
06/03/2013 03:23 AM50-56_Papaioannou_TP_March_2013_Final.indd 50

50  WILMOTT magazine

Hull & White Convexity Adjustments 
for Credit – Riskless Interest Rate Swaps 
Under CSA
Denis Papaioannou
Senior Quantitative Consultant, Hiram Finance, e-mail: denis@hiram-fi nance.com 
Meriem Chouqi
Junior Quantitative Consultant, MargOconseil
Benjamin Giardina
Junior Quantitative Consultant, Hiram Finance 

Abstract
Using a multicurve pricing framework has become standard market practice for 
investment banks. A new IBOR curve bootstrapping procedure is now in use, con-
sisting of discounting using an OIS curve. The curve obtained allows us to recover 
market forwards corresponding to a “CSA” world which is the interbank world. 
Currently, this curve is being used to calculate forwards for non-CSA trades, which 
represents an important approximation since it does not take into account the con-
vexity adjustment implied when changing from “CSA” to “non-CSA” probability 
measure. By reducing counterparty risk using CSA contracts, new risk factors have 
arisen that are left unhandled. We show in this article how to calculate non-CSA 
forwards convexity adjustment. This adjustment depends on collateral and fund-
ing rates volatilities as well as correlation between both. We take into account these 
parameters under one-factor Gaussian short-rate models, and give a detailed devel-
opment for the Hull & White specific case. These closed formulae allow in turn fast 
bootstrapping procedures and therefore potential risk management for non-CSA 
swaps.
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Framework
The letters C and F, when used as subscripts, will refer respectively to 
“COLLATERAL” and “FUNDING.” Note as well that we will use the terms “funding 
rate” and “IBOR rate” indifferently, as well as the terms “collateral rate” and “OIS rate.”

Financial notation
rC short rate at which collateral grows 
rF short rate corresponding to unsecured funding rate 

PC(t,T )  value at time t of a zero coupon maturing at time T, associated with cost 
of collateral 

PF(t,T )  value at time t of a zero coupon maturing at time T, associated with cost 
of funding 

fC(t,T ) instantaneous forward collateral rate defined by  fC(t,T ) = –  
∂ ln PC(t,T )

 __________  ∂T  

fF(t,T ) instantaneous forward funding rate defined by fF(t,T ) = –  
∂ ln PF(t,T )

 __________  ∂T   

L(T1,T2) IBOR rate fixing at time T1 and whose tenor is T2–T1 
FC(t,T1,T2)  value at time t of the CSA forward rate associated with IBOR rate L(T1,T2)
FF(t,T1,T2)  value at time t of the non-CSA forward rate associated with IBOR rate 

L(T1,T2)

Mathematical notation
The mathematical notation used is summarized in the following table. For the sake 
of simplicity, we used the same notation for Brownian motions and filtrations under 
risk-neutral and forward measures.

Monocurve Funding CSA 
Risk-neutral measure Q QF QC

N uméraires associated B BF BC

Brownian motions W WF WC

Filtrations associated F FF FC

Expectations EQ E Q 
F E Q 

C 
T-forward measure QT  Q F  T  Q C  T 
Numéraires associated P(.,T ) PF(.,T ) PC(.,T )
Brownian motions W WF WC

Filtrations associated F FF FC

Expectations E Q 
T EQT

F EQT
C
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In order to price non-collateralized deals, we need forwards under the 
“non-CSA-forward” measure, that is, FF(t,T1,T2) = E

Q
T2
F

t [L(T1,T2)]. These 
are not directly observed in the market, and therefore have to be deduced from 
FC(t,T1,T2). Although it is clear in the literature that this convexity adjustment 
exists (see Mercurio, 2010; Piterbarg, 2010; Bianchetti and Carlicchi, 2011, for 
instance), there are currently no studies of its impact on the long end of the yield 
curve.

The approach we present in this article consists of modeling OIS and IBOR short 
rates separately using correlated Hull & White dynamics. Under this framework we 
obtain closed formulae linking the CSA forward FC(t,T1,T2) to the non-CSA forward 
FF(t,T1,T2). Our aim is not to specify a new yield curve bootstrap procedure since the 
adjustment depends on OIS volatility and OIS–IBOR correlation which are difficult 
to observe, but rather to quantify the risk implied by these parameters which is cur-
rently being underestimated. By reducing counterparty risk using CSA contracts, 
new risk factors have arisen that are left unhandled.

Most importantly, a typical setup involves a bank having a non-collateralized 
trade with a client, hedged with a collateralized trade (see Figure 2). Therefore, 
in order to hedge properly, the non-collateralized trade sensitivities have to be 
monitored as precisely as possible. Our work shows how important it is to take into 
account OIS–IBOR correlation, as well as their respective volatilities.

We use subscript t for conditional expectations. For instance, EQ
t  denotes expecta-

tion conditional on F(t). 
To distinguish Brownian motions under the same measure, we use the 

subscript linked to the asset. For instance, WS will denote asset S’s Brownian 
motion. 

M otivation
Before CSA swaps became a market standard, futures were already subject to 
margin calls implying a convexity adjustment. The latter can be seen as the differ-
ence between risk-neutral and forward-neutral expectations of an IBOR rate (see 
Andersen and Piterbarg, 2010, section 16.8 for a detailed demonstration): 

 CVX(t) = EQ
t [L(T1,T2)] − E

QT2
t [L(T1,T2)] 

Calculating  E t  
Q  [L(T1,T2)] is not trivial and currently investment banks use a model-

dependent approach. A commonly used adjustment is implied by a Hull & White 
model on short rate, leading to 

 
CVX(t) = σ 2 B(T1,T2)

4 a τ (T1,T2)
[
B(T1,T2)(1 − e−2aT1 ) + 2 a B(0,T1)2

]
 

where B(t,T ) =   1 __ a   [1–e–a(T–t)], a denotes short-rate mean reversion, and σ its volatility 
as shown in Kirikos and Novak (1997). It is typically the adjustment one can find on 
Bloomberg using ICVS.

Now the question we have to ask ourselves is, “How does this adjustment impact 
the yield curve?”

Figure 1 answers our question quickly: using a fixed volatility at 1%, we obtain 
an adjustment magnitude at about a basis point for a 3-year maturity. Although this 
impact is not neglectable and affects forwards, it does not affect significantly the 
overall yield curve shape.

Let us now focus on collateralized swaps, which are used for the long term of 
the yield curve. Just like futures, collateralized swaps are subject to margin calls and 
therefore their pricing involves a convexity adjustment. Currently, banks take into 
account this adjustment by separating discounting – using an OIS curve correspond-
ing to the rate at which collateral grows – from forwards calculation. However, 
the forwards obtained this way correspond to the “CSA-forward” measure, that is, 
FC(t,T1,T2) = E

Q
T2
C

t [L(T1,T2)]. These are the forwards we can retrieve from the – 
interbank – market, since swaps are collateralized.

Figure 1: Impact of futures convexity adjustment on zero-coupon rates

Figure 2: Non-CSA swap hedged by a CSA swap
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Theoretical  CSA convexity adjustment and market 
practice
Our developments are based on the collateralized derivatives valuation framework 
introduced by Fujii et al. (2009) and generalized to the case of partial collateralization 
by Piterbarg (2010). Note that, for the sake of simplicity, we do not take into account 
different types of collateralization. When we mention a “collateralized deal” we mean 
a bilateral fully cash collateralized deal with daily margin calls. Moreover, we focus 
on the specific case of mono-currency swaps collateralized in their own currency. We 
therefore do not incorporate the general case of collateral currency different from the 
swap’s currency, nor the option of collateral currency choice. While this generaliza-
tion is important as it concerns many CSA contracts, it would considerably compli-
cate things.

Consider now an IBOR rate L(T1,T2) paid at T2. If this cashflow is part of a col-
lateralized deal its present value writes as VC(t) = E

Q
t [e

− ∫ T2
t rC(s)ds L(T1,T2)], 

rC being the rate at which collateral grows. Expressing the previous result under 
the “CSA-forward” measure QT2

C  associated with the numéraire PC(.,T2) leads to 
VC(t) = PC(t,T2)E

Q
T2
C

t [L(T1,T2)] .
Similarly, the value of the same cashflow not being collateralized writes as, 

under the “non-CSA-forward” measure QT2
F  associated with the numéraire PF(.,T2), 

VF(t) = PF(t,T2)E
Q
T2
F

t [L(T1,T2)] .
As interbank swaps are collateralized, non-CSA forwards are not directly 

observed in the market and have to be deduced from CSA forwards using a convex-
ity adjustment, which writes as CVXCSA(t) = E

Q
T2
C

t [L(T1,T2)] − EQ
T2
F

t [L(T1,T2)] . 
Currently, market practitioners neglect this impact and use CSA forwards directly 
for non-CSA swaps pricing. This is due to the difficulty of calculating the adjust-
ment, and also to the fact that the main concern for non-CSA swaps is counterparty 
risk.

While counterparty risk for non-CSA swaps is fundamental, we demonstrate 
hereafter that non-CSA forwards convexity adjustment should not be neglected. To 
measure purely the impact of this adjustment, we do not account for counterparty 
risk. In the next section we set up a framework using one-factor Gaussian short-rate 
models for collateral and funding rates. Our framework is similar to those intro-
duced in Piterbarg (2010) and Kenyon (2010), but we focus specifically on calculat-
ing non-CSA forwards for which we obtain closed formulae. These formulae allow, 
in turn, fast boostrapping procedures and potential risk management via sensitivities 
computations.

Evaluating CSA adjustment  using Gaussian 
short-rate models
Note that we are assuming banks raise funds at IBOR rate and therefore we use 
indifferently “funding rate” and “IBOR rate.” In practice, banks raise funds at IBOR 
plus a funding spread which must be taken into account, as explained in Whittall 
(2010). Moreover, the funding spread is stochastic and therefore a proper frame-
work would imply modeling this spread separately and correlating it to IBOR and 
OIS rates.

However, our first aim is to measure the impact of OIS–IBOR joint distribution 
on non-CSA forwards. The next step would be to extend the model by incorporating 
a stochastic funding spread.

Modeling framework
In or der to model the funding short rate rF and collateral short rate rC, we use one-
factor Gaussian short-rate models. The rF and rC dynamics under Q write as 

 

drC(t) = μC(t, rC(t)) dt + σC(t) dWQ
C (t)

drF(t) = μF(t, rF(t)) dt + σF(t) dW
Q
F (t)

 
where σC, σF, μC, and μF are deterministic functions. The μ functions determine the 
type of Gaussian model considered. For instance, μC (t, rC(t)) =   

∂fC ___ ∂t  (0, t) +  σ C  2
   t defines 

a Ho & Lee model for rC.
Let ρC,F(t) = 〈dWQ

C (t), dW
Q
F (t)〉/dt  denote the instantaneous correlation 

between rC and rF Brownian motions. Under this framework, we can express the 
zero-coupon dynamics as

 
dPC(t,T)
PC(t,T)

= rC(t) dt + �C(t,T) dW
Q
C (t)  

 
dPF(t,T)
PF(t,T)

= rF(t) dt + �F(t,T) dW
Q
F (t)  

ΓC and ΓF being deterministic. Moreover, zero coupons can be expressed as  follows: 

 PC(t,T) = AC(t,T) e−BC(t,T) rC(t)  

 PF(t,T) = AF(t,T) e−BF (t,T) rF(t)  

with AC, AF, BC, and BF being deterministic as well.

Adjustment calculation
Using the previous results w e obtain the following dynamics for rF under QT2

C  and QT2
F :

 drF(t) = [μF(t, rF(t)) − ρC,F(t) σF(t)�C(t,T2)] dt + σF(t) dW
Q
T2
C

F (t)  

 drF(t) = [μF(t, rF(t)) − σF(t)�F(t,T2)] dt + σF(t) dW
Q
T2
F

F (t) 

In order to link the rF distribution under QT2
C  with its distribution under QT2

F , we 
introduce ̂rF(T1) = rF(T1)–cvx(t,T1,T2) with cvx such that the ̂rF(t) distribution under 
Q

T2
C  matches the rF distribution under QT2

F . The idea of introducing ̂rF is based on 
the fact that rF has deterministic drifts under both measures QT2

C  and QT2
F , and 

therefore we can define a deterministic function cvx linking these dynamics. This 
allows, in turn, a straightforward calculation of the adjustment: 

L(T1,T2) = 1
T2 − T1

(
1

PF(T1,T2)
− 1

)
 

 
= 1

T2 − T1

(
1

AF(T1,T2)
eBF(T1,T2) rF (T1) − 1

)
 

 
= eBF(T1,T2) cvx(t,T1,T2)

1
T2 − T1  

 
×

(
1

AF(T1,T2)
eBF (T1,T2) r̂F (T1) − e−BF (T1,T2) cvx(t,T1,T2)

)
 

 
= eBF(T1,T2) cvx(t,T1,T2)

[
1

T2 − T1

(
1

AF(T1,T2)
eBF (T1,T2) r̂F(T1) − 1

)

 
+ 1
T2 − T1

(
1 − e−BF (T1,T2) cvx(t,T1,T2)

)]
 

 
= eBF (T1,T2) cvx(t,T1,T2)

[̂
L(T1,T2) + 1

T2 − T1

(
1 − e−BF (T1,T2) cvx(t,T1,T2)

)]
 

where we introduced the notation 

L̂(T1,T2) = 1
T2 − T1

(
1

AF(T1,T2)
eBF (T1,T2) r̂F(T1) − 1

)
.
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As the ̂rF(t) distribution under QT2
C  matches the rF distribution under QT2

F , 
we have that L(T1,T2) under QT2

F  is equally distributed with ̂L(T1,T2) under QT2
C . 

Therefore: 

 E
Q
T2
C

t [L(T1,T2)] = eBF(T1,T2) cvx(t,T1,T2) 

 
×

[
E
Q
T2
F

t [L(T1,T2)] + 1
T2 − T1

(
1 − e−BF (T1,T2) cvx(t,T1,T2)

)]
 

This finally allows us to link the CSA forward FC to the non-CSA forward FF:

 FC(t,T1,T2) = eBF (T1,T2) cvx(t,T1,T2) FF(t,T1,T2) 

 
+ 1

T2 − T1

(
eBF(T1,T2) cvx(t,T1,T2) − 1

)
 

Now, the task that is left is to specify a one-factor Gaussian model in order to calcu-
late the cvx term. We show hereafter how to calculate this term using Hull & White 
models.

Using Hull & White models
Considering the Hull & White dynamics for rF , we have 

 μF(t, rF(t)) = θF(t) − aFrF(t)  

with  the θF function allowing us to recover the initial interest rate term structure: 

 
θF(t) = ∂fF

∂t
(0, t) + aFfF(0, t) + σ 2

F
2aF

(
1 − e−2aFt

)
 

ΓF, BF, and AF write as

 
�F(t,T2) = σF(t)

(
1 − e−aF (T2−t)

aF

)
 

 
BF(T1,T2) = 1

aF

[
1 − e−aF (T2−T1)

]
  

 
AF(T1,T2) = PF(0,T2)

PF(0,T1)
exp

(
BF(T1,T2) fF(t,T1)

 

 
−BF(T1,T2)2

1
2

∫ T1

0
e−2aF (T1−t)σ 2

F (t) dt
)

  

Replacing the subscript F with C allows us to write the corresponding functions for 
the collateral short rate rC. After calculation (see Appendix B.1 for more details), we 
obtain

 
cvx(t,T1,T2) =

∫ T1

t
e−aF (T1−s) [�F(s,T2) σF(s) − ρC,F(s)�C(s,T2)σF(s)

]
ds

 
which can be analytically integrated. Assuming constant volatilities1 leads to (see 
Appendix B.2 for calculation details)

 
cvx(t,T1,T2) = σF

aF

(
σF

aF
− ρC,F

σC

aC

) (
1 − e−aF (T1−t)

)
 

 
− σ 2

F
2a2F

e−aF(T1+T2)
(
e2aFT1 − e2aFt

)
 

 
+ ρC,F

σCσF

aC(aF + aC)
e−aFT1−aCT2

(
e(aF+aC)T1 − e(aF+aC)t

)
  

Figure 3: EONIA 6M swap vs. EURIBOR 6M from 2004 to 2012

Source: Bloomberg
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Now we have obtained a closed formula for the cvx term, we have explicitly linked 
the CSA forward FC(t,T1,T2) to the non-CSA forward FF(t,T1,T2) and we are able to 
study the impact of CSA adjustment on the yield curve.

Impact measurement under Hull & White 
 framework

Decorrelation impact
Decorrelation between OIS and IBOR ra tes is the key to understanding the impact 
of the adju stment. The decorrelation that appeared in 2007 was an important factor 
that led banks to separate OIS discounting from forwards calculation. Nothing can 
make it more obvious than the historical chart of the OIS–IBOR spread presented as 
Figure 3. More precisely, the EURIBOR 6-month rate is plotted against a 6-month 
EONIA swap from 2004 to 2012.

The graphs in Figure 4 show the impact on the yield curve obtained when taking 
into account decorrelation between OIS and IBOR rates. The blue curve corresponds 
to traditional monocurve bootstrapping of a 6-month EURIBOR swap curve. The 
red curve is obtained using OIS discounting. We see that they have similar levels; 

the difference can be seen if we look at the zero-coupon rates shown in Table A.1, in 
which we note a basis point difference for the 30-year maturity.

All the other curves are obtained taking into account convexity with constant 
1% volatility for OIS and IBOR rates and for different correlation levels varying from 
100% to 70%. We can note the importance of the impact as decorrelation becomes 
more important.

The violet curve is obtained taking into account convexity with constant 1% 
volatility for OIS and IBOR rates and for a correlation level of 80%. 100% correlation 
would correspond to a pre-crisis scenario (before 2007) and 80% would correspond 
to a decorrelation that could be observed under stressed market conditions.

We notice an important downward shift on both the yield curve and the forward 
curve as decorrelation becomes more important. Even with 90% correlation we 
obtained for the 50Y maturity a rate 16 basis points lower than what we obtained 
with a typical OIS bootstrap and a 34 basis points impact on the forward rate (abso-
lute difference). Numerical results are presented in Tables A.1 and A.2.

This alerts us to the importance of taking into account the adjustment for risk 
management purposes: all non-collateralized swaps are highly sensitive to this adjust-
ment. Therefore, in order to manage risks on non-CSA swaps, one should monitor as 
precisely as possible OIS and IBOR correlation, as well as their respective volatilities.

Figure 4: OIS–IBOR decorrelation impact on spot rates and forward rates

Figure 5: Adjustment impact with σC < σF
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Table A.3: Spot rates impact with σC < σF.

Maturity Monocurve OIS discounting
Adjusted ρC,F = 90%
σC = 0.5%, σF = 1%

1Y 0.40% 0.40% 0.42%
5Y 0.93% 0.93% 0.91%
10Y 1.74% 1.74% 1.66%
20Y 2.31% 2.31% 2.05%
30Y 2.35% 2.34% 1.88%
40Y 2.48% 2.47% 1.79%
50Y 2.61% 2.60% 1.71%

Assuming OIS volatility lower than IBOR volatility
In the previous section we analyzed the correlation’s impact  using collateral rate 
volatility – which is unobservable – equal to funding rate volatility at a 1% level. In 
this section we take a look at the behavior of the adjustment under the assumption of 
collateral rate volatility lower than funding rate volatility.

Although it is a difficult task to define a level of collateral rate volatility σC, it 
seems logical to keep it lower than the funding rate volatility σF. The reason is that 
the collateral rate is driven by central bank rates that are less volatile than interbank 
rates. In this case the downward shift in spot rates and forward rates observed in the 
previous section is increased.

In the current example we used as previously σF = 1% and ρ = 90%, but we took 
σC = 50% (see Figure 5). From the cvx formula obtained in Section 3.3, we would 
expect the downward shift to be more significant since ρ and σ are interchangeable. 
This is indeed what we observe: the 50Y spot rate is 89 basis points lower than a typi-
cal OIS bootstrap and the forward rate is 1.83% lower (absolute difference), as shown 
in Tables A.3 and A.4.

Conclusion
By modeling OIS and IBOR rates separately and under the assumption of no funding 
spread, we managed to calculate the forwards convexity adjustment impacting non-col-
lateralized swaps. We have shown how crucial it is to take into account OIS–IBOR decor-
relation in terms of yield curve risk management. The next important steps consist of:

• trying to quantify the OIS–IBOR correlation term structure as well as the OIS 
volatility term structure, both being difficult to observe;

• modeling a stochastic funding rate correlated to IBOR and OIS rates.

Appendix A: Numerical results

Appendix B: Adjustment  calculation under Hull & 
White framework

B.1 Calculating t he cvx(t,T1,T2) term

Step 1: rF dynamics under QT2
C

Let us apply the change of measure from Q to QT2
C  using the Radon–Nikodym 

derivative:

 

dQ
T2
C

dQ
|t = Z(t) = K

PC(t,T2)
BC(t)  

where K is a constant term (K = BC(0)/PC(0,T)).
The Radon–Nikodym derivative Z(t) has the same volatility term as PC(t,T2): 

 dZ(t)/Z(t) = −�C(t,T2) dWQ(t)  

Applying the Girsanov theorem we can now express the funding short-rate rF 
dynamics under QT2

C  as 

 drF(t) = [ − ρC,F(t)�C(t,T2)σF(t) + θF(t) − aFrF(t)
]
dt + σF(t)dW

Q
T2
C

F (t) 

Solving this equation2 yields

 
rF(T1) = rF(t)e−aF (T1−t) +

∫ T1

t
e−aF (T1−s) [ − ρC,F(s)�C(s,T1)σF(s) + θF(s)

]
ds

 

 +
∫ T1

t
σF(t)e−aF (T1−s)dW

Q
T2
C

F (t)ds  

Table A.4: Forward rates impact with  σC < σF.

Maturity Monocurve OIS discounting
Adjusted ρC,F = 90%
σC = 0.5%, σF = 1%

1Y 0.52% 0.52% 0.51%
5Y 2.14% 2.14% 2.06%
10Y 3.12% 3.10% 2.86%
20Y 2.45% 2.45% 1.67%
30Y 2.80% 2.79% 1.55%
40Y 3.06% 3.04% 1.40%
50Y 3.26% 3.24% 1.41%

Table A.1: Spot rates – decorrelation impact.

Maturity Monocurve OIS discounting

Adjusted

ρC,F = 90% ρC,F = 80% ρC,F = 70%
1Y 0.40% 0.40% 0.42% 0.42% 0.42%
5Y 0.93% 0.93% 0.92% 0.92% 0.92%
10Y 1.74% 1.74% 1.72% 1.71% 1.69%
20Y 2.31% 2.31% 2.26% 2.21% 2.17%
30Y 2.35% 2.34% 2.26% 2.18% 2.09%
40Y 2.48% 2.47% 2.35% 2.22% 2.10%
50Y 2.61% 2.60% 2.44% 2.28% 2.12%

Table A.2: Forward rates – decorrelation impact.

Maturity Monocurve OIS discounting

Adjusted

ρC,F = 90% ρC,F = 80% ρC,F = 70%
5Y 2.14% 2.14% 2.12% 2.11% 2.09%
10Y 3.12% 3.10% 3.06% 3.01% 2.97%
20Y 2.45% 2.45% 2.31% 2.17% 2.03%
30Y 2.80% 2.79% 2.56% 2.34% 2.11%
40Y 3.06% 3.04% 2.74% 2.45% 2.15%
50Y 3.26% 3.24% 2.90% 2.57% 2.24%
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Step 2: rF dynamics under QT2
F

Changing measure from Q to QT2
F  leads to the following dynamics for rF under QT2

F
: 

 drF(t) = [ − �F(t,T2) σF(t) + θF(t) − aFrF(t)
]
dt + σFdW

Q
T2
F

F (t)  

or equivalently: 

 
rF(T1) = rF(t)e−aF (T1−t) +

∫ T1

t
e−aF (T1−s)[ − �F(t,T2) σF(t) + θF(s)

]
ds

 

 
+

∫ T1

t
σF(t)e−aF (T1−s)dWQ

T2
F

F (t)ds
 

This leads us to define

 
cvx(t,T1,T2) =

∫ T1

t
e−aF (T1−s)[�F(s,T2) σF(s) − ρC,F(s)�C(s,T2)σF(s)

]
ds

 

 r̂F(T1) = rF(T1) − cvxHW(t,T1,T2)  

which makes ̂rF(T1)  under QT2
C  equally distributed with rF under QT2

F .

B.2 Calculating the integral
Let us now calcu late the cvx(t,T1,T2) integral

 
cvx(t,T1,T2) =

∫ T1

t
e−aF(T1−s)[�F(s,T2) σF(s) − ρC,F(s)�C(s,T2)σF(s)

]
ds

 

where the Γ functions are given by

 ΓF(t,T2) = σF(t)  (   1–e– a 
F ( T 

2 –s)  ________  aF
   )  

 ΓC(t,T2) = σC(t)  (   1–e– a 
C ( T 

2 –s)  ________  aC
   )  

 
cvx(t,T1,T2) =

∫ T1

t
e−aF (T1−s)

[
σ 2
F
aF

(
1 − e−aF(T2−s)

)
 

 
−ρC,F

σCσF

aC

(
1 − e−aC(T2−s)

)]
ds

 

 

=
∫ T1

t

(
σ 2
F
aF

− ρC,F
σCσF

aC

)
e−aF(T1−s) ds︸ ︷︷ ︸

I1  

− σ 2
F
aF

∫ T1

t
e−aF (T1+T2−2s) ds︸ ︷︷ ︸

I2

 

+ ρC,F
σCσF

aC

∫ T1

t
e−aFT1−aCT2e(aF+aC)s ds︸ ︷︷ ︸

I3  

Let us now calculate the three integrals above:

 
I1 =

∫ T1

t

(
σ 2
F
aF

− ρC,F
σCσF

aC

)
e−aF (T1−s) ds

 

 = 1
aF

(
σ 2
F
aF

− ρC,F
σCσF

aC

) (
1 − e−aF (T1−t)

)
 

 
I2 = σ 2

F
aF

∫ T1

t
e−aF(T1+T2−2s) ds = σ 2

F
2a2F

e−aF(T1+T2)
(
e2aFT1 − e2aFt

)
 

 
I3 = ρC,F

σCσF

aC

∫ T1

t
e−aFT1−aCT2e(aF+aC)s ds

 

 
= ρC,F

σCσF

aC(aF + aC)
e−aFT1−aCT2

(
e(aF+aC)T1 − e(aF+aC)t

)
 

We finally obtain

 
cvx(t,T1,T2) = σF

aF

(
σF

aF
− ρC,F

σC

aC

)(
1 − e−aF(T1−t)

)
 

 
− σ 2

F
2a2F

e−aF (T1+T2)
(
e2aFT1 − e2aFt

)
 

 
+ ρC,F

σCσF

aC(aF + aC)
e−aFT1−aCT2

(
e(aF+aC)T1 − e(aF+aC)t

)
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ENDNOTES
1. The calculation can easily be extended to time-dependent volatilities but this leads 
to heavier formulae we chose not to expose for the sake of clarity.
2. Solution of an Orstein–Uhlenbeck process, simply obtained by calculating d(rF(t)eat) 
and integrating.
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