co = ki) as ¥ — oo.

By continuity and Eq. 10 it follows that ¢(k;) = ¢; when ¥ = %, for some
Yo > 0. Asin Lemma 4, it can be show that the derivative of c(kq) with respect
to X is positive. This implies the uniqueness and continuity of ¥, with respect
to (kl,C(),Cl,Cll). O

Combining Lemmas 2, 4, 5 and Theorem 1, we obtain the following definition
and theorem.

Definition 1. For all real numbers ko, ki1, co, c1, ¢, and ¢| such that 0 <
ko < k1 and Eq. 6 holds, denote by ¢(ko,co,ch, k1,c1,¢)) the function ¢ =
Ctx.a,p that satisfies the following conditions: c(ky) = co, c(k1) = c1, (ko) =
¢y and (k1) = ¢). Similarly, for all real numbers ko, co, and ¢ such that
0 < ko, =1 < ¢ < 0 and ¢o > 0, denote by ¢(ko, co, ), 00,0,0) the function
c = cyx00 that satisfies the following conditions: c(ko) = co, (ko) = ¢j.
Finally, for all real numbers ki, co, ¢1 and ¢} such that 0 < k; and Eq. 10
holds, denote by ¢(0,co, —1,k1,c1,c}) the function ¢ = cs 5.0 that satisfies the
following conditions: c(k) — cg as k — 0, ¢/ (k1) = ¢}, c(k1) =c1.

It follows from Definition 1 that for all real or infinite numbers kg, k1,
o, €1, ¢y, and ¢j such that the function ¢ = ¢(ko, co, ), k1,¢1,¢}) is defined,
(c(k),d (k) = (ci,c;) as k — k;, i € {0,1}. By combining the interpolated and
extrapolated methods for a series of strikes, we obtain the following.

Theorem 2. For all sequences (k;)o<i<n+1, (Ci)o<i<nt1 and (¢})o<i<nt+1 such
that Eq. 1 holds together with the limit conditions

co=—1, ¢, <ch =0<cy, (14)
¢ Citl — G

¢ < ——— < ¢y for 0<i<mn, (15)
kit1—k;



there exist a C1 conver function c(k), k > 0, and a unique sequence (fi, S, ai, bi)o<i<n
such that c(k) = c¢f, 5, 0.6, (k) on the interval [k;, kiy1] — {0, 00}, c(ki) = ¢; and
d(k;) = ¢ for 1 <i<n. Moreover,

(c(k),c' (k) — (co,—1) as k — 0 (16)
and
(c(k),c (k) — (0,0) as k — oo. (17)

The sequence (f;, i, ai, b;)o<i<n 1S continuous with respect to (co, (k;, ¢;, ¢})1<i<n)
and can be calculated numerically.

There are 4(n + 1) unknown parameters (f;, X;, a;, b;i)o<i<n that define the
function ¢. Each equation ¢(k;) = ¢;, 1 < i < n, accounts for two conditions on
these parameters, because it holds both for ¢y, 5, a5, (ki) and ¢, | 55, 101,651 (Ki)-
The same holds for the equation ¢/(k;) = ¢}, 1 <14 < n. Together with the limit
conditions as k — 0 and as k — oo, there are 4n + 4 conditions, which is equal
to the number of parameters.

4 A one-dimensional C? interpolation method

The algorithm in Theorem 2 gives a C!' convex interpolating curve at a given
maturity. But, since the second derivative of the call price with respect to the
strike is proportional to the density of the strike in the risk-neutral word, a C?
interpolating curve is desired. We give in this section an interpolating algorithm
for the call prices at a given maturity which we conjecture will converge towards
a C? interpolating curve with the properties mentioned in Section 1. We start
with a few lemmas to motivate our algorithm.

Lemma 6. Let g be a convex C* function defined on the interval [zo,z1], and

xo €]zg, x1[. The following holds:

§(@) - g'(az) < (g'm) - *"()‘g(“) , (18)

T1 — o

where 1 = (21 — o)/ (w2 — o).

Proof. Since g(x2)—g(zo) < g'(z2)(v2—x0) and g(z1) —g(z2) < ¢'(z1)(z1—72),
9(z1) — g(z0) < g'(z2) (2 — 0) + g'(21) (21 — 22),

and so

9(z1) = g(z0) — g'(z1)(z1 — 20) < (¢'(22) — ¢'(z1)) (22 — @0)
which is equivalent to Eq. 18. O

Lemma 7. For any v > 0 there exists ¢g > 0 such that, for e < g, § > 0 and
all u, if
N(u+9) — N(u) < € and (19)

N(u+2§) — N(u) >~ (20)
then 6N’ (u) < e.



Proof. Assume without loss of generality that ¢y < v/2 < 1. By Eq. 20, N(u +
26) = N(u+6) > /2 and so
u+6 < 2, (21)

where zg = N7}(1 — /2). Let 2z € [u,u + §] be such that N(u + &) — N(u) =
ON'(z). By Eq. 19,
SN'(2) < e. (22)

Since the function N’ is upper bounded by 1, it follows from Eq. 20 that 6 > /2,
and so N'(z) < 2¢/v. But z < zp by Eq. 21. Let ¢ = yN'(20)/2. If € < €g then
N'(z) < N'(z9) and so z < 0. Hence N'(u) < N'(z). By Eqgs. 22 it follows that
ON'(u) <e. O

Lemma 8. Given any real numbers ko, k1, co, c1, ¢ such that 0 < kg < ky

and
, €1 —Co

Co<k1—ko

let &} €](c1—co)/(k1—ko), 1+cy[ and ¢ = ¢(ko, co, b, k1,¢1,¢1). Thenc’ (k1) — 0
as ¢y — (¢1 —co)/(k1 — ko).

<1+d, (23)

Proof. We show there exists €y, 0 > 0 such that, for 0 < € < ¢ if

C1 —Co ’ €1 —Co

ki —ko > 1S ke — ko

+€

then ¢” (k1) < fe. By choosing €p < 1+ ¢f — (e1 — ¢o)/(k1 — ko), the existence
of ¢ = ¢f 5,4, follows from Theorem 1. Let v = (¢ — ¢o)/(k1 — ko) — ¢j. By
convexity ¢/ (k1) — ¢/(ko) > 7. Using the same notation as in Theorem 1 and
Eq. 4, it follows that

N(d3) = N(d3) > .

Let ko = v'kok1. By Lemma 6, ¢/(k1)—c'(k2) < ne, where n = (k1—ko)/(k2—ko),
and so 2
+
N(ETE)  N@h) < e
By Lemma 7, it follows that (d3—d3)N'(d}) < 2ne for a suitable €. Using Eq. 5,
it follows after some calculations that ¢” (k1) < f¢, where 8 = 2/ (k1 log(k1/ko).
O

Lemma 8 shows that ¢” (k1) — 0 as ¢/(k1) goes to its lower limit. Lemma 9
below shows a similar result holds in the limit case when kg = 0.

Lemma 9. For all real numbers ki, cg and ¢y such that 0 < ky and

C1 —Co

1< <0,

1

let ¢} range in |(c1 — co)/k1,0] and c the function ¢(0,co, —1,k1,c1,¢)). Then
(k1) = 0 as ¢} = (c1 — co)/ka.

Proof. We use the same notation as in Lemma 5, from which follows the exis-
tence of c. Eq. 13 implies that, as cj — (¢; — co)/k1, fN(—di —¥) — 0. Since,
by Eq. 11 f is lower-bounded by k1 exp(—(d3)?/2), it follows that 3 — oo. Thus
(ko) — 0 by Eq. 5. O



Lemma 10. Given any real numbers ko, ki, co, c1, ¢} such that 0 < kg < ki
and

Ad-1< <cp (24)
let ¢y €]ci—1, (c1—co)/(k1—ko)[ and ¢ = ¢(ko, co, b, k1,¢1,¢1). Then (ko) — 0
as ¢y — (c1 — co)/ (k1 — ko).

Proof. The proof is similar to the proof of Lemma 8 and is omitted. O

Lemma 10 shows that ¢” (ko) — 0 as ¢/ (ko) goes to its upper limit. Lemma 11
below shows a similar result holds in the limit case when ki = co.

Lemma 11. For all real numbers ko, co such that 0 < ko and co > 0, let ¢
range in | — 1,0 and ¢ = cgx 0,0 be the function ¢(ko,co,cp,00,0,0). Then
(ko) = 0 as ¢, — 0.

Proof. Using the same notation as in Lemma 4, standard algebra shows that,
as ¢y — 0, dy — —o0, fN(d1) — co, ¥ — 00, and thus ¢’ (kg) — 0 by Eq. 5. [

Theorem 3 below shows how to construct a concatenated function that will
be twice continuous at a given point k;, for some j in the interval [1,n]. Step 2
of algorithm A described in Subsection 4.1 guarantees the concatenated function
to be twice continuous at all points k;, for any j in the interval [1,n].

Theorem 3. Let j be an integer in the interval [1,n]. For all sequences
(ki)0§i§n+17 (Ci)0§i§n+1 and (C;)Ogign+l such that Eqs. 1, 14 and 15 hOld,
there exist a C* convex function c(k), k > 0, and a sequence (f;, X:,a;,b;)o<i<n
such that c(k) = ¢y, 5,.a:,0; (k) on the interval [k;, kiy1] — {0, 00}, e(k;) = ¢; for
1<i<m, dki) =c forl <i<mn,i#j, and ¢ has a continuous second
derivative at k;. Moreover, the limit properties in Eqs. 16 and 17 hold. The
sequence (f;, X, a:,b;)o<i<n can be calculated numerically.

Proof. For 1 < i < n, let l; = (¢; — ¢i—1)/(k; — ki—1). By Theorem 2, for
any 7 €]lj,1;+1[, there exist a C'' convex function c(k), k > 0, and a sequence
(fi» X4, ai,b;)o<i<n such that c(k) = ¢y, 5,.4:0;(k) on the interval [k;, ki11] —
{0,00}, (ki) =c¢; for 1 <i<mn, d(kj) =vyand (ki) =c for 1 <i<m,i#j,
and the limit conditions defined in Eqgs. 16 and 17 hold. = We show that for
some 7 €]l;,1;11[, ¢ has a continuous second derivative at k;.

As v goes to [;, the left second derivative ¢”(k;™) of ¢ at k; goes to 0 by
Lemmas 8 and 9. But the right second derivative ¢”(k; ) of ¢ at k; goes to
¥”(k;), where 1 is the function ¢(kj,c;, 15, kjt1,¢j41,¢j11). Hence, ¢” (k;T) —
¢’ (k;7) has a positive limit as -y goes to I;. Similarly, it can be shown that
¢”(k;T)—c”(k; ) has a negative limit as ~y goes to [; 1. By continuity, ¢” (k; ) =
¢’ (k; ™) for some value of v €]l;,111]. O

As in Theorem 2, the number of constraints on the parameters in Theorem 3
is equal to the number of parameters because there are still four constraints at
ki c(k;T) = clk;7) = ¢j, (kj7) = ¢'(k;7) and ¢’ (k;7) = ¢”(k; ). Unlike
Theorem 2, though, it is not clear whether the function constructed in Theo-
rem 3 is unique.



4.1 The algorithm description

We are now ready to describe our algorithm. Consider sequences (k;)o<i<n+1
and (¢;)o<i<n+1 such that Eq. 1 holds, ¢, > 0 and

Ci —Ci—1 Cit1 — G

-1
< ki — ki1 ki1 — Ky

<0forl<i<n. (25)

Note that Eq. 25 is the same as Eq. 2 except that inequalities have been replaced
by strict inequalities. Let € > 0 be an error parameter. Algorithm A consists of
the following procedures:

1. Initialization Step. Let ¢y = —1, ¢;,;; = oo and ¢ = (I; + liy1)/2, for
1 S ) S n, where lz = (Ci — Ci—l)/(ki — ki—1)~

2. Loop. For 1 <j <mn, let 7; = cj(k;), where c; is a function calculated in
Theorem 3 for the index j. Replace simultaneously (c;) by v;, 1 <j <n.
Repeat this step until max; <<, (|¢” (k;7) — ¢’ (k;7]) < e.

Conjecture 1. For all sequences (ki)o<i<n+1, (Ci)o<i<nt1 such that Egs. 1
and 25 hold, the sequences calculated by Algorithm A converge in the limit to-
wards a sequence (fi, i, ai,b;)o<i<n. There exists a C* convex function c(k),
k > 0, such that c(k) = cf, 5,.a:,0; (k) on the interval [k;, ki11] — {0,000} and
c(ki) = ¢; for 1 <i<mn. Moreover, the limit properties in Egs. 16 and 17 hold.

The number of constraints on the parameters in conjecture 1 is equal to the
number of parameters. To see this, we note there are still four constraints at
kj, 1< j<m:e(ky™) =c(ky™) =cj, (k) = (k;7) and & (k;F) = ¢ (k; 7).
Since there are four limit constraints by Eq. 17, the total number of constraints
is equal to 4n + 4, which is equal to the number of parameters. It is not clear,
though, whether there exists a unique function c satisfying the properties in
conjecture 1. Several methods can be used to improve the numerical stability
and speed of convergence of Algorithm A. We have tested a variant of Algorithm
A where the c; and ~y; are updated in parallel using a Newton-Raphson method.
Our experiments support our conjecture.

5 A two-dimensional interpolation method and
Dupire’s model

If no arbitrage is found in the input implied volatilities we calculate an arbitrage-
free interpolating volatility surface using Algorithm B that consists of the fol-
lowing steps:

1. We generate a one-dimensional arbitrage-free interpolation for each input
maturity ¢; using the above variant of Algorithm A.

2. For each maturity ¢ €]t;,¢;+1[ and each strike K, we calculate the im-
plied volatility oimp (K, T) so that o2, (K, T)T is a linear interpolation of

imp

Ui2mp (K, ti)ti and U?mp(K, ti+1)ti+1.

3. We make the necessary adjustments so that the entire volatility surface is
arbitrage-free.
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Our interpolation in the time domain ensures that if the no-arbitrage condition
C(K,t;) < C(K,ti+1) holds, where C(K,T) is today’ s price of a European call
with strike K and maturity T, C(K,T) is an increasing function of T' between t;
and t;y;. This is because, in the Black-and-Scholes formula, C(K,T) depends
on time only through o2 (K, T)T. Moreover, C(K,T) is an increasing function

imp

of J?mp(K ,T)T. Thus the no-arbitrage condition with respect to time holds if
and only if U?mp(K ,T)T is an increasing function of T'. Step 3 is shown in detail
in Subsection 5.1.

Because of the adjustments made in the last step, the smoothness properties
of the one-dimensional interpolation method described in Section 1 may not
hold for the two-dimensional interpolation method. However, numerical exper-
iments in the two-dimensional case show that, for any maturity up to the last
input maturity, the second derivative of the call price with respect to the strike
exists and is continuous and positive except for a few points. Moreover, the
derivative with respect to time is continuous except at input maturities. These
properties help to ensure the stability of pricing exotic options using Dupire’s
model. In Dupire’s model (Dupire 1994) the spot follows the following stochastic
differential equation:

dSt = /J,tStdt + O'(St, t)Stth,

where W, is a Brownian motion and o(S,t) is a deterministic function. Dupire
has shown that if the implied volatilities are known for all strikes and maturities
then the local volatility surface is uniquely determined. More precisely,

9C(K,T)

2 _ or
OK?

Several pros and cons of Dupire’s model can be found in the literature. A classi-
cal problem in implementing the model is the instability of the local volatilities
calculation. According to the practical cases we tested our interpolating algo-
rithm is well suited to calibrating Dupire’s model. This is because the second
derivative with respect to the strike of the call prices generated by our algorithm
exists in practice and is continuous and positive for maturities up to the last
input maturity. Moreover the call prices derivative with respect to the matu-
rity exists and is continuous and positive except at input maturities. The local
volatility surface is therefore, in general, continuous except at input maturities,
and can be calculated approximately using finite difference approximations of
derivatives.

It is known that the price of a contingent claim on S obeys the following

PDE: Bu(S, 1) 82u(S.1)
u(S,t 1, 207u(S,t
5 + 57 (S,t)S 557

where u(S,t) is the price at time ¢ of a contingent claim if the spot price is S at
time ¢t. The local volatility surface can thus be used to calculate option prices
using finite difference schemes such as the Crank-Nicholson’s algorithm.

:O’

5.1 Making the entire volatility surface arbitrage-free

Once the implied volatility surface has been calculated in Step 2 for all maturities
up to the last input maturity ¢, we calculate the associated call prices C(K,T)

11



for T' < tj,. Then, for each maturity 7' < ¢, we replace C(K,T) by C*(K,T),
where C*(K,T) is the supremum of all convex functions C(K,T) with respect
to K such that C(K,T) < C(K,s) for T < s < t;. The function C*(K,T) is
convex with respect to K since the supremum of convex functions is convex. It
is not hard to show that C*(K,T) is increasing with respect to T'. Hence the
call surface C*(K,T) is arbitrage-free for all K and T' < ¢p,.

In our implementation we have inverted steps 2 and 3 of Algorithm B and
used a variant of step 3 that guarantees the restriction of the volatility surface
to the union of input maturities to be arbitrage-free. Experiments we performed
on market volatilities show that the entire volatility surface generated by this
variant of Algorithm B is, for practical purposes, arbitrage-free.

5.2 Deep in the money and out of the money volatilities

For a given maturity, the extrapolation methods in Sections 3 and 4 yield asymp-
totically constant implied volatilities as the strike goes to infinity. This follows
from standard calculus and the asymptotics

by
crx,00(k) ~ fN/(dl)ma (26)

as k — oo. Eq. 26 can be shown using the expansion

~ - o)

as z — —oo. A similar result holds when the strike goes to 0. In practice, for
a given maturity, we determine a strike which is deep out of the money and a
strike deep in the money and keep the implied volatilities constant outside these
strikes. The calculated local volatilities are also constant deep in and deep out
of the money for a given maturity.

N(z)

6 Dealing with dividends and interest rates

We assume that interest rates are deterministic and that dividends are of one
or a combination of the following types:

e Absolute dividend with a predetermined cash amount at a predetermined
date.

e Proportional dividend at a predetermined date with an amount propor-
tional to the spot.

e Continuous dividend with a predetermined dividend rate.

We further assume that absolute dividends exist up to a certain maturity, with
no restrictions on proportional or continuous dividends. We reduce the compu-
tation of the local volatility surface to the case where interest rates and dividends
are null using a transformation similar to the one in (Overhaus, Ferraris, Knud-
sen, Milward, Nguyen-Ngoc and Schindlmayr 2002, Section 4.6). Let 7™ be a
maturity larger than all absolute dividends and input options maturities and
let S} be the forward of S; at maturity 7. Thus S} is continuous and driftless

12



and can be considered as an underlying in an interest rate and dividend-free
world. By a classical calculation (see e.g. (Overhaus, Ferraris, Knudsen, Mil-
ward, Nguyen-Ngoc and Schindlmayr 2002, Section 4.6)) S; = a(t)Sy + b(¢),
where a(t) and b(t) are deterministic functions of time. Let C*(K*,T') be the
expected value under the risk neutral distribution of max(0, S*(¢t) — K*). Thus
C(K,T) = B(to,t)a(t)C*(K*,T), where K = a(t)K* + b(t) and B(to,t) is the
price at initial time ¢y of a zero-coupon maturing at t. A discrete set of op-
tion prices on S determines a discrete set of option prices on S*. Using results
in previous sections, we can calculate a local volatility surface o*(S*,t) that
matches the options prices on $*. By Ito’s lemma, the local volatility surface
o(S,t) = a(t)S*o*(S*,t)/S matches the options prices on S. It can be shown
that the local volatility surface o(S,t) remains unchanged if 7" is replaced by
a larger maturity.

In general, by non-arbitrage, volatility can no longer be a continuous func-
tion of time at dividend dates. For the same reason volatility cannot be constant
everywhere in the presence of absolute dividends. Our algorithm generates an
arbitrage-free implied volatility surface that has the same smoothness proper-
ties mentioned in the preceding sections except at discrete dividend dates. In
practice the error rate of the calculated prices is generally higher if there are
discrete dividends.

7 The foreign exchange and interest rate mar-
kets

Our algorithm can readily be used in the foreign exchange derivatives market
because the foreign exchange dynamics are similar to the equity dynamics. The
continuous dividend rate is simply replaced by the foreign exchange rate.

Our one-dimensional algorithm can be used to interpolate volatilities on
options expiring at a given maturity 7" on a swap or interest rate spanning a
given period I. A slight modification is needed however if we assume interest
rates can be negative.

8 Example

We tested our algorithm on the market implied volatilities of the USD/DEM
exchange rate on August 23, 1995 given in (Avellaneda, Friedman, Holmes and
Samperi 1997) and shown in Fig. 1. The DEM deposit rate is 4.27% while the
US deposit rate is 5.91%.

We plot in Fig. 2 the interpolated volatility surface, in Fig. 3 the call price,
in Fig. 4 the risk-neutral density function of the spot, and in Fig. 5 the local
volatility surface.

We compared the Black-and-Scholes prices calculated via the input implied
volatilities to those calculated via the interpolated implied volatilities. The
maximum relative error (price differences divided by the initial spot) obtained
is of order 10~7. We also compared the prices calculated via the input implied
volatilities to the prices obtained via the Crank-Nicholson method and our local
volatility surface with 50 time-steps and 500 space-steps. The maximum rela-
tive error obtained is of order 10~°. Finally, we compare in Fig. 6 the prices
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Maturity | Type | Strike | Implied volatility
Call | 1.5421 14.9
Call | 1.5310 14.8
30 days Call | 1.4872 14.0
Put | 1.4479 14.2
Put | 1.4371 14.4
Call | 1.5621 14.4
Call | 1.5469 14.5
60 days Call | 1.4866 13.8
Put | 1.4312 14.0
Put | 1.4178 14.2
Call | 1.5764 14.1
Call | 1.5580 141
90 days | Call | 1.4856 13.5
Put | 1.4197 13.6
Put | 1.4038 13.6
Call | 1.6025 13.1
Call | 1.5779 13.1
180 days | Call | 1.4823 13.1
Put | 1.3902 13.7
Put | 1.3682 13.7
Call | 1.6297 13.3
Call | 1.5988 13.2
270 days | Call | 1.4793 13.0
Put | 1.3710 13.2
Put | 1.3455 13.2

Figure 1: Implied volatilities for the USD/DEM exchange rate on August 23,
1995.
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Figure 2: Interpolated implied volatilities on the USD/DEM exchange rate on
August 1995 in terms of the maturity and the strike.

calculated via the input implied volatilities to those obtained via Monte Carlo
simulation together with our local volatility surface. We used 50 time-steps
and 100000 paths in the Monte Carlo simulation. The maximum relative error
obtained is of order 10~%. Our Monte Carlo simulation algorithm can be gener-
alised to several dimensions, thereby allowing the pricing of options on several
assets in a way consistent with the smile.

9 Conclusion

We have designed a one-dimensional interpolation algorithm for implied volatil-
ities that is robust and has good smoothness properties. Our algorithm ap-
plies to equity, forex and interest rate options. It can be extended to the two-
dimensional case for equity and forex options. In practice the regularity prop-
erties of our interpolation scheme ensure it can be used to calibrate Dupire’s
model. Vanilla options prices calculated from our local volatility surface us-
ing PDE schemes or Monte Carlo simulation closely match input prices. Our
method can be used to price options on one or several assets in a way consistent
with the smile.
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