
34 Wilmott magazine

The Heston–Hull–White Model Part II:
Numerics and Examples

1 Introduction
This is the second article in a series of three on financial modeling using the
Heston-Hull-White model. The aim of this series is to show the full life cycle
of model development and implementation.

This article reviews the methods for pricing European options and suggests
fast numerical methods for the pricing procedure. In our case we consider the
pricing of calls and puts as well as caps and floors using the Carr and Madan
(1999) framework. There have been many frameworks suggested in the litera-
ture, see for instance Fang and Osterlee (2008), Attari (2004), Lord (2008), Lewis
(2000). We review the method of computing stable prices by optimal dampening,
see Lord and Kahl (2006). The suggested instruments are liquid traded options
and can be used in a calibration procedure. This is a backward problem. We try
to infer model parameters from market quotes. Backward problems are known
to be unstable but these methods are frequently used to estimate model param-
eters. Therefore, we show which algorithms may be used to tackle this problem.

Finally, we proceed by considering discretization methods which can then
be applied in Monte Carlo simulation to price exotic path dependent payoffs.
For the model under consideration we propose to implement a stable numeri-
cal scheme based on Andersen (2006). There are several new methods for dis-
cretizing a square root dynamic, see for instance Glasserman and Kim (2008),
Van Haastrecht (2008) or Chan and Joshi (2010).

For all the algorithms we provide source code which can be obtained by
writing to joerg.kienitz(at)gmx.de.

In the third and final article of this series we describe a software frame-
work which implements the discussed methods and can be used to apply the
Heston-Hull-White model to financial problems. We show how to combine the
discussed numerical methods to create a self-contained pricing, hedging and
calibration framework.

2 Numerical Methods for Calibration - Fast Fourier
Transform
In this section we compute the characteristic function we use for pricing
European options. We review a standard algorithm which we used for pric-
ing and calibration purposes. However, we mention some known problems
and show how to overcome such problems. This leads to a stable pricing and
calibration procedure.

Even though the characteristic function of the Heston–Hull–White
model - derived in the first article of the series - is similar to the Heston char-
acteristic function, the additional factor requires a significant additional
amount of computing time. For example the term

E[Rt,T | Ft] = B(t, T)(rt − ψt) + log

(
PM(0, t)

PM(0, T)

)
+ 1

2
(V(0, T) − V(0, t))

appearing in calculations includes the market discount curve. Low perform-
ance computations however are a bottleneck for a calibration procedure
since many computations of the price are necessary.

2.1 The Carr Madan method
Despite the fact that at the time of writing many different methods for
computing option prices from the characteristic function exist, for instance
Fang and Osterlee (2008) or Lewis (2000), we apply the method introduced in
Carr and Madan (1999). It offers the possibility of high performance compu-
tations. The idea is to compute the prices for a given maturity but across the
whole strike range using a single Fast Fourier Transform. That is of particu-
lar importance for pricing with smiles and skews.

By a change of numeraire argument, see for instance Brigo and Mercurio
(2006), section 2, the price of a call option is given by

CFt (T, K) = P(t, T)ET
(

(ST − K)+ | Ft

)
= P(t, T)CT (k)

CT (k) =
∫ ∞

k
(exp(s) − exp(k))qT (s)ds (1)

with the log strike price, k = log K. The expectation is taken with respect to
the T–forward measure QT. Thus q

T
 denotes the density of S

T
 with respect to

QT conditioned on F
t
. In order to apply the FFT the non-discounted price

(1) has to be square integrable as a function of k. Since a zero strike implies
that the payoff is equal to the forward we see that C

T
 does not tend to zero as

k→ −∞. To obtain square integrability Carr and Madan propose to introduce
a factor exp(α k), α > 0, and take the Fourier transform with respect to
cT (k) = exp(αk)CT (k). One may expect that this function is square integrable
for a range of positive values of α. The price below does not analytically
depend on α. However, the numerical error that occurs when approximating

Holger Kammeyer
University of Goettingen

Joerg Kienitz
Dt. Postbank AG, e-mail: joerg.kienitz@postbank.de

34-44_Kienitz_Part_II_TP_March_234 3434-44_Kienitz_Part_II_TP_March_234 34 3/21/12 3:01:14 PM3/21/12 3:01:14 PM

Wilmott magazine 35

TECHNICAL PAPER

^
the continuous Fourier transform by the discrete Fast Fourier Transform
relies heavily on the choice of α. As an inverse transform (1) is given by

CT (k) = exp(−αk)

2π

∫ ∞

−∞
exp(−iuk)ψT (u)du = exp(−αk)

π

∫ ∞

0
exp(−iuk)ψT (u)du

with ψT (u) = ∫ ∞
−∞ exp(iuk)cT (k)dk denoting the Fourier transform of c

T
. The

function ψT is related to the T–forward characteristic function φT of S
T
:|:F

t

via the formula:

ψT (u) = φT (u − (α + 1)i)

α2 + α − u2 + i(2α + 1)u (2)

Note that α > 0 is also a technical requirement since the FFT algorithm evalu-
ates the integrand in zero. The T–forward characteristic function φT can be
expressed in terms of the ordinary characteristic function f as follows. By
means of Bayes’ rule we have

φT(u) = E
T (exp(iuXT) | Ft)

=
E(exp(iuXT) dQ T

dQ | Ft)

E(dQ T

dQ | Ft)
.

For the Radon–Nikodym derivative dQ T

dQ we have

dQ T

dQ
= exp(− ∫ T

0 rsds)

P(0, T)
= D(0, T)

P(0, T)
= D(0, t)D(t, T)

P(0, T)
.

Thus, for the Heston–Hull–White model we have

P(t, T)φT(u) = E[D(t, T) exp(iuXT) | Ft]

= E[exp(−Rt,T + iuXT) | Ft]

= E[exp(Rt,Ti(u + i) + XHTiu) | Ft]

= φR(u + i, t, T)φH(u, t, T)

=: φ̃HHW(u, t, T). (3)

In the above equation, R() again denotes the integrated short rate. We see
that using the T–forward measure is very convenient. All discounting issues
are done shifting the integration line of the integrated short rate charac-
teristic function by one imaginary unit. Now, set ψT as in (2) but substituting
φT with ̃f HHW. Then, what we implement as a first step is the following
formula

CFt (T, K) = exp(−αk)

π

∫ ∞

0
exp(−iuk)ψT (u)du. (4)

The following piece of code gives the implementation:

void FFT::run()
{
 double SwitchSign, DeltaJ0;
 complex<double> IntegrandValue; //integrand value
 complex<double> EvaluationPoint(0.0, 0.0);
 //current evaluation point

 for(unsigned int j = 0; j < N; j++)
 //initialize array with integrand values
 {
 SwitchSign = (j % 2) ? (-1.0) : 1.0;
 //minus one to the power of j
 DeltaJ0 = j ? 0.0 : 1.0; //Kronecker-Delta
 IntegrandValue = itsOption->
 Integrand(EvaluationPoint)
 * SwitchSign * eta;
 IntegrandValue *= (1.0 / 3.0) * (3.0 -
 SwitchSign - DeltaJ0); // correction term

 itsOption->PricingArray[2*j]
 = IntegrandValue.real();
 itsOption->PricingArray[2*j+1]
 = IntegrandValue.imag();
 EvaluationPoint += eta;
 }
 // Fast Fourier Transform, see GNU Scientific
 Library manual
 gsl_fft_complex_radix2_forward
 (itsOption->PricingArray, 1, N);
}

There are two points left to remark. The choice of an optimal value of the
parameter α and how we approximate the continuous Fourier transform in
(4) as precisely as possible using the FFT algorithm. Finally, we show how to
price caplets and floorlets in the Hull–White model. Caplets, Cpl, are equiva-
lent to zero bond puts, ZBP, via

 Cpl(t, t1, t2, N, X) = N′ZBP(t, t1, t2, X′). (5)

Here t denotes the present time (which will be zero in the implementa-
tion), t

1
 and t

2
 are starting and ending time of the caplet, N is the nominal value

and X is the strike interest rate. The modified values X and N are given by

X′ = 1

1 + X(t2 − t1)
and N′ = N(1 + X(t2 − t1)). (6)

Analogously, we have the formula

Fll(t, t1, t2, N, X) = N′ZBC(t, t1, t2, X′) (7)

which relates floorlets to zero bond calls. This should clarify the source code
snippet that computes the caplet or floorlet price.

void HullWhite::CapletFloorlet::run()
{
 itsCorP = -itsCorF + 1;
 itsT = itsStartT;
 itsBondMaturity = itsEndT;
 itsN = itsCapletFloorletN*(1.0 + itsCapletFloorletK*
 (itsEndT - itsStartT));
 itsK = 1.0 / (1.0 + itsCapletFloorletK *
 (itsEndT - itsStartT));
 HullWhite::ZeroBondOption::run();
}

34-44_Kienitz_Part_II_TP_March_235 3534-44_Kienitz_Part_II_TP_March_235 35 3/21/12 3:01:19 PM3/21/12 3:01:19 PM

36 Wilmott magazine

The function call in the last command line will compute the zero
bond option price using a Black–like formula. The availability of such an
analytical formula renders the Hull–White calibration very fast with fast
meaning almost instantaneously. The final function call is implemented
as follows:

void HullWhite::ZeroBondOption::run()
{
 double P_T = getZeroBondValue(itsT);
 double P_S = getZeroBondValue(itsBondMaturity);
 double sigma_p = itsEta * sqrt((1.0 - exp
 (-2.0 * itsLambda * itsT))
 / (2.0 * itsLambda)) * factorB(itsT, itsBond
 Maturity);
 double h = (1.0 / sigma_p) * log (P_S / (P_T *
 itsK)) + sigma_p / 2.0;

 if(itsCorP == 1)
 itsPrice = itsN * (P_S * CumulativeNormal(h)
 - itsK * P_T * CumulativeNormal(h - sigma_p));
 else
 itsPrice = itsN * (itsK * P_T *
 CumulativeNormal(-h + sigma_p)
 - P_S * CumulativeNormal(-h)); //equation 3.41

 setUp2D(true);
}

2.2 The optimal damping factor
The auxiliary parameter α has to be chosen within a certain range [α

min,
α

max
].

This is to guarantee square integrability. Within the allowed range there are
inappropriate choices of α which cause the integrand to be highly oscillat-
ing and can lead to significant mispricing of standard options. For instance
it can lead to negative prices.

Lord and Kahl (2006) analyzed the problem of computing an optimal
dampening parameter. Ideally, an optimization algorithm for α minimizes
the total variation of the integrand y. This would require more function
evaluations than the original problem and thus is mainly useless in prac-
tice. Therefore, Lord and Kahl (2006) suggest to minimize the maximal value
of the integrand which occurs in zero. They consider

α∗ = argmin
α∈(0,αmax)

| exp(−αk)ψ (0)|.
 (8)

In general α
min

 will be negative and we assume α > 0 there is only one
local minimum of this function within the positive reals. So as long as the
initial guess the minimization routine starts from is not too large, the mini-
mum will be found without any problems involving the maximal allowed
alpha α

max
 which in general is hard to determine.

The following piece of code implements the optimization suggested
in Lord and Kahl (2006). For carrying out the optimization we use the
LBFGS optimizer implemented in Bochkanov (2010). This library can be
 downloaded, see references.

void AlphaOptimization::run()
// Computes the optimal alpha

{

 const double epsG = 0.001; // constant for optimizer

 const double epsF = 0.0; // constant for optimizer

 const double epsX = 0.0; // constant for optimizer

 const int MaxIts = 100; // constant for optimizer

 ap::real_1d_array x; // alglib real array

 x.setbounds(1,1); // set dimensionality

 x(1) = 1.5;

 ap::integer_1d_array nbd;// alglib int array

 nbd.setbounds(1,1);

 nbd(1) = 1; // range for alpha (only lower bound)

 ap::real_1d_array lbound;// alglib real array

 lbound.setbounds(1,1);

 lbound(1) = 0.01; //lower bound of allowed range

 ap::real_1d_array ubound;// alglib real array

 ubound.setbounds(1,1);

 ubound(1) = 5.0; //upper bound of allowed

 range. only needed if nbd = 2.

 int info;

 // the lbfgs optimizer

 lbfgsbminimize(MinFunc, itsOption, 1, 1, x, epsG,

 epsF, epsX,

 MaxIts, nbd, lbound, ubound, info);

 itsOption->setAlpha(x(1)); //optimal alpha is

 found

}

2.3 FFT approximation of continuous Fourier transforms
The precompiled FFT algorithm we wish to apply is taken from the GNU
Scientific Library, GSL (2010). It computes the finite sum

xk =
N−1∑
j=0

zj exp

(
− 2π

N
ijk

)
 (9)

with k ranging from 1 to N. From (9) we expect the computation time
to correspond to an ordinary square matrix multiplication, i.e. to be of
order O(N2). The FFT algorithm improves this computation time to order
N times the sum of the prime factors of N. Thus N is chosen to be a power
of two resulting in an O(N log N) performance which is a very considerable
 improvement.

It is implemented using the function

int gsl_fft_complex_radix2_forward (gsl_complex_packed_

 array data,

 const size_t stride,

 const size_t n);

of the GSL (2010) library. The latter is available for free.
The integral in (4) has the naive approximation

N−1∑
j=0

exp(−ijηk)ψ (jη)η (10)

as a Riemann sum from zero to Nh. To compute one single call price we nor-
malize the strike K to one. The spot price has to be divided by the strike and

34-44_Kienitz_Part_II_TP_March_236 3634-44_Kienitz_Part_II_TP_March_236 36 3/21/12 3:01:38 PM3/21/12 3:01:38 PM

Wilmott magazine 37

TECHNICAL PAPER

^
then it is inserted into the model equations. The latter has the advantage
that (8) simplifies to

α∗ = argmin
α∈(0,αmax)

|ψ (0)|.
 (11)

For the calibration we write spot and strike as multiples of the forward.
Thus, the call prices which can be deduced from one single FFT will range
around the at–the–money level just like the market prices do. With these
scalings the grid of k should be centered in zero and is of fineness

λ = 2π

Nη
.

 (12)

The grid thus lies within [− b,b] with b = λN
 ___ 2 = π __ h. Substituting k a −b + uλ

with u = 0,…,N −1 we obtain

N−1∑
j=0

exp

(
−2π

N
iju

)
(−1)jψ (jη)η .

 (13)

For accuracy both a small h (reducing discretization errors) and a small λ
(reducing interpolation errors) are desirable. But a simultaneous diminish-
ment is prevented by the relation

λη = 2π

N

because N is not only limited by computation time but also by the maximal
possible power of two integer on the working machine. For this reason we
apply the Simpson’s rule with a correction factor as in Carr and Madan
(1999),

N−1∑
j=0

exp

(
− 2π

N
iju

)
(−1)jψ (jη)

η

3
(3 + (−1)j+1 − δj0). (14)

Note that especially for prices of in–the–money options linear inter-
polation between two known prices is not completely wrong. That is why
a bit contrary to the values recommended by Carr and Madan (1999) we
experienced that choosing h according to the rule h = 2

14

 ___ N ⋅10−3 works fine in
practice.

3 Monte Carlo Heston–Hull–White pricing
With regard to the model dynamic we observe that each time step on the
path of the asset price has to be preceded by a time step resulting from simu-
lating the evolution of the variance. To obtain an acceptable computation
time we wish to implement a discretization scheme with very small bias. To
this end we have modified the Quadratic Exponential scheme introduced in
Andersen (2006). Source code in C++ has been presented in Duffy and Kienitz
(2009) and a version in Visual Basic can be found in Staunton (2007).

3.1 The drifted Quadratic Exponential Scheme
For the Heston model a discretization scheme has been proposed by
Andersen (2006). It discretizes the non–central chi square distributed vari-
ance process by a dirac delta with an exponential tail for small values of the

variance and by a squared gaussian random variable for larger values of the
variance. Again, it is the simplicity of the Gaussian distribution of the short
rate Ornstein Uhlenbeck process that allows us to extend the discretization
scheme of Andersen (2006) in a bias–free way to include stochastic interest
rates. This is possible by sampling just one additional random number for
each path since the integrated short rate at maturity is independent and
normally distributed with the known parameters. By the Hull-White decom-
position the resulting drift is added to the zero short rate final value of the
Heston process. We have

XT = R0,T + X̂T (15)

where ̂X
T
 is the ordinary QE–scheme as in Andersen (2006), p. 19,

 equation (33).
There is the common problem with Monte Carlo methods that both

variance and short rate can become negative during the simulation process.
In case of the Heston variance this is only due to the discretization since a
CIR process has almost sure non zero paths. To compute the asset price the
square root of the variance is taken. Thus, negative values cause errors. The
QE–scheme overcomes this issue. In case of negative short rates resulting
from the Hull–White model the discretization is not problematic since no
range of definition is exceeded. It can indeed occur that after a time step
some negative drift arises. This is a general feature of the Hull–White model
and not of the Monte Carlo simulation.

For the implementation of the drifted QE scheme we choose the follow-
ing constants with respect to the model parameters:

 double gamma1 = 0.5; // see Andersen, section 4.2

 double gamma2 = 1.0 - gamma1;

 itsConst[0] = -((rho * kappa * vLong) / omega) *

 itsDeltaT; //K_0

 itsConst[1] = gamma1 * itsDeltaT * (kappa * rho /

 omega - 0.5) - rho / omega; //K_1

 itsConst[2] = gamma2 * itsDeltaT * (kappa * rho /

 omega - 0.5) + rho / omega; //K_2

 itsConst[3] = gamma1 * itsDeltaT * (1 - rho * rho);

 //K_3

 itsConst[4] = gamma2 * itsDeltaT * (1 - rho * rho);

Using these constants we implement the drifted QE scheme. To this
end we have implemented a function which takes as an input two arrays of
uniformly distributed random variables WI1 and WI2 which are then trans-
formed to the desired variates. The following piece of code implements this
method:

void HestonHullWhite::MonteCarlo::QE(double WI1, double

WI2)

 {

 // Calculate the solution at time level

 n+1 in terms of solution at time level n

 double result[3];

 // N.B. This assumes that WI1 and WI2

 are uniformly distributed

 // 1.Variance - see Andersen’s paper

 double Psi; // switching

 parameter

34-44_Kienitz_Part_II_TP_March_237 3734-44_Kienitz_Part_II_TP_March_237 37 3/21/12 3:01:41 PM3/21/12 3:01:41 PM

38 Wilmott magazine

 double Psi_C = 1.5; // switching

 parameter

 //Parameters used in for loop

 double a, b2, p, beta, m, s2, c4;

 //This becomes a Gaussian variate in the

 for loop.

 double GV = 0.0;

 double Coeff1 = exp(-

 itsKappa*itsDeltaT);

 double Coeff2 = 1.0 - Coeff1;

 double Coeff3 = itsOmega * itsOmega /

 itsKappa;

 m = itsVLong + (itsVec[2] - itsVLong) *

 Coeff1;

 s2 = itsVec[2] * Coeff1 * Coeff2 * Coeff3

 + 0.5 * itsVLong * Coeff2 * Coeff2

 * Coeff3;

 // martingale correction is required?

 Store Psi for each time step

 Psi = s2 / (m * m);

 //Switching Parameter Psi_C

 if (Psi <= Psi_C)

 {

 //V[t+Delta] approximated as non

 central chi-square

 //with one degree of freedom

 c4 = 2.0 / Psi;

 b2 = max(c4 - 1.0 + sqrt(c4*(c4 -

 1.0)),0.0); //eq. (27)

 a = m / (1.0 + b2);

 //eq. (28)

 //If martingale correction is

 required store a and b2

 //for each time step since it is

 needed for calculation of S(t).

 GV = (sqrt(b2) + InverseCumulative

 Normal(WI1));

 result[2] = a*(GV*GV);

 //step c

 }

 else

 {

 //Approximation Density with

 Dirac mass and exponential tail

 p = (Psi - 1.0) / (Psi + 1.0); //

 eq. (29)

 beta = (1-p) / m; // eq. (30)

 //If martingale correction is

 required store p and beta at each

 //time step since it is required

 to calculate S(t)

 // eq. (25)

 if (WI1 <= p)

 result[2] = 0.0;

 else

 result[2] = log((1.0 - p) /

 (1.0 - WI1)) / beta;

 }

 result[1] = itsConst[0] + itsConst[1] *

 itsVec[2] + itsConst[2] * result[2] +

 sqrt(itsConst[3] * itsVec[2]

 + itsConst[4] * result[2]) * InverseCumulative

 Normal(WI2);

 itsVec[1] += result[1];

 itsVec[2] = result[2];

 }

The main part of the code is the implementation of the switch-
ing rule as suggested in the original work by A06. The final value
result[1] is a predictor corrector scheme applied to the previously
generated values.

Finally, the Monte Carlo estimator can be implemented. It calls the QE
scheme and it is given by:

void HestonHullWhite::MonteCarlo::run()

{

 setSeed();

 //path variables

 double SumCallValue = 0.0;

 double SumPutValue = 0.0;

 double SumIntegralR = 0.0;

 double SumDiscountFactor = 0.0;

 double WI1, WI2; //uniformly distributed

 randoms

 int seed = (int)time(NULL);// use system time to

 produce random seed

 MersenneTwister2 mt; // init Mersenne Twister

 mt.SetSeed(seed); // set the seed

 for(int i = 1; i <= itsNSIM; ++i) // loop over

 simulations

 {

 // variables containing current values

 itsVec[1] = log(itsS); // log of

 stock price

 itsVec[2] = itsVInst; // variance

 for(int nt = 1; nt <= itsNT; ++nt) // loop over

 time steps

 {// get random numbers

 WI1 = mt.GetRandomNumber();

 WI2 = mt.GetRandomNumber();

 QE(WI1, WI2); // Call QE

 scheme

 }

 // Hull White integrated short rate process is

 normally distributed

 double Z = InverseCumulativeNormal(mt.

 GetRandomNumber());

34-44_Kienitz_Part_II_TP_March_238 3834-44_Kienitz_Part_II_TP_March_238 38 3/21/12 3:01:47 PM3/21/12 3:01:47 PM

Wilmott magazine 39

TECHNICAL PAPER

^
 double IntR = getMeanOfIntegral(itsRInst,

 0.0, itsT)

 + sqrt(getVarianceOfIntegral(0.0, itsT)) * Z;

 // store integrated short rate process as well as

 discount factor

 SumCallValue += exp(-IntR) * max(0.0,

 exp(itsVec[1] + IntR) - itsK);

 SumPutValue += exp(-IntR) * max(0.0, itsK -

 exp(itsVec[1] + IntR));

 SumIntegralR += IntR;

 SumDiscountFactor += exp(-IntR);

 }

 //compute arithmetic means as an estimator of

 expectations

 itsIntegralR = SumIntegralR / itsNSIM;

 itsDiscountFactor = SumDiscountFactor / itsNSIM;

 itsCall = SumCallValue / itsNSIM;

 itsPut = SumPutValue / itsNSIM;

 itsPrice = itsCorP ? itsCall : itsPut;

 setUp2D(true);

}

The code may be modified such that the seed is an argument. Then,
using the same seed anytime the simulation starts the random generator
produces the same stream of random numbers. We have chosen the system
clock to generate a seed. Therefore, for each run you get different random
numbers and therefore different realisations for the Monte Carlo estimator.

This presented piece of code is used to price European call and put
options. For valuing path dependent options we have to modify the Monte
Carlo simulation by storing all the relevant points in the path itsVec[].
Then, the payoff corresponding to the path dependent option can be evalu-
ated.

3.2 Numerical Test
We apply the methods to the following sets of parameters:

The following results on the one hand show that the prices calculated via
FFT and MC agree and therefore we can be sure that both methods are imple-
mented correctly. On the other hand we observe that the performance of the
MC is worse for long maturities. Table 2 summarizes our findings:

 To get a better view on the results we have plotted the outcomes, see
 figure 1.

The correct mean of discount factors
When the number of path simulations is exceeded we just set the element
variable itsIntegralR equal to SumIntegralR divided by this number

Table 1: Scenarios for testing the FFT and the MC implementations.

T S
0

λ σ t̃ t
0

j q v

1 100 0.4 0.2 0.02 0.03 0.2 −0.6 0.5

5 105 0.7 0.2 0.02 0.018 0.4 −0.3 0.2

15 110 0.5 0.3 0.015 0.02 0.5 −0.6 0.3

25 115 0.3 0.1 0.02 0.018 0.8 −0.8 0.2

Table 2: Numerical results for the scenarios using the proposed algorithms,
illustrated in fi gure 1.
K Monte Carlo FFT Relative Error

80 24.6838808189857 24.5461647391366 −0.00561049277199614
85 20.4086129617117 20.3043200086086 −0.00513649080879682
90 15.5326065533633 16.1822548895257 0.0401457238560059
95 11.74953391433 12.3461401987241 0.0483233038659167

100 9.00821317440454 8.98824407233211 −0.00222169112361959
105 6.35638117184006 6.25574110388277 −0.0160876331494649
110 4.3382948035737 4.18517436919134 −0.0365863930328761
115 2.65699991570719 2.70698244194532 0.0184642964297211
120 1.64783416804738 1.71202291887556 0.03749292729699
125 1.10644069067188 1.06877715142072 −0.0352398432181037
130 0.690532315997906 0.665142172627011 −0.0381725056924532
135 0.403395746929655 0.416773266063299 0.0320978340573595
80 47.0256193644734 45.3648403933267 −0.0366093864046961
85 40.7234541153276 42.5401009008153 0.0427043365440835
90 38.0983149600262 39.8623300348626 0.0442526835057979
95 36.9577790432644 37.3299192484043 0.0099689528569205

100 34.6108304998454 34.9400403063771 0.00942213585459595
105 33.3874388981813 32.6888896067872 −0.0213696243523981
110 31.1332097474065 30.5719092871391 −0.0183600067302141
115 27.394455371475 28.5839821655106 0.041615153100357
120 25.7539152336102 26.7195999278723 0.0361414353833468
125 24.4112306876842 24.973005503804 0.0224952825976111
130 23.125412723376 23.3383114921657 0.00912228671132616
135 21.9929296297187 21.8095969842613 −0.00840605379318489

80 87.6337289006257 91.5564151476584 0.0428444718014172
85 91.2226967456762 90.8572004151793 −0.00402275580610864
90 90.436560740868 90.1815178314055 −0.00282810619731789
95 88.5308878906847 89.527679527106 0.0111338933577465

100 92.585557170488 88.8941870620129 −0.0415254386195124
105 89.6574512372581 88.2797027192348 −0.0156066284274326
110 90.8888287825975 87.6830262127688 −0.0365612674230657
115 84.0126210634404 87.1030756004615 0.0354804295452992
120 86.6074096098252 86.5388715029133 −0.000791992150135284
125 85.0807858215454 85.9895239491759 0.0105680097516021
130 82.2414077395726 85.4542213300819 0.037596897385552
135 81.4083407556848 84.9322210578466 0.0414904998158676
80 94.4625701181163 95.9247603320968 0.015243094785104
85 96.466692014291 95.0525847651337 −0.0148771046326769
90 94.4171449232684 94.203904710092 −0.00226360270131688
95 97.1314600284146 93.3774462068146 −0.0402025753979763

100 89.1497862557897 92.5720449629597 0.0369685979016594
105 87.7776117041414 91.7866333094318 0.0436776190687277
110 94.2810055251711 91.020229125284 −0.0358247439192755
115 91.0128565198847 90.2719263749146 −0.00820775821148268
120 92.280279649375 89.5408869752897 −0.0305937629905457
125 90.5208691859644 88.8263337681558 −0.0190769487597174
130 85.4274348176917 88.1275444163673 0.0306386569211394
135 87.493651524381 87.4438460778225 −0.00056957063066701

34-44_Kienitz_Part_II_TP_March_239 3934-44_Kienitz_Part_II_TP_March_239 39 3/21/12 3:01:48 PM3/21/12 3:01:48 PM

40 Wilmott magazine

to obtain the arithmetic mean as an estimator for the expectation. One
might then be tempted to set

itsDiscountFactor = exp(-itsIntegralR);

But since

exp

(
− 1

N

N∑
k=1

∫ T

0
rk

t dt

)
= N

√√√√ N∏
k=1

Pk(0, T)

this would compute the geometric mean of discount factors. The law of large
numbers however suggests that the correct estimator for the mean of a ran-
dom variable is the arithmetic mean. Therefore, the correct code is

Table 3: Extensions of the Heston–Hull–White model with jumps, Greek calculation and comparison to other models.

Model Black call Black put Heston call Heston put Bates call Bates put HHW call HHW put

price 32,7879 4,2053 31,6662 3,0835 32,3931 3,8105 34,9585 5,6393

Delta 0,8471 −0,1530 0,6072 −0,3928 0,6072 −0,3928 0,8723 −0,1277

Gamma 0,0056 0,0056 0,0038 0,0038 0,0038 0,0038 0,0047 0,0047

Vega 70,9523 70,9523 59,3023 59,3023 59,3023 59,3023 55,5321 55,5321

Theta 2,4530 −0,2649 2,5967 −0,1211 2,5967 −0,1211 2,8508 −0,0394

Table 4: The discount curve.
Maturity Discount
0 1
0.003 0.999884333380315
0.083 0.996803132736937
0.167 0.993568709230647
0.25 0.990285301195274
0.333 0.986945903402709
0.417 0.983557350486521
0.5 0.980185549124449
0.583 0.976782934344041
0.667 0.973361992614499
0.75 0.96997679330522
0.833 0.966616749933289
0.917 0.96291431795816
1 0.959904777446077
2 0.920091903961326
3 0.882870065420196
4 0.847186544281939
5 0.812742515687365
6 0.779459552415061
7 0.747152463119429
8 0.715745016074346
9 0.68513872380846
10 0.655753392359115
11 0.627333845297308
12 0.599226698198774
13 0.572763319281569
14 0.547259133751455
15 0.52344199625308
16 0.499646068368557
17 0.477507905873099
18 0.456481811728753
19 0.436385788738282
20 0.41735025383105
21 0.399187111819286
22 0.381865611666566
23 0.365435617455498
24 0.349786183601181
25 0.334806921914717
26 0.320548897004994
27 0.306983265264429
28 0.29408180091705
29 0.282443547729164
30 0.269929224010243

Figure 1: Prices and Differences using FFT and MC methods. We have
plotted the difference between the MC price to the FFT price as the
error. The x-axes are the strikes and the y-axes is the option price, resp.
the difference in %.

34-44_Kienitz_Part_II_TP_March_240 4034-44_Kienitz_Part_II_TP_March_240 40 3/21/12 3:01:51 PM3/21/12 3:01:51 PM

Wilmott magazine 41

TECHNICAL PAPER

^
Table 5: Caplet and fl oorlet data.
caplet(1)/fl oorlet(0) starting time ending time nominal val. strike weight price
1 2 10 9416.92926877517 0.0342611390640023 1 1200
1 5 7 2314 0.05 1 100
0 20 29 7376.07619599394 0.05 1 200
0 3 6 3613.66436933663 0.0388271087457236 1 205
1 9 11 1427.47352171406 0.05 1 60
1 2 5 7797.16349378825 0.0500211104176346 1 450
0 3 10 6948.13844555887 0.04 1 310
0 18 27 2603.29281202345 0.0534926849722827 1 90
1 12 20 4210.88672094886 0.0414695930901716 1 290
0 1 3 5099.18277084983 0.0330138086463581 1 210
1 9 15 3766.9990581367 0.0467058178022948 1 230
0 3 9 6771.47820565578 0.0374192097111886 1 325
0 3 10 5858.21485694162 0.0470252029744057 1 350
1 8 26 8485.46428280891 0.034125568203124 1 1700
0 21 24 7311.09394688128 0.0553688393773477 1 250
1 2 8 3647.58059225496 0.0500580599519105 1 230
1 6 12 4668.12019649194 0.0508318626408997 1 270
0 12 16 2566.08253901933 0.04 1 95
0 23 25 6686.70889498921 0.0486508139569397 1 170
0 8 10 6689.96339106525 0.0572032238200365 1 360
1 16 28 2700.96396266436 0.046654872802985 1 175
1 12 20 9898.31933931068 0.0347861985610641 1 820
0 4 9 3950.66382263394 0.0493024051944809 1 280
1 2 6 7465.83520847548 0.0482007953378562 1 500
0 3 8 4259.12782546458 0.0415042409900612 1 256
1 8 12 3196.67995524612 0.04 1 210
1 10 14 1433.13517058908 0.030433597650365 1 96
1 19 32 8187.53565283835 0.0422933553887046 1 600
1 20 25 1253.90749171738 0.04 1 52
1 24 28 8067.49557095318 0.0340581988788553 1 260
0 1 3 9772.13354932506 0.0575804248337502 1 609
0 3 8 3415.18336214298 0.0379677887967534 1 180
1 2 9 2665.69872790828 0.0300422228870026 1 315
1 15 18 8468.50986117668 0.0400218226322223 1 350
0 12 19 1767.19304666142 0.0574942505250541 1 90
1 23 27 7237.02270759566 0.0457488713004445 1 210
1 17 20 6732.87947630398 0.0529906465862818 1 212
1 10 12 8192.79766031329 0.0489543137146861 1 326
0 1 16 9948.52606630205 0.0584579025074692 1 525
1 3 7 1200 0.04 1 92
0 9 12 8109.49491096141 0.0581120923493502 1 500
1 2 3 3466.35627699096 0.0409627605133861 1 130
1 5 18 5275.2300620622 0.0556162251880608 1 380
0 4 8 8679.50307369369 0.0333440314849487 1 410
1 18 22 6007.33779722487 0.0432106019483251 1 220
1 2 6 791.972365347071 0.04 1 56
1 28 29 8255.73661136544 0.0455450500767311 1 90
1 14 17 5539.87536936097 0.0509304193428627 1 201
0 10 12 1007.22151059842 0.0590681356060862 1 45

34-44_Kienitz_Part_II_TP_March_241 4134-44_Kienitz_Part_II_TP_March_241 41 3/21/12 3:01:53 PM3/21/12 3:01:53 PM

42 Wilmott magazine

Figure 2: Calibration error for Hull–White model to market prices from Table 5. The x-axes are the used options and the y-axes are the
option prices, resp. the error in %

{
 (...)
 SumDiscountFactor += exp(-intR);
}
(...)
itsDiscountFactor = SumDiscountFactor / itsNSIM;.

The variable names should explain what they stand for. This completes
the discussion of implementation. We will now proceed to some experi-
ments with our model.

4 Numerical Example and Extensions
4.1 Numerical Example
Finally, we show the result of a calibration of the Heston–Hull–White model
to market prices. The market prices are summarized in section 5. To this end

we calibrate the Hull–White model to an initial yield curve, Table 4, as well
as to caps and floors, Table 5. The other parameters are then calibrated using
the previously calibrated Hull-White parameters. We show the calibration
results and compare the results to a calibration of a Heston model. We use
tables 6 and 7. First, we consider the calibration of the Hull–White model to
caplet and floorlet prices as well as the given yield curve. We show the cali-
bration results in Figure 2.

Second, we consider the calibration of the Heston–Hull–White model
and a Heston model to the same call and put prices. Figure 3 shows the
calibration error of both models and also the prices from both models with
respect to the market prices are given.

 Summarizing we remark that for long dated options, especially if they are
out–of–the–money, the Heston–Hull–White model shows superior results to
the Heston model.

Table 5: Continued.
caplet(1)/fl oorlet(0) starting time ending time nominal val. strike weight price
0 2 6 7434.19652157982 0.0327893144544669 1 350
1 9 12 2137.23039553082 0.04 1 110
1 22 28 1883.37056498061 0.0431004396686225 1 65
1 23 26 3397.75735905472 0.0374201124784955 1 100
1 1 6 1024.08192796619 0.0372897814209294 1 90
0 4 9 2002 0.04 1 106
1 29 30 3003 0.04 1 55
1 3 10 6198.82309600511 0.0418561395092096 1 535
1 1 9 5200 0.04 1 540
1 1 6 5182.47470948161 0.04 1 420
0 8 12 2000 0.04 1 85
1 5 19 4961.05524517236 0.0501070362095233 1 480
0 6 9 8974.95162564571 0.0486530513238298 1 520
1 10 15 3762.1867184309 0.04 1 220
0 12 19 7131.9444194102 0.0476080485923243 1 260
1 23 27 2802.85918498859 0.0364648442217984 1 100
0 21 26 4024.19745856715 0.0433198817727001 1 95
1 14 18 1922.25317529192 0.04 1 100
0 18 23 8886.66938935406 0.0409556582292757 1 225
1 19 22 7296.9174850853 0.046130857927964 1 240
1 20 29 9717.35166560507 0.0413848302426658 1 450

34-44_Kienitz_Part_II_TP_March_242 4234-44_Kienitz_Part_II_TP_March_242 42 3/21/12 3:01:55 PM3/21/12 3:01:55 PM

Wilmott magazine 43

TECHNICAL PAPER

^
Table 6: Equity option data I.
Call(1)/put(0) Maturity Strike Spot Weight Price
1 1.1944 1081.82 2461.44 0.1 1422.3792940646
1 1.1944 1212.12 2461.44 0.2 1300.25370868542
1 1.1944 1272.73 2461.44 0.3 1243.99130024807
1 1.1944 1514.24 2461.44 0.4 1024.24909532335
1 1.1944 1555.15 2461.44 0.5 987.873233682635
1 1.1944 1870.3 2461.44 0.6 718.504165558505
1 1.1944 1900 2461.44 0.7 694.553484851185
1 1.1944 2000 2461.44 0.7 616.07786707975
1 1.1944 2100 2461.44 0.7 541.352430949431
1 1.1944 2178.18 2461.44 0.8 485.476234822808
1 1.1944 2200 2461.44 0.8 470.355265362432
1 1.1944 2300 2461.44 0.8 403.619865578245
1 1.1944 2400 2461.44 0.9 341.329392723369
1 1.1944 2499.76 2461.44 0.9 284.662130191257
1 1.1944 2500 2461.44 1 284.551671409552
1 1.1944 2600 2461.44 1 234.394879670288
1 1.1944 2800 2461.44 0.9 150.466033702423
1 1.1944 2822.73 2461.44 0.9 142.703361496322
1 1.1944 2870.83 2461.44 0.8 126.795377812929
1 1.1944 2900 2461.44 0.8 117.874621567444
1 1.1944 3000 2461.44 0.7 90.6649710320428
1 1.1944 3153.64 2461.44 0.7 61.1561444384128
1 1.1944 3200 2461.44 0.6 54.0033253306561
1 1.1944 3360 2461.44 0.5 34.3977917525318
1 1.1944 3400 2461.44 0.4 30.5318701182539
1 2.1916 1081.82 2461.44 0.1 1461.57788048036
1 2.1916 1212.12 2461.44 0.1 1347.09382355315
1 2.1916 1272.73 2461.44 0.2 1294.64533887627
1 2.1916 1514.24 2461.44 0.2 1091.46437642577
1 2.1916 1555.15 2461.44 0.3 1058.03626462066
1 2.1916 1870.3 2461.44 0.4 811.975310510654
1 2.1916 1900 2461.44 0.5 789.914122496853
1 2.1916 2000 2461.44 0.6 717.153979232596
1 2.1916 2100 2461.44 0.7 648.130294235522
1 2.1916 2178.18 2461.44 0.7 596.11622818202
1 2.1916 2200 2461.44 0.7 581.90113391976
1 2.1916 2300 2461.44 0.8 518.724821472442
1 2.1916 2400 2461.44 0.8 458.76104598328
1 2.1916 2499.76 2461.44 0.9 402.277440098405
1 2.1916 2500 2461.44 0.9 402.168322491237
1 2.1916 2600 2461.44 1 352.800681959238
1 2.1916 2800 2461.44 1 265.29815191738
1 2.1916 2822.73 2461.44 0.9 256.258466145666
1 2.1916 2870.83 2461.44 0.9 237.788657548345
1 2.1916 2900 2461.44 0.8 227.112201880144
1 2.1916 3000 2461.44 0.8 193.737434726345
1 2.1916 3153.64 2461.44 0.7 149.226004850452
1 2.1916 3200 2461.44 0.6 137.377308320527
1 2.1916 3360 2461.44 0.5 101.043834423851
1 2.1916 3400 2461.44 0.4 93.1568497899167

Table 7: Equity Option data II.
Call(1)/put(0) Maturity Strike Spot Weight Price
1 4.2056 1081.82 2461.44 0 1537.89780938587
1 4.2056 1212.12 2461.44 0.1 1436.15374265053
1 4.2056 1272.73 2461.44 0.2 1389.76521576543
1 4.2056 1514.24 2461.44 0.3 1210.94634749796
1 4.2056 1555.15 2461.44 0.3 1181.7432801964
1 4.2056 1870.3 2461.44 0.4 966.218070719351
1 4.2056 1900 2461.44 0.4 946.834481174701
1 4.2056 2000 2461.44 0.5 882.766031799261
1 4.2056 2100 2461.44 0.5 821.909315912906
1 4.2056 2178.18 2461.44 0.6 775.824412354643
1 4.2056 2200 2461.44 0.6 763.157788414055
1 4.2056 2300 2461.44 0.6 706.535835262685
1 4.2056 2400 2461.44 0.7 652.067710023196
1 4.2056 2499.76 2461.44 0.7 599.881006918677
1 4.2056 2500 2461.44 0.8 599.777598336201
1 4.2056 2600 2461.44 0.8 550.994727629446
1 4.2056 2800 2461.44 0.8 460.521491020263
1 4.2056 2822.73 2461.44 0.9 450.727847025402
1 4.2056 2870.83 2461.44 0.9 430.599084642388
1 4.2056 2900 2461.44 1 419.429846883366
1 4.2056 3000 2461.44 1 382.44604273531
1 4.2056 3153.64 2461.44 0.9 329.938079701859
1 4.2056 3200 2461.44 0.9 315.074022307316
1 4.2056 3360 2461.44 0.8 267.585053775738
1 4.2056 3400 2461.44 0.8 256.544421518989
1 5.1639 1081.82 2461.44 0.1 1575.14545916331
1 5.1639 1212.12 2461.44 0.1 1479.03073519054
1 5.1639 1272.73 2461.44 0.2 1435.24541401566
1 5.1639 1514.24 2461.44 0.2 1266.44917918489
1 5.1639 1555.15 2461.44 0.3 1238.84605922055
1 5.1639 1870.3 2461.44 0.4 1034.69682580327
1 5.1639 1900 2461.44 0.4 1016.27541291196
1 5.1639 2000 2461.44 0.4 955.220133255394
1 5.1639 2100 2461.44 0.5 897.202261867494
1 5.1639 2178.18 2461.44 0.5 852.900221803726
1 5.1639 2200 2461.44 0.5 840.811112260794
1 5.1639 2300 2461.44 0.6 786.201108526362
1 5.1639 2400 2461.44 0.6 733.379712207143
1 5.1639 2499.76 2461.44 0.6 682.650495178919
1 5.1639 2500 2461.44 0.7 682.550238143673
1 5.1639 2600 2461.44 0.8 634.54817806271
1 5.1639 2800 2461.44 0.8 544.647852148374
1 5.1639 2822.73 2461.44 0.8 534.950590253353
1 5.1639 2870.83 2461.44 0.9 514.523135676212
1 5.1639 2900 2461.44 0.9 503.194830396318
1 5.1639 3000 2461.44 1 465.409173492743
1 5.1639 3153.64 2461.44 1 411.19105063511
1 5.1639 3200 2461.44 0.9 395.583928285715
1 5.1639 3360 2461.44 0.9 345.05333748364
1 5.1639 3400 2461.44 0.8 333.137714853179

34-44_Kienitz_Part_II_TP_March_243 4334-44_Kienitz_Part_II_TP_March_243 43 3/21/12 3:01:58 PM3/21/12 3:01:58 PM

44 Wilmott magazine

4.2 Extensions
We stress the point that the model is easily extendable to a Bates–Hull–
White model since it is commonly assumed that the jumps in the Bates
model are independent of the volatility and the interest rates. Therefore,
the implementation corresponds to a multiplication of the characteristic
 function.

Furthermore, it is possible to compute greeks very efficiently. Table 3
summarizes the possible extensions we have implemented. The results have
been produced using the following parameters T = 10, K = 100, S(0) = 95, r =
4.09% and ̃v = 0.02, v(0) = 0.02, κ = 0.2, r = −0.6, v = 0.5 for the Heston dynamic
as well as s = 0.05, κ = 0.3 for the Hull–White model and finally, for the jump
component λ = 0.2 (jump intensity), s

J
 = 0.05 (jump volatility) and μ

J
 = 0.2

(average jump size).

5 Market Data
This section contains the used market data for the yield curve, caplets,
 floorlets, and the index options.

Holger Kammeyer is studying toward his Ph.D. in mathematics. He researches geometric
L2 invariants. He holds a diploma (with distinction) in mathematics from the University of
Goettingen. Before he started his Ph.D. research, he worked as a teaching assistant, did an
internship at Deutsche Postbank with the Quantiative Analysis group, and completed a one
year graduate study at UC Berkeley.

Joerg Kienitz is the head of Quantitative Analysis at Deutsche Postbank AG. He is primarily
involved in the development and implementation of models for pricing structured products,
derivatives, and asset allocation. He authored a number of quantitative finance papers and
his book “Monte Carlo Frameworks” was published with Wiley in 2009. A new Wiley book,
“Financial Modelling – Theory, Implementatin and Practice with Matlab Source Code” will

REFERENCES
J. Andersen. 2006. Efficient Simulation of the Heston Stochastic Volatility Model. Preprint.
M. Attari. 2004. Option pricing using fourier transforms: A numerically efficient simplifica-
tion. Working paper, Charles River Associates.
S. Bochkanov. 2010. Alglib financial library. www.alglib.net.
D. Brigo and F. Mercurio. 2006. Interest Rate Models - Theory and Practice, 2nd ed.
Springer, Berlin, Heidelberg, New York.
P. Carr and D. Madan. 1999. Option Valuation using the Fast Fourier Transform. Journal of
Computational Finance, (4): 61–73.
J.H. Chan and M. Joshi. 2010. Fast and Accurate Long Stepping Simulation of the Heston
Stochastic Volatility Model. Preprint, ssrn.com.
D. Duffy and J. Kienitz. 2009. Monte Carlo Frameworks - Building Customisable and High-
performance C++ Applications. John Wiley & Sons, Chichester.
F. Fang and K. Osterlee. 2008. A Novel Pricing Method for European Option based on
Fourier-Cosine Series Expansions. Munich Personal RePEc ARchive, 9319.
P. Glasserman and K.-K. Kim. 2008. Gamma Expansion of the Heston Stochastic Volatility
Model. Preprint, ssrn.com.
GSL. 2010. Gnu scientific library. www.gnu.org/software/gsl.
A. Lewis. 2000. Option Valuation under Stochastic Volatility. Financepress.
Fang F. Bervoets G. Oosterlee C.W. Lord, R. 2008. A fast and accurate fft-based method for
pricing early-exercise options under Lévy processes. SIAM J. Sci Comput.
R. Lord and C. Kahl. 2006. Optimal Fourier inversion in semi-analytical option pricing.
Preprint.
M. Staunton. 2007. Monte Carlo for Heston. Wilmott magazine May, 70–71.
Pelsser A. van Haastrecht, A. 2008. Efficient, almost exact simulation of the Heston
 stochastic volatility model. Preprint, ssrn.com.

Figure 3: Calibration error of the Heston–Hull–White and the Heston model (left) and the model and market prices (right). The x-axes are the used
options and the y-axes is the error in %, resp. the option price. The market data is given by Tables 6 and 7.

be published in spring 2012. He is member of the editorial board of the International Review
of Applied Financial Issues and Economics. He holds a Ph.D. in stochastic analysis and
 probability theory.

W

34-44_Kienitz_Part_II_TP_March_244 4434-44_Kienitz_Part_II_TP_March_244 44 3/21/12 3:02:01 PM3/21/12 3:02:01 PM

Financial Risk
Forecasting
The Theory and Practice of
Forecasting Market Risk with
Implementation in R and Matlab
Jón Daníelsson
Financial Risk Forecasting is a complete introduction
to practical quantitative risk management, with a
focus on market risk. Derived from the author’s
teaching notes and years spent training practitioners
in risk management techniques, it brings together the
three key disciplines of finance, statistics and
modeling (programming), to provide a thorough
grounding in risk management techniques.

Written by renowned risk expert Jón Daníelsson, the book begins with an introduction to financial
markets and market prices, volatility clusters, fat tails and nonlinear dependence. It then goes on
to present volatility forecasting with both univatiate and multivatiate methods, discussing the
various methods used by industry, with a special focus on the GARCH family of models.

978-0-470-66943-3 • Hardback • 296 pages
March 2011 • £45.00 / €54.00 £27.00 / €32.40

Financial Risk
Management
Models, History, and Institutions
Allan M. Malz
Financial risk has become a focus of financial and
nonfinancial firms, individuals, and policy makers. But the
study of risk remains a relatively new discipline in finance
and continues to be refined. The financial market crisis
that began in 2007 has highlighted the challenges of
managing financial risk.

Now, in Financial Risk Management, author Allan Malz
addresses the essential issues surrounding this discipline,
sharing his extensive career experiences as a risk
researcher, risk manager, and central banker.

The book includes standard risk measurement models as
well as alternative models that address options, structured credit risks, and the real-world
complexities of risk modeling, and provides the institutional and historical background on
financial innovation, liquidity, leverage, and financial crises that is crucial to practitioners and
students of finance for understanding the world today.

978-0-470-48180-6 • Hardback • 722 pages
November 2011 • £65.00 / €76.00 £39.00 / €45.60

An Introduction
to Banking
Liquidity Risk and Asset-
Liability Management
Moorad Choudhry
“A great write-up on the art of banking. Essential
reading for anyone working in finance.”
Dan Cunningham, Senior Euro Cash &
OBS Dealer, KBC Bank NV, London

“Focused and succinct review of the key
issues in bank risk management.”
Graeme Wolvaardt, Head of Market Risk Control,
Europe Arab Bank plc, London

The importance of banks to the world’s economic
system cannot be overstated. The foundation of consistently successful banking practice
remains efficient asset-liability management and liquidity risk management. This book
introduces the key concepts of banking, concentrating on the application of robust risk
management principles from a practitioner viewpoint, and how to incorporate these principles
into bank strategy.

Written in the author’s trademark accessible style, this book is a succinct and focused analysis
of the core principles of good banking practice.

978-0-470-68725-3 • Paperback • 382 pages
March 2011 • £34.99 / €42.00 £20.99 / €25.20

Winning at Risk
Strategies to Go Beyond Basel
Annetta Cortez
Navigating the waters of risk and capital management in
today’s environment can be intensely challenging. If you
are a manager or executive with risk management
responsibilities and have not been formally trained as a
risk management professional, beware. Risk
management doesn’t lend itself to “do-it-yourself”
approaches nor can the essentials be picked up through
an instructional video on the ride from the airport to your
next meeting.

Designed to help busy executives sort through the
complexities of risk management toward developing a
holistic, multi-disciplinary, science-based risk and capital
management strategy, Winning at Risk: Strategies to Go
Beyond Basel presents a practical perspective to understanding what is important, where to place
focus, and how to use the best of risk and capital capabilities to your business’ advantage.

978-0-470-92466-2 • Hardback • 254 pages • June 2011 • £42.50 / €48.00 £25.50 / €28.80

Book Club
Share our passion for great writing – with Wiley‘s list of titles for independent thinkers ...

SAVE
40%

When you subscribe to Wilmott magazine you will automatically become a member
of the Wilmott Book Club and you’ll be eligible for 40 percent discount on
specially selected books in each issue. The titles will range from finance to narrative
non-fiction. For further information, call our Customer Services Department
on +44 (0)1243 843294, or visit wileyeurope.com/go/wilmott or wiley.com
(for North America)

