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The Heston–Hull–White Model Part III: 
Design and Implementation

1 Introduction
This is the third article in a series of three on financial modeling using the 
Heston–Hull–White model. The aim of this series is to show the full-life cycle 
of model development and implementation.

The Heston–Hull–White model is a hybrid equity model exhibiting both 
stochastic volatility and stochastic rates. Our encompassing goal is to develop a 
software that features calibration of the model to market data as well as option 
pricing by Fourier and by Monte Carlo methods. In the first article of our series 
(Kammeyer and Kienitz, 2012a), we presented the mathematical background 
as well as justification as to why considering non-constant rates should be ben-
eficial. The second article (Kammeyer and Kienitz, 2012b), was concerned with 
the algorithms and numerics involved. We provided code snippets for crucial 
parts of the implementation and concluded with some numerical examples 
and possible extensions. In this final article, we will consider the software 
design in the large and assemble the parts we collected before.

The outline is as follows. Mainly for reference, we will give a quick 
reminder of the most important results in Parts I and II on the Hull–White–
Model and on Carr–Madan pricing in section 2. Sections 3, 4, and 5 then 
present the software design of Carr–Madan fast Fourier transform pricing, 
Monte Carlo pricing and calibration of the model parameters to market 
data. The implementation was done in C++. To present object oriented pro-
gramming, the Unified Modeling Language has become a standard. Each of 
the sections 3, 4, and 5 splits up into static and dynamic design and these 
are illustrated by UML class and interaction diagrams respectively. Section 
6 concludes. The complete source code is available from the authors (see 
our contacts on page references). We wish to thank Hendrick Kammeyer for 
 helpful insights on UML.

2 Carr–Madan pricing and the Heston–Hull–White 
model
The main purpose of our implementation is to compute the price of a 
European call or put option. The payoff of such an option is given by (S

T 
− K)

±
 

where S denotes the value of its underlying, T denotes the expiration time 
and K is its strike price. The hybrid Heston–Hull–White model assumes that 

S evolves according to certain dynamics. These are given by the following 
system of stochastic differential equations subject to the filtered probability 
space (Ω, F, (F

t
), Q). 

 dSt = rtStdt + √
νtStdW1

t  (1)

 dνt = κ (ν − νt)dt + ω
√

νtdW2
t  (2)

 drt = λ(θ (t) − rt)dt + ηdW3
t  (3)

We agree that the Wiener process W3 be independent of W1 and W2. Let 
D(t0, t) = exp(− ∫ t

t0
rtdt)  be the stochastic discount factor with t

0
 denoting 

present time. Then note that in the representation (1), (2), and (3), the dis-
counted underlying D(t

0
, t)S

t
 is a martingale under Q to begin with. A concise 

description of the parameters was given in Kammeyer and Kienitz (2012a), 
section 2. They can be split up in three groups. 

The call price we wish to compute is given by 

C = CFt0
(K, T) = E[D(t0, T)(ST − K)+|Ft0 ].

Call Pricing Carr and Madan (see Carr and Madan, 1999 and Kammeyer and 
Kienitz, 2012b, section 2.1) suggest to compute this price as 

 
C = exp(−αk)

π

∫ ∞

0
exp(−iuk)ψT (u)du.  (4)

Here k = log K is the logarithm of the strike, α ∈R+ is the Carr–Madan 
damping parameter and i = √−1. Let P(t

0
, t) = E[D(t

0
, t)|F

t0
] be the zero 

coupon bond value. Then the T-forward measure QT is defined by the Radon-

Nikodym derivative    
dQT

 ___ dQ   =    
D(0, T)

 _____ P(0, T)  . This gives rise to the T–forward characteris-

tic function f
T 
(u) = EQT

[exp(iuX
T
)|F

t0
] of X = log S. Finally, y

T
 can be computed 

from f
T
 as follows. 

 
ψT (u) = φT (u − (α + 1)i)

α2 + α − u2 + i(2α + 1)u  (5)

In case of our Heston–Hull–White model, we have seen that f
T
 is built 

from the characteristic function f
R
(u, t

0
, T) = E[exp(iuR

T
|F

t0
] of the integrated 
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 Hull–White short rate process RT = ∫ T
t0

rsds and from the characteristic 
function f

H
(u, t

0
, T) = E[exp(iuX

T
)|F

t0
] of the pure Heston stochastic volatility 

model. The latter is obtained by simply setting l and h to zero. Indeed, 

 P(t, T)φT(u) = φR(u + i, t0, T)φH(u, t0, T).  (6)

All Hull–White and Heston model parameters from the above list as well 
as the spot price are hidden in these two characteristic functions (given in 
Kammeyer and Kienitz, 2012a, section 4). By discrete approximation of the 
Fourier transform in (4), we obtain for the call price C, 

 

C ≈ exp(−αk)

π

N−1∑
j=0

exp

(
−2π

N
iju

)
(−1)jψT (jη)

η

3
(3 + (−1)j+1 − δj0).  (7)

Here N and h are length and fineness of a grid of evaluation points, d
j0
 is 

the Kronecker delta and u is a discrete substitute for k which now runs from 
0 to N − 1. In view of this expression, the calculation essentially amounts to 
a single fast Fourier transform (FFT) which yields option prices for a whole 
range of strikes indexed by u.

3 FFT pricing design
We wish to design a software that incorporates various components for fast 
pricing of European call and put options. We implement the Carr–Madan 
pricing framework consisting of FFT algorithm and an optimization routine 
for the damping parameter α. Abstract classes for derivatives should guaran-
tee extensibility to various instruments other than vanilla options. Both the 
Heston and the Hull–White model should be reflected individually in the 
class structure. Finally, the Hull–White model is based on the market term 
structure which our concept must consider.

3.1 Static design
As a matter of fact, the Carr–Madan FFT pricing method is suitable for any 
model whose characteristic function is analytically computable. For the sake of 
building customizable software, we have thus taken care to separate this pric-
ing framework in our software structure from the implementation of any spe-
cific model. We have seen in (5) that such a model, in our case the Heston–Hull–
White model, enters the picture in terms of its characteristic function only.

In the UML class diagram of Figure 1, the right column of the diagram 
constitutes the Carr–Madan pricing framework. It consists of the pricing 
package with an associated FFT class. A European call option within this 
package is represented by a class European option which inherits from a class 
derivative. These classes are labeled by the stereotype �abstract� because only 

Table 1: Parameters

Option parameters Heston parameters Hull White parameters

maturity: T long term variance: ũ speed of mean reversion: λ
strike: K instantaneous variance: u

0 volatility of short rate: h
spot: S

t0
speed of mean reversion: k discount curve / yield curve: 

q (t)

correlation of W1 and W2: r
second order volatility: w

Figure 1: UML class diagram for the Carr–Madan FFT pricing method.

# vLong : double
# vInst : double
# kappa : double
# rho : double
# omega : double
# r : double

# charFunc
(u : cpx, S : dbl,
T : dbl) : cpx

<< abstract >>

model

# price : double
# up2date : boolean

<< abstract >>
derivative

# run()

<< abstract >>
European option

+ priceArray : dbl
# T : double
# K : double
# S : double

# alpha : double
# D : double

+ Integrand
(u : cpx) : cpx

– minFunc(params :

+ run()

void*, x : double) :
double

– option : pricing::
European option*

alpha optimization

+ N : unsigned int
+ eta : double
+ lambda : double
+ b : double
– option : Pricing::

– optimization :: alpha
Euorpean option*

optimization

+ yieldCurve(t : dbl) : dbl
+ zeroBondCurve(t : dbl)

+ instForward(t : dbl)

– zeroBondToYield...

: double

: double

+ getInitShortRate.

+ getMean...
+ getVariance...
+ getMeanOfInt...
+getVarOfInt...
# alpha(t : dbl) : dbl
# factorB(s : dbl,

# factorV(s : dbl,

# theta(t : dbl) : dbl
# charFuncOfInt...

t : dbl) : double

t : dbl) : double

+ getZeroBondVal.

# rInst : double
# lambda : double
# eta : double
# interest curve :

interest curve*

Heston

Hull–White

pricing

FFT

interest curve

+ run()

market discount curve

– discountCurve : market
discount curve

European option

: double
+ getForward()

+ Integrand(cpx)

# charFunc(cpx)

# run()
: cpx

: cpx

Heston–Hull–White

<< abstract >>
model

...

...

 instances of specializing classes will be created. The instances of the associ-
ated FFT class will manage the Fourier pricing routine. The FFT class includes 
by composition a class alpha optimization to find the optimal Carr–Madan 
parameter α (again see Kammeyer and Kienitz, 2012b, and the original 
paper by Kahl and Lord, 2007).

Now the Heston–Hull–White package in the center of the diagram includes 
a class named European option as well. As opposed to its abstract right hand 
mother, this class represents a special European option modeled accord-
ing to the concrete Heston–Hull–White dynamics. Since our hybrid model 
ramifies in both the Hull–White short rate model and the Heston stochastic 
volatility model, compare (6), it inherits from either abstract model class as 
indicated by the remaining two arrows starting in it. The class interest curve 
in turn is associated with Hull–White::model and contains by aggregation a 
class of type market discount curve (realized by the numeric matrix class of Duffy 
and Kienitz, 2009). Note that discount curves and yield curves as the given 
q (t) of the Heston–Hull–White model correspond one-to-one. For reference, 
some UML vocabulary is given in Figures 2 and 3.
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Figure 2: Some UML notation.

underline: classifier scope

package name

contents

package

class name

attributes

methods

class

+: public
−: private
#: protected

<<  >>: stereotype

symbols

Figure 3: Arrows symbolizing various types of UML class relationships.

B is contained in A by composition.

A is associtiated with B.

A B

A inherits from B.

B is contained in A by aggregation.

3.2 Dynamic design
The interaction structure corresponding to the use case of valuating a 
European option is given in the UML collaboration diagram 4. In the begin-
ning of the pricing process an object of the Heston–Hull–White::European 
option class is constructed. In doing so, the parameters listed on page list of 
 parameters are stored as attributes coming from the pricing::European option, 
Heston::model and Hull–White::model class respectively. The most complicated 
attribute is the market discount curve. It is stored in an object of the homon-
ymous class which is aggregated by an interest curve object. Note that in our 
C++ implementation, the association of the latter with the Hull–White::model 
class is realized by a pointer. Now up to some correction terms, the price 
formula (7) is just a discrete Fourier transform of the function ψTT given in (5). 
This function depends on the Carr–Madan damping parameter α for which 
the (in some well-defined sense) optimal choice is made by an instance of the 
alpha optimization class. We remark that for the optimization routine, the 
characteristic functions of the Heston–Hull–White model have to be evalu-
ated already. To get a clear arrangement however, we left this part out in the 
diagram. Having found the optimal α, our FFT object sets up the fast Fourier 
transform. For each time the FFT algorithm evaluates ψTT, the characteristic 
functions of the Heston model and the Hull–White model are called. For the 
latter function, time zero forwards as well as the term structure q(t) must 
be known. These are computed by the interest curve object which collects 
market data from the aggregated market discount curve. Finally, the initial 
Heston–Hull–White::European option rescales the returned Fourier transform 

by    
exp(−αk)

 ________ p   as required by (7) and interpolates the price. 

4 Monte Carlo pricing design
The closed form expression (4) is due to the simple payoff of a plain vanilla 
option. For the valuation of exotic derivatives with path dependent 
payoffs, no closed form pricing formula will be available in general. For 
these sophisticated instruments, the implementation of a Monte Carlo 
framework for the Heston–Hull–White model proves to be convenient. We 
presented the corresponding technical background along with code snip-
pets of the quadratic exponential discretization scheme (due to Andersen, 

12: return
Fourier transform

2: request Fourier
transform

values
11*: return

values
char. func.

10*: request 4: return
optimal

 alpha

3: request
 optimal

alpha

9*: return
values

5*: request
char. func. values

7*: using market
discount curve

8*: return
values

6*: request
inst. forwards
and discount factors

alpha
optimization

1: request price

13: return price

FFT

Heston::model

interest curve

Heston–Hull–White::
European option

market discount
curve

Hull–White::model

Figure 4: UML collaboration diagram for the analytical pricing method. 
By UML default, an asterisk (*) indicates that the step is repeated sev-
eral times.

Figure 5: Additional classes for Monte Carlo pricing.

Heston–Hull–White::
Monte Carlo

− quadratic exponential

(2x double) : void

+ get random numer()

: double

Mersenne Twister

+ seed : double
+ call price : double
+ put price : double

− simulations : int
− constants : double[5]

− time steps : int

− time step size : double
− stock and volatility vector

: double[2]

2007) in Kammeyer and Kienitz (2012b), section 3. The Mersenne Twister 
as  implemented by Saito and Matsumoto (2008) will serve us as random 
number generator.

4.1 Static design
We introduce two new classes to feature Monte Carlo pricing in our software 
(Figure 5). The Mersenne Twister generates random numbers using a given 
seed. The Monte Carlo class transforms those to Brownian motion incre-
ments which according to the HHW dynamics (1)–(3) give rise to paths of the 
underlying stock price process S. Applying the payoff function to the paths, 
then averaging, yields the price. For comparison with the FFT prices we have 
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implemented this for the payoff of the European option (S
T 
− K)+. The private 

member variables of the Monte Carlo class include integers for the number 
of time steps of a path and the number of paths themselves. The former deter-
mines the fineness of a path, the latter determines the variance of the arith-
metic mean of payoffs and in this sense the convergence to the correct value. 
The convergence rate of this and of any other Monte Carlo method is of 
order (√n)−1. Runtime increases linearly with either parameter. As explained 
in Kammeyer and Kienitz (2012b), section 3.1, the QE-discretization scheme 
requires certain constants as parameters which are stored in the 5-element 
array constants. The time step size is of course given by the time to maturity T 
of the derivative, divided by number of time steps. In Kammeyer and Kienitz 
(2012b), section 3.1, we have also described that the time steps of the under-
lying S are preceded by time steps of the volatility u. Both values are stored 
in the 2-element array stock and volatility vector. Calling the private member 
function quadratic exponential computes one time step due to the QE-scheme 
in a pure Heston model, thus requiring two random numbers as input, one 
for the Brownian motion driving the volatility, one for the Brownian motion 
of the underlying. As was also observed in Kammeyer and Kienitz (2012b), 
the independence of the Wiener process in (3) effects that only one random 
number per path has to be sampled for the short rate. There is thus no need 
for a 3-element vector. No further explanation is in order for the Mersenne 
twister random number generator class which is used as a complete black 
box. We refer to Saito and Matsumoto (2008) for any inquiry relating to its 
inner mechanism.

The class diagram in Figure 6 illustrates how the two new classes are con-
nected to the existing tree. 

4.2 Dynamic design
As was explained in the beginning of section 3.1 in Kammeyer and Kienitz 
(2012b), the generation of volatility and stock price paths can be separated 
completely from the generation of short rate paths. Therefore, the QE-
scheme developed for the Heston model is applicable. It is called within 
two nested loops. The outer loop is counting the number of paths while 
the inner loop is counting the number of time steps. Every time the inner 
loop is complete, the integrated short rate has to be added as a drift to the 
(logarithmic) stock price path. We have seen in Kammeyer and Kienitz 
(2012a),  section 3.2, that the integrated short rate is normally distributed 
with parameters mean and variance as given there in (20) and (21). The mean 
depends on the discount curve implied by the market, thus requiring a 
class collaboration as in steps 6–8 of Figure 4. The variance depends on the 

Figure 6: UML class diagram for the Monte Carlo pricing method.

interest curve

curve
market discount

model European option

Hull–White Heston–Hull–White

Monte Carlo

Mersenne twister

parameters l, h and the expiration time T only. Drawing a single random 
number, the integrated short rate path can thus be built. Finally, the Monte 
Carlo price is computed as the arithmetic mean of all the payoff values 
 corresponding to the simulated paths. As described, the procedure does not 
introduce any new collaboration structure and thus an interaction diagram 
for Monte Carlo pricing should be dispensable.

5 Calibration design
As in the case of Monte Carlo pricing, the independence assumption on the 
driving Wiener process in (3) of the stock price process (1) and of the volatil-
ity process (2) is crucial for calibration. It allows us to split up the calibra-
tion procedure of the Heston–Hull–White model to market data into two 
parts. First, the parameters mean reversion speed l (lambda) and volatility 
of short rate h (eta) in the Hull–White model are calibrated using market 
prices of caplets and floorlets. Then, the remaining five Heston parameters 
long-term variance u  (vLong), initial variance u

0
 |10 (vInst), speed of mean 

reversion κ (kappa), correlation r (rho), and volatility of variance w (omega) 
will be calibrated using market European call option prices. In both cases an 
LBFGSB algorithm implemented in C by Ciyou Zhu1 is used to minimize the 
function minfunc which is given by the sum of squared relative errors, 

minfunc =
∑

market data

(
market price − model price

market price

)2

.

5.1 Static design
Our calibration algorithm has to compute many option prices. We use the 
faster FFT pricing method and not the Monte Carlo approach. In addition 
to the classes introduced for the FFT pricing procedure, we introduce three 
new classes pricing::zero bond option, Hull–White::zero bond option and Hull–
White::caplet f loorlet. These are given in Figure 7. Here again, we distinguish 
between a zero bond option as an abstract derivative in the pricing pack-
age and a zero bond option whose price is determined by the Hull–White 
dynamics in the Hull–White package. Also note that only zero bond param-
eters are attributes of the pricing::zero bond option class. Those parameters 
which stem from a zero bond option being a mere option will be inherited. 
The static class design for the Hull–White calibration is given in Figure 8. 
The key to sticking the caplet f loorlet class to the existing class tree lies in 
the observation in Kammeyer and Kienitz (2012b) that caplets and floor-
lets can be expressed in terms of zero bond options. Thus, the caplet f loorlet 
class inherits from the zero bond option class in the Hull–White package. The 
 algorithm lbfsgb minimize follows the procedural programming paradigm. It 

Figure 7: Additional classes to represent caplets and floorlets in terms 
of zero bond options.

Hull–White::
zero bond option

Hull–White::
caplet floorlet

# CorF : int
# startT : double
# endT : double
# CaFN : double
# CFK : double

pricing::
zero bond option

# bondMaturity : dbl
# N : double

<< abstract >>

# run()# run()
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Figure 8: UML class diagram for the Hull–White calibration routine.

Hull–White

market discount
curve

interest curve

caplet floorlet
market datalbfgsb minimize

<< global >>

model

parameters
<< struct >>

minfunc
<< global >>

caplet floorlet

zero bond option

derivative
<< abstract >>

European option
<< abstract >> zero bond option

pricing

is given by a global function and requires a global function to be minimized. 
In UML this is reflected by the �global� stereotype. Since classes are not 
available in C, parameters for minfunc are stored in a structure as indicated 
by the �struct� stereotype. The association between parameters, minfunc, and 
lbfgsb minimize are again realized by pointers as is common in C and C++. The 
parameters associated with minfunc split up into caplet f loorlet market data 
(realized by a numeric matrix) containing market data (starting time, ending 
time, nominal value, strike and price of a caplet or floorlet as quoted in the 
market) and an object of the Hull–White::caplet f loorlet class. The latter has a 
method to  compute the model price for a caplet or floorlet with the same 
properties as the one from the market. 

Figure 9: UML class diagram for the Heston calibration routine.

lbfgsb minimize
<< global >>

parameters
<< struct >>

minfunc
<< global >> European option

market data

European option

Heston–Hull–White

Figure 10: UML collaboration diagram for the calibration routine.

Hull–White / Heston–Hull–White

<< abstract >>
parameters

3*: request
prices

4*: request model
prices

<< global >>
minfunc

<< global >>
lbfgsb minimize

request minimizing
parameters

1: input initial guess,2*: request
values

10:return

9*: return

5*: return

capl. floorl. / Eur. op.
market data

caplet floorlet /
European option

6*: request market prices
8*: return

7*return

The same class relationship then applies to the calibration of the Heston 
parameters. Only the market data comes from European option prices 
instead of caplet and floorlet prices. This is shown in Figure 9. The three 
arrows starting in the European option class represent the inheritance of 
this class as given in Figure 1.

5.2 Dynamic design
The interaction structure (Figure 10) of both the Hull–White and the Heston 
calibration procedure is the same. Only the package name and the relevant 
derivative (caplet/f loorlet or European option) need to be inserted as necessary. 
The course of action as described is straightforward. Note that when the 
model price for a European option is requested in step 4 of the Heston cali-
bration, precisely the routine as given in Figure 4 is called.

6  Conclusion
We have come to the end of our presentation of the various stages of finan-
cial model development using the example of the Heston–Hull–White 
model. The reader should now be prepared to work with this model and to 
implement and customize it as needed. Again, it is encouraged to order the 
complete C++ source code free of charge for any noncommercial purpose at 
the contacts given below.

The Heston–Hull–White model is a powerful tool for pricing long maturity 
derivatives. We should however finish with a word of warning. The high per-
formance of our pricing methods despite using a three factor model, heavily 
relies on our ad hoc assumption of an independent short rate. But as explained 
in Hunter and Picot (2005), realizing nonzero correlations of equity and inter-
est rate is indispensable in order to accurately price hybrid derivatives. We have 
already mentioned in Kammeyer and Kienitz (2012a), that Grzelak and Oosterlee 
(2010) suggest a modification of the model which at least approximately covers 
the case of a full correlation matrix. It should be possible to extend our software 
correspondingly, making the hybrid world accessible with our approach.
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