
44 Wilmott magazine

The Heston–Hull–White Model Part III:
Design and Implementation

1 Introduction
This is the third article in a series of three on financial modeling using the
Heston–Hull–White model. The aim of this series is to show the full-life cycle
of model development and implementation.

The Heston–Hull–White model is a hybrid equity model exhibiting both
stochastic volatility and stochastic rates. Our encompassing goal is to develop a
software that features calibration of the model to market data as well as option
pricing by Fourier and by Monte Carlo methods. In the first article of our series
(Kammeyer and Kienitz, 2012a), we presented the mathematical background
as well as justification as to why considering non-constant rates should be ben-
eficial. The second article (Kammeyer and Kienitz, 2012b), was concerned with
the algorithms and numerics involved. We provided code snippets for crucial
parts of the implementation and concluded with some numerical examples
and possible extensions. In this final article, we will consider the software
design in the large and assemble the parts we collected before.

The outline is as follows. Mainly for reference, we will give a quick
reminder of the most important results in Parts I and II on the Hull–White–
Model and on Carr–Madan pricing in section 2. Sections 3, 4, and 5 then
present the software design of Carr–Madan fast Fourier transform pricing,
Monte Carlo pricing and calibration of the model parameters to market
data. The implementation was done in C++. To present object oriented pro-
gramming, the Unified Modeling Language has become a standard. Each of
the sections 3, 4, and 5 splits up into static and dynamic design and these
are illustrated by UML class and interaction diagrams respectively. Section
6 concludes. The complete source code is available from the authors (see
our contacts on page references). We wish to thank Hendrick Kammeyer for
 helpful insights on UML.

2 Carr–Madan pricing and the Heston–Hull–White
model
The main purpose of our implementation is to compute the price of a
European call or put option. The payoff of such an option is given by (S

T
− K)

±

where S denotes the value of its underlying, T denotes the expiration time
and K is its strike price. The hybrid Heston–Hull–White model assumes that

S evolves according to certain dynamics. These are given by the following
system of stochastic differential equations subject to the filtered probability
space (Ω, F, (F

t
), Q).

 dSt = rtStdt + √
νtStdW1

t (1)

 dνt = κ (ν − νt)dt + ω
√

νtdW2
t (2)

 drt = λ(θ (t) − rt)dt + ηdW3
t (3)

We agree that the Wiener process W3 be independent of W1 and W2. Let
D(t0, t) = exp(− ∫ t

t0
rtdt) be the stochastic discount factor with t

0
 denoting

present time. Then note that in the representation (1), (2), and (3), the dis-
counted underlying D(t

0
, t)S

t
 is a martingale under Q to begin with. A concise

description of the parameters was given in Kammeyer and Kienitz (2012a),
section 2. They can be split up in three groups.

The call price we wish to compute is given by

C = CFt0
(K, T) = E[D(t0, T)(ST − K)+|Ft0].

Call Pricing Carr and Madan (see Carr and Madan, 1999 and Kammeyer and
Kienitz, 2012b, section 2.1) suggest to compute this price as

C = exp(−αk)

π

∫ ∞

0
exp(−iuk)ψT (u)du. (4)

Here k = log K is the logarithm of the strike, α ∈R+ is the Carr–Madan
damping parameter and i = √−1. Let P(t

0
, t) = E[D(t

0
, t)|F

t0
] be the zero

coupon bond value. Then the T-forward measure QT is defined by the Radon-

Nikodym derivative
dQT

 ___ dQ =
D(0, T)

 _____ P(0, T) . This gives rise to the T–forward characteris-

tic function f
T
(u) = EQT

[exp(iuX
T
)|F

t0
] of X = log S. Finally, y

T
 can be computed

from f
T
 as follows.

ψT (u) = φT (u − (α + 1)i)

α2 + α − u2 + i(2α + 1)u (5)

In case of our Heston–Hull–White model, we have seen that f
T
 is built

from the characteristic function f
R
(u, t

0
, T) = E[exp(iuR

T
|F

t0
] of the integrated

Holger Kammeyer
University of Goettingen

Joerg Kienitz
Dt. Postbank AG, e-mail: joerg.kienitz@postbank.de

44-49_Kienitz_Part_III_TP_May_2044 4444-49_Kienitz_Part_III_TP_May_2044 44 5/11/12 12:05:36 PM5/11/12 12:05:36 PM

Wilmott magazine 45

TECHNICAL PAPER

^

 Hull–White short rate process RT = ∫ T
t0

rsds and from the characteristic
function f

H
(u, t

0
, T) = E[exp(iuX

T
)|F

t0
] of the pure Heston stochastic volatility

model. The latter is obtained by simply setting l and h to zero. Indeed,

 P(t, T)φT(u) = φR(u + i, t0, T)φH(u, t0, T). (6)

All Hull–White and Heston model parameters from the above list as well
as the spot price are hidden in these two characteristic functions (given in
Kammeyer and Kienitz, 2012a, section 4). By discrete approximation of the
Fourier transform in (4), we obtain for the call price C,

C ≈ exp(−αk)

π

N−1∑
j=0

exp

(
−2π

N
iju

)
(−1)jψT (jη)

η

3
(3 + (−1)j+1 − δj0). (7)

Here N and h are length and fineness of a grid of evaluation points, d
j0
 is

the Kronecker delta and u is a discrete substitute for k which now runs from
0 to N − 1. In view of this expression, the calculation essentially amounts to
a single fast Fourier transform (FFT) which yields option prices for a whole
range of strikes indexed by u.

3 FFT pricing design
We wish to design a software that incorporates various components for fast
pricing of European call and put options. We implement the Carr–Madan
pricing framework consisting of FFT algorithm and an optimization routine
for the damping parameter α. Abstract classes for derivatives should guaran-
tee extensibility to various instruments other than vanilla options. Both the
Heston and the Hull–White model should be reflected individually in the
class structure. Finally, the Hull–White model is based on the market term
structure which our concept must consider.

3.1 Static design
As a matter of fact, the Carr–Madan FFT pricing method is suitable for any
model whose characteristic function is analytically computable. For the sake of
building customizable software, we have thus taken care to separate this pric-
ing framework in our software structure from the implementation of any spe-
cific model. We have seen in (5) that such a model, in our case the Heston–Hull–
White model, enters the picture in terms of its characteristic function only.

In the UML class diagram of Figure 1, the right column of the diagram
constitutes the Carr–Madan pricing framework. It consists of the pricing
package with an associated FFT class. A European call option within this
package is represented by a class European option which inherits from a class
derivative. These classes are labeled by the stereotype �abstract� because only

Table 1: Parameters

Option parameters Heston parameters Hull White parameters

maturity: T long term variance: ũ speed of mean reversion: λ
strike: K instantaneous variance: u

0 volatility of short rate: h
spot: S

t0
speed of mean reversion: k discount curve / yield curve:

q (t)

correlation of W1 and W2: r
second order volatility: w

Figure 1: UML class diagram for the Carr–Madan FFT pricing method.

vLong : double
vInst : double
kappa : double
rho : double
omega : double
r : double

charFunc
(u : cpx, S : dbl,
T : dbl) : cpx

<< abstract >>

model

price : double
up2date : boolean

<< abstract >>
derivative

run()

<< abstract >>
European option

+ priceArray : dbl
T : double
K : double
S : double

alpha : double
D : double

+ Integrand
(u : cpx) : cpx

– minFunc(params :

+ run()

void*, x : double) :
double

– option : pricing::
European option*

alpha optimization

+ N : unsigned int
+ eta : double
+ lambda : double
+ b : double
– option : Pricing::

– optimization :: alpha
Euorpean option*

optimization

+ yieldCurve(t : dbl) : dbl
+ zeroBondCurve(t : dbl)

+ instForward(t : dbl)

– zeroBondToYield...

: double

: double

+ getInitShortRate.

+ getMean...
+ getVariance...
+ getMeanOfInt...
+getVarOfInt...
alpha(t : dbl) : dbl
factorB(s : dbl,

factorV(s : dbl,

theta(t : dbl) : dbl
charFuncOfInt...

t : dbl) : double

t : dbl) : double

+ getZeroBondVal.

rInst : double
lambda : double
eta : double
interest curve :

interest curve*

Heston

Hull–White

pricing

FFT

interest curve

+ run()

market discount curve

– discountCurve : market
discount curve

European option

: double
+ getForward()

+ Integrand(cpx)

charFunc(cpx)

run()
: cpx

: cpx

Heston–Hull–White

<< abstract >>
model

...

...

 instances of specializing classes will be created. The instances of the associ-
ated FFT class will manage the Fourier pricing routine. The FFT class includes
by composition a class alpha optimization to find the optimal Carr–Madan
parameter α (again see Kammeyer and Kienitz, 2012b, and the original
paper by Kahl and Lord, 2007).

Now the Heston–Hull–White package in the center of the diagram includes
a class named European option as well. As opposed to its abstract right hand
mother, this class represents a special European option modeled accord-
ing to the concrete Heston–Hull–White dynamics. Since our hybrid model
ramifies in both the Hull–White short rate model and the Heston stochastic
volatility model, compare (6), it inherits from either abstract model class as
indicated by the remaining two arrows starting in it. The class interest curve
in turn is associated with Hull–White::model and contains by aggregation a
class of type market discount curve (realized by the numeric matrix class of Duffy
and Kienitz, 2009). Note that discount curves and yield curves as the given
q (t) of the Heston–Hull–White model correspond one-to-one. For reference,
some UML vocabulary is given in Figures 2 and 3.

44-49_Kienitz_Part_III_TP_May_2045 4544-49_Kienitz_Part_III_TP_May_2045 45 5/11/12 12:05:45 PM5/11/12 12:05:45 PM

46 Wilmott magazine

Figure 2: Some UML notation.

underline: classifier scope

package name

contents

package

class name

attributes

methods

class

+: public
−: private
#: protected

<< >>: stereotype

symbols

Figure 3: Arrows symbolizing various types of UML class relationships.

B is contained in A by composition.

A is associtiated with B.

A B

A inherits from B.

B is contained in A by aggregation.

3.2 Dynamic design
The interaction structure corresponding to the use case of valuating a
European option is given in the UML collaboration diagram 4. In the begin-
ning of the pricing process an object of the Heston–Hull–White::European
option class is constructed. In doing so, the parameters listed on page list of
 parameters are stored as attributes coming from the pricing::European option,
Heston::model and Hull–White::model class respectively. The most complicated
attribute is the market discount curve. It is stored in an object of the homon-
ymous class which is aggregated by an interest curve object. Note that in our
C++ implementation, the association of the latter with the Hull–White::model
class is realized by a pointer. Now up to some correction terms, the price
formula (7) is just a discrete Fourier transform of the function ψTT given in (5).
This function depends on the Carr–Madan damping parameter α for which
the (in some well-defined sense) optimal choice is made by an instance of the
alpha optimization class. We remark that for the optimization routine, the
characteristic functions of the Heston–Hull–White model have to be evalu-
ated already. To get a clear arrangement however, we left this part out in the
diagram. Having found the optimal α, our FFT object sets up the fast Fourier
transform. For each time the FFT algorithm evaluates ψTT, the characteristic
functions of the Heston model and the Hull–White model are called. For the
latter function, time zero forwards as well as the term structure q(t) must
be known. These are computed by the interest curve object which collects
market data from the aggregated market discount curve. Finally, the initial
Heston–Hull–White::European option rescales the returned Fourier transform

by
exp(−αk)

 ________ p as required by (7) and interpolates the price.

4 Monte Carlo pricing design
The closed form expression (4) is due to the simple payoff of a plain vanilla
option. For the valuation of exotic derivatives with path dependent
payoffs, no closed form pricing formula will be available in general. For
these sophisticated instruments, the implementation of a Monte Carlo
framework for the Heston–Hull–White model proves to be convenient. We
presented the corresponding technical background along with code snip-
pets of the quadratic exponential discretization scheme (due to Andersen,

12: return
Fourier transform

2: request Fourier
transform

values
11*: return

values
char. func.

10*: request 4: return
optimal

 alpha

3: request
 optimal

alpha

9*: return
values

5*: request
char. func. values

7*: using market
discount curve

8*: return
values

6*: request
inst. forwards
and discount factors

alpha
optimization

1: request price

13: return price

FFT

Heston::model

interest curve

Heston–Hull–White::
European option

market discount
curve

Hull–White::model

Figure 4: UML collaboration diagram for the analytical pricing method.
By UML default, an asterisk (*) indicates that the step is repeated sev-
eral times.

Figure 5: Additional classes for Monte Carlo pricing.

Heston–Hull–White::
Monte Carlo

− quadratic exponential

(2x double) : void

+ get random numer()

: double

Mersenne Twister

+ seed : double
+ call price : double
+ put price : double

− simulations : int
− constants : double[5]

− time steps : int

− time step size : double
− stock and volatility vector

: double[2]

2007) in Kammeyer and Kienitz (2012b), section 3. The Mersenne Twister
as implemented by Saito and Matsumoto (2008) will serve us as random
number generator.

4.1 Static design
We introduce two new classes to feature Monte Carlo pricing in our software
(Figure 5). The Mersenne Twister generates random numbers using a given
seed. The Monte Carlo class transforms those to Brownian motion incre-
ments which according to the HHW dynamics (1)–(3) give rise to paths of the
underlying stock price process S. Applying the payoff function to the paths,
then averaging, yields the price. For comparison with the FFT prices we have

44-49_Kienitz_Part_III_TP_May_2046 4644-49_Kienitz_Part_III_TP_May_2046 46 5/11/12 12:05:49 PM5/11/12 12:05:49 PM

Wilmott magazine 47

TECHNICAL PAPER

^

implemented this for the payoff of the European option (S
T
− K)+. The private

member variables of the Monte Carlo class include integers for the number
of time steps of a path and the number of paths themselves. The former deter-
mines the fineness of a path, the latter determines the variance of the arith-
metic mean of payoffs and in this sense the convergence to the correct value.
The convergence rate of this and of any other Monte Carlo method is of
order (√n)−1. Runtime increases linearly with either parameter. As explained
in Kammeyer and Kienitz (2012b), section 3.1, the QE-discretization scheme
requires certain constants as parameters which are stored in the 5-element
array constants. The time step size is of course given by the time to maturity T
of the derivative, divided by number of time steps. In Kammeyer and Kienitz
(2012b), section 3.1, we have also described that the time steps of the under-
lying S are preceded by time steps of the volatility u. Both values are stored
in the 2-element array stock and volatility vector. Calling the private member
function quadratic exponential computes one time step due to the QE-scheme
in a pure Heston model, thus requiring two random numbers as input, one
for the Brownian motion driving the volatility, one for the Brownian motion
of the underlying. As was also observed in Kammeyer and Kienitz (2012b),
the independence of the Wiener process in (3) effects that only one random
number per path has to be sampled for the short rate. There is thus no need
for a 3-element vector. No further explanation is in order for the Mersenne
twister random number generator class which is used as a complete black
box. We refer to Saito and Matsumoto (2008) for any inquiry relating to its
inner mechanism.

The class diagram in Figure 6 illustrates how the two new classes are con-
nected to the existing tree.

4.2 Dynamic design
As was explained in the beginning of section 3.1 in Kammeyer and Kienitz
(2012b), the generation of volatility and stock price paths can be separated
completely from the generation of short rate paths. Therefore, the QE-
scheme developed for the Heston model is applicable. It is called within
two nested loops. The outer loop is counting the number of paths while
the inner loop is counting the number of time steps. Every time the inner
loop is complete, the integrated short rate has to be added as a drift to the
(logarithmic) stock price path. We have seen in Kammeyer and Kienitz
(2012a), section 3.2, that the integrated short rate is normally distributed
with parameters mean and variance as given there in (20) and (21). The mean
depends on the discount curve implied by the market, thus requiring a
class collaboration as in steps 6–8 of Figure 4. The variance depends on the

Figure 6: UML class diagram for the Monte Carlo pricing method.

interest curve

curve
market discount

model European option

Hull–White Heston–Hull–White

Monte Carlo

Mersenne twister

parameters l, h and the expiration time T only. Drawing a single random
number, the integrated short rate path can thus be built. Finally, the Monte
Carlo price is computed as the arithmetic mean of all the payoff values
 corresponding to the simulated paths. As described, the procedure does not
introduce any new collaboration structure and thus an interaction diagram
for Monte Carlo pricing should be dispensable.

5 Calibration design
As in the case of Monte Carlo pricing, the independence assumption on the
driving Wiener process in (3) of the stock price process (1) and of the volatil-
ity process (2) is crucial for calibration. It allows us to split up the calibra-
tion procedure of the Heston–Hull–White model to market data into two
parts. First, the parameters mean reversion speed l (lambda) and volatility
of short rate h (eta) in the Hull–White model are calibrated using market
prices of caplets and floorlets. Then, the remaining five Heston parameters
long-term variance u (vLong), initial variance u

0
 |10 (vInst), speed of mean

reversion κ (kappa), correlation r (rho), and volatility of variance w (omega)
will be calibrated using market European call option prices. In both cases an
LBFGSB algorithm implemented in C by Ciyou Zhu1 is used to minimize the
function minfunc which is given by the sum of squared relative errors,

minfunc =
∑

market data

(
market price − model price

market price

)2

.

5.1 Static design
Our calibration algorithm has to compute many option prices. We use the
faster FFT pricing method and not the Monte Carlo approach. In addition
to the classes introduced for the FFT pricing procedure, we introduce three
new classes pricing::zero bond option, Hull–White::zero bond option and Hull–
White::caplet f loorlet. These are given in Figure 7. Here again, we distinguish
between a zero bond option as an abstract derivative in the pricing pack-
age and a zero bond option whose price is determined by the Hull–White
dynamics in the Hull–White package. Also note that only zero bond param-
eters are attributes of the pricing::zero bond option class. Those parameters
which stem from a zero bond option being a mere option will be inherited.
The static class design for the Hull–White calibration is given in Figure 8.
The key to sticking the caplet f loorlet class to the existing class tree lies in
the observation in Kammeyer and Kienitz (2012b) that caplets and floor-
lets can be expressed in terms of zero bond options. Thus, the caplet f loorlet
class inherits from the zero bond option class in the Hull–White package. The
 algorithm lbfsgb minimize follows the procedural programming paradigm. It

Figure 7: Additional classes to represent caplets and floorlets in terms
of zero bond options.

Hull–White::
zero bond option

Hull–White::
caplet floorlet

CorF : int
startT : double
endT : double
CaFN : double
CFK : double

pricing::
zero bond option

bondMaturity : dbl
N : double

<< abstract >>

run()# run()

44-49_Kienitz_Part_III_TP_May_2047 4744-49_Kienitz_Part_III_TP_May_2047 47 5/11/12 12:05:51 PM5/11/12 12:05:51 PM

48 Wilmott magazine

Figure 8: UML class diagram for the Hull–White calibration routine.

Hull–White

market discount
curve

interest curve

caplet floorlet
market datalbfgsb minimize

<< global >>

model

parameters
<< struct >>

minfunc
<< global >>

caplet floorlet

zero bond option

derivative
<< abstract >>

European option
<< abstract >> zero bond option

pricing

is given by a global function and requires a global function to be minimized.
In UML this is reflected by the �global� stereotype. Since classes are not
available in C, parameters for minfunc are stored in a structure as indicated
by the �struct� stereotype. The association between parameters, minfunc, and
lbfgsb minimize are again realized by pointers as is common in C and C++. The
parameters associated with minfunc split up into caplet f loorlet market data
(realized by a numeric matrix) containing market data (starting time, ending
time, nominal value, strike and price of a caplet or floorlet as quoted in the
market) and an object of the Hull–White::caplet f loorlet class. The latter has a
method to compute the model price for a caplet or floorlet with the same
properties as the one from the market.

Figure 9: UML class diagram for the Heston calibration routine.

lbfgsb minimize
<< global >>

parameters
<< struct >>

minfunc
<< global >> European option

market data

European option

Heston–Hull–White

Figure 10: UML collaboration diagram for the calibration routine.

Hull–White / Heston–Hull–White

<< abstract >>
parameters

3*: request
prices

4*: request model
prices

<< global >>
minfunc

<< global >>
lbfgsb minimize

request minimizing
parameters

1: input initial guess,2*: request
values

10:return

9*: return

5*: return

capl. floorl. / Eur. op.
market data

caplet floorlet /
European option

6*: request market prices
8*: return

7*return

The same class relationship then applies to the calibration of the Heston
parameters. Only the market data comes from European option prices
instead of caplet and floorlet prices. This is shown in Figure 9. The three
arrows starting in the European option class represent the inheritance of
this class as given in Figure 1.

5.2 Dynamic design
The interaction structure (Figure 10) of both the Hull–White and the Heston
calibration procedure is the same. Only the package name and the relevant
derivative (caplet/f loorlet or European option) need to be inserted as necessary.
The course of action as described is straightforward. Note that when the
model price for a European option is requested in step 4 of the Heston cali-
bration, precisely the routine as given in Figure 4 is called.

6 Conclusion
We have come to the end of our presentation of the various stages of finan-
cial model development using the example of the Heston–Hull–White
model. The reader should now be prepared to work with this model and to
implement and customize it as needed. Again, it is encouraged to order the
complete C++ source code free of charge for any noncommercial purpose at
the contacts given below.

The Heston–Hull–White model is a powerful tool for pricing long maturity
derivatives. We should however finish with a word of warning. The high per-
formance of our pricing methods despite using a three factor model, heavily
relies on our ad hoc assumption of an independent short rate. But as explained
in Hunter and Picot (2005), realizing nonzero correlations of equity and inter-
est rate is indispensable in order to accurately price hybrid derivatives. We have
already mentioned in Kammeyer and Kienitz (2012a), that Grzelak and Oosterlee
(2010) suggest a modification of the model which at least approximately covers
the case of a full correlation matrix. It should be possible to extend our software
correspondingly, making the hybrid world accessible with our approach.

Holger Kammeyer is studying toward his Ph.D. in mathematics. He researches geometric
L2 invariants. He holds a diploma (with distinction) in mathematics from the University of
Goettingen. Before he started his Ph.D. research, he worked as a teaching assistant, did an
internship at Deutsche Postbank with the Quantiative Analysis group, and completed a one
year graduate study at UC Berkeley.

Joerg Kienitz is the head of Quantitative Analysis at Deutsche Postbank AG. He is primarily
involved in the development and implementation of models for pricing structured products,
derivatives, and asset allocation. He authored a number of quantitative finance papers and his
book Monte Carlo Frameworks was published with Wiley in 2009. A new Wiley book, Financial
Modelling: Theory, Implementation and Practice with Matlab Source Code will be published
in autumn 2012. He is member of the editorial board of the International Review of Applied
Financial Issues and Economics. He holds a Ph.D. in stochastic analysis and probability theory.

ENDNOTE
 1. Optimization Technology Center, Argonne National Laboratory.

REFERENCES
 Andersen, L.B. 2007. Efficient Simulation of the Heston Stochastic Volatility Model. SSRN
eLibrary.
Brigo, D. and Mercurio, F. 2001. Interest Rate Models – Theory and Practice. Springer
Finance: Springer-Verlag, Berlin.

44-49_Kienitz_Part_III_TP_May_2048 4844-49_Kienitz_Part_III_TP_May_2048 48 5/11/12 12:05:52 PM5/11/12 12:05:52 PM

Wilmott magazine 49

TECHNICAL PAPER

Carr, P. and Madan, D.B. 1999. Option valuation using the fast Fourier transform. Journal
of Computational Finance 2(4), 61–73.
Duffy, D. and Kienitz, J. 2009. Monte Carlo Frameworks: Building Customisable High-
Performance C++ Applications. Wiley: Chichester.
Grzelak, L.A. and Oosterlee, C.W. 2010. On the Heston Model with Stochastic Interest
Rates. Delft Univ. of Technology Technical Report No. 09–05.
Hunter, C. and Picot, G. 2005. Hybrid Derivatives: Financial Engines of the Future. In
Nicholson, L. ed. The Euromoney Derivatives & Risk Management Handbook 2005/2006,
Euromoney Institutional Investor: London.

Kahl, C. and Lord, R. 2007. Optimal Fourier Inversion in Semi-Analytical Option Pricing.
SSRN eLibrary.
Kammeyer, H. and Kienitz, J. 2012a. The Heston–Hull–White Model Part I: Finance and
Analytics. Wilmott magazine January, 46–53.
Kammeyer, H. and Kienitz, J. 2012b. The Heston–Hull–White Model Part II: Numerics and
Examples. Wilmott magazine March, 34–44.
Saito, M. and Matsumoto, M. 2008. SIMD-oriented Fast Mersenne Twister: A 128-bit
Pseudorandom Number Generator. In Keller, A., Heinrich, S. and Niederreiter, eds. Monte
Carlo and Quasi-Monte Carlo Methods 2006, Springer: Berlin, pp. 607–622.

W

44-49_Kienitz_Part_III_TP_May_2049 4944-49_Kienitz_Part_III_TP_May_2049 49 5/11/12 12:05:52 PM5/11/12 12:05:52 PM

