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1 Introduction
This is the first article in a series of three on financial modeling. The aim 
of this series is to show the full life cycle of model development. We have 
chosen an equity model with stochastic volatility and stochastic interest 
rates. This will also be the goal of a forthcoming book by one of the authors, 
Kienitz, Duffy et al. (2011).

The series of articles will be structured as follows: 

 • Financial and Mathematical Details 
 • Numerics and Algorithms 
 • Design and Implementation 

The first article deals with the financial and mathematical details of the 
model under consideration and the reasoning for choosing a stochastic vola-
tility model with stochastic rates. To this end we briefly review the Heston 
stochastic volatility model and the Hull–White short rate model, we show 
the impact of stochastic rates and provide code snippets for the described 
mathematical methods. Finally, we combine both models into a framework 
which is capable of stochastic volatility and stochastic rates. The algorithms 
for pricing and calibration are discussed in the second article. Code snippets 
are provided as well. The third article then gives the whole software frame-
work and details the design of the calibration and pricing application. The 
source code can be ordered from the authors via joerg.kienitz(at)gmx.de. 

2 The Modeling Approach
First, we consider the implied volatility surface of the German DAX index for 
different dates. Figure 1 shows the different shapes of this surface. 

This consideration shows that it is reasonable to work with a model which is 
capable of modeling the observed non-flat volatilities for different strikes. This 
phenomenon is called skew or smile. One model which is suited for modeling 
such structures and applied widely is the Heston stochastic volatility model.

For the illustration that stochastic interest rates might become necessary 
let us suppose we apply the standard Black–Scholes pricing methodology. The 
spot price of the index is denoted by S(0), T is the maturity, r the risk less rate 
until maturity, and s  the implied volatility. Then, we have a closed form solu-
tion for pricing calls and puts. Furthermore, we are able to calculate the deriva-
tives of the option price with respect to implied volatility, V, and rate, r. We get: 

The Heston–Hull–White Model Part I:
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 V = S(0)
√

Tn(d1) ≈
√

T  (1)

 ρ = TK exp(−rT)N(d2) ≈ T  (2)
with 

 
d1 = ln(S(0)/K) + (r + σ 2/2)T

σ
√

T
, d2 = ln(S(0)/K) − (r + σ 2/2)T

σ
√

T  

Equations (1) and (2) suggest that for long dated options the risk stemming 
from stochastic rates is bigger than that stemming from changes in  volatility.

To this end we consider the following system of stochastic differential 
equations subject to the filtered probability space (Ω, F, (F

t
 ), Q).

 dSt = rtStdt + √
vtStdW1

t  (3)

 dvt = κ (v − vt)dt + ω
√

vtdW2
t  (4)

 drt = λ(θ (t) − rt)dt + ηdW3
t  (5)

Equation (3) describes the evolution with respect to time t of the price of 
an equity S(t). Its volatility is given 

√
vt by where v

t
 evolves as a CIR mean 

reverting process determined by (4). This is exactly the dynamic from the 
well-known Heston stochastic volatility model. Instead of choosing the short 
rate r(t) being constant it is given by a mean reverting Ornstein Uhlenbeck 
process (5) with time dependent but deterministic mean reversion level q  (t). 
The latter dynamic is known as the Hull–White model. That is why the model 
(3) – (5) is called the hybrid Heston–Hull–White model.

Any cashflow at a future date T has to be discounted by the stochastic fac-
tor D(t,T) = exp 

(
−

∫ T

t
r(s)ds

)
 to obtain the value at time t. The bank account 

B
t
 modeled by the stochastic dynamic dB

t
 = r

t
B

t
dt is used as a numeraire. The 

probability measure Q is associated with this numeraire. This makes it pos-
sible to compute all present payoffs as 

 V(0) = EQ [D(t, T)V(T)] (6)

Let us shortly comment on the used parameters. The process v
t
 reverts to the 

long-term variance v– in the mean. The mean reversion speed k adjusts the 
velocity of this convergence. The volatility of variance (second-order volatil-
ity) is given by the constant ω. The long-run mean of interest rate is given by 
the function q. Its time dependence effects that the system (3), (4), (5) is not 
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time-homogenous and thus it is not an Itô diffusion in the sense of Oksendal 
(2007). The constant λ determines the speed of mean reversion for the inter-
est rate. Finally the constant h represents the volatility of the interest rate.

The improvement that is gained by introducing stochastic interest rates 
compared to the pure Heston model will be significant as soon as one prices 
derivatives with rather long maturities since in this case the assumption of 
a prevailing constant short rate evidently is no more appropriate.

We are interested in deriving a closed formula for the characteristic 
function of the process S

t
. If the three driving Wiener processes are corre-

lated arbitrarily this is not possible. For an extension of the model to cover 
this case see Grzelak et al. (2009a), Grzelak et al. (2009b), and Grzelak et al. 
(2009c). We therefore assume that the noise of the interest rate is indepen-
dent of those determining asset price and variance, i.e., dW i

t dW j
t = ρijdt  

where

 

(ρij) =
⎛
⎝1 ρ 0

ρ 1 0
0 0 1

⎞
⎠

 

In many cases this turns out to be a reasonable assumption and we can argue 
that we model the risk inherent in stochastic movement of the rates but 
neglect the effect of correlated moves in the index and in the rates. If we set 
λ = h = 0 we obtain the Heston model. If we set in addition κ = ω = 0 we have 
the Black–Scholes model.

Now, to apply the Heston–Hull–White model we have to consider the 
pricing of liquid options to be used to deduce the model parameters from 
market prices, the pricing of exotic path dependent structures and options 
which involve early exercise possibilities. In this series of articles we do not 
discuss the pros and cons of calibration and the issue of solving backward 
problems. We just remark that this is a common practice and we describe 
the methodology and the implementation necessary to fulfill this task. The 
results must of course be questioned and reasonable assumptions on the 
range of parameters and the influence of the parameters have to be consid-
ered. For instance the movement of the smile in the Heston model suggests 
that there are parameters which have the same effect on the volatility sur-
face. Furthermore, we do not discuss numerical methods for solving early 
exercise problems. This is beyond the scope of this article series.

Figure 1: The implied volatility surface of the DAX on 10.9.07, 9.1.08, 11.1.07, and 11.5.07.
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To see the impact of stochastic rates on the implied volatility surface we 
illustrate fix the parameters of the stochastic volatility component, the Heston 
model. Furthermore, we fix a yield curve and calibrate the Hull–White model 
to match the initial curve. Then, we study the effect by varying the parameters 
for mean reversion and volatility which are the free parameters for the chosen 
dynamic. First, Figure 2 shows the effect of stochastic interest rates. We have 
plotted the implied volatility calculated from option prices generated by a 
Heston stochastic volatility model and by a Heston–Hull–White model having 
the same stochastic volatility parameters. We have chosen v– = 0.02, v

0
 = 0.02, 

κ = 0.2, r  = –0.6 and ω = 0.5 for the Heston model parameters and λ = 0.1 and 
h = 0.05 for the Hull–White model. This is the base scenario. 

Figure 2 shows the impact on the long end of the smile and furthermore 
shows that the short-term smile is more pronounced.

Fixing all parameters but changing the volatility of the rates which is 
a measure for the randomness for the curve over time, Figure 3 shows the 
effect on the implied volatility surface. Decreasing randomness decreases 
the volatility level of the long end whereas increasing the level also  increases 
the volatility level of the long end. 

Fixing all parameters but changing the mean reversion speed which is a 
measure for tending to the initial curve over time, Figure 4 shows the effect 
on the implied volatility surface. Decreasing the mean reversion increases 
the level of the long end of the volatility since decreasing this parameter 

Figure 2: Implied Volatility Surface for a Heston-Hull-White Model and the associated Heston model. The parameters are: v = 0.02, v
0 
= 0.02, 

κ = 0.2, q = −0.6, and ω = 0.5 for the Heston model parameters, and λ = 0.1 and η = 0.05.

Figure 3: Illustration for changing volatility. Left is the base scenario, mid is increasing the volatility and right is decreasing it.

Figure 4: Illustration for changing the mean reversion. Left is the base scenario, mid is decreasing mean reversion and right is increasing mean 
reversion.
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ϕ1(z) = e− ln(S(t))−(r−d)(T−t)ϕ(z − i) and ϕ2(z) = ϕ(z)

 

There is another version only involving one integration. We assume that the 
logarithmic asset price x(T) has an analytic characteristic function ϕ in the 
strip S

z
 = a ≤ I(z) ≤ b and we assume that the payoff function e–cxf(x) is integra-

ble with c ∈S
f
 where S

f
 is the strip on which the payoffs fourier transform, f̂ , 

exists and is analytic. If S
F
 = S

f 
 ∩ S

z
 is not empty, the time t option value C(t) is 

given by: 

 
C(t) = e−r(T−t)

2π

∫ c+∞

c−∞
ϕ(−z) f̂ (z)dz  (11)

with c ∈I(z), z ∈S
F
.

Therefore, the important notion is the function ϕ which is the character-
istic function of the model. This is known in closed form for the Heston model 
and has already been given in Heston (1993). However, the function in the 
original text suffers from instabilities coming from the representation in 
the complex plane. There is a more stable version of the characteristic func-
tion given in Albrecher et al. (2006). The characteristic function is given by: 

 φH(u, t, T) = exp(AH(u, t, T) + Bσ (u, t, T)vt + iuXt) with the functions (12)

 
AH(u, t, T) = κv

ω2

(
(β − D)(T − t) − 2 log

(
1 − G exp(−D(T − t))

1 − G

))
,
 

 
Bσ (u, t, T) = β − D

ω2

(
1 − exp(−D(T − t))

1 − G exp(−D(T − t))

)
,
 

 
G = β − D

β + D
,
 

 β = κ − ρωui, 

 D =
√

β2 − 2αω2, 

 
α = −1

2
u(i + u)

 

and v
t
 denoting the initial variance while X

t 
is the logarithm of the spot. 

3.2 The Hull–White Model
Recall the Hull–White short rate model is given by Equation (5). We follow 
the description in Brigo and Mercurio (2006). Applying Itô’s formula to the 
exponential function we have 

 

d(exp(λt)rt) = λ exp(λt)rtdt + exp(λt)drt

= λ exp(λt)rtdt + exp(λt)λ(θt − rt)dt + exp(λt)ηdWt

= exp(λt)(λθtdt + ηdWt).  

Integrating, we have 

rt = exp(−λ(t − s))rs + λ

∫ t

s
exp(−λ(t − u))θudu + η

∫ t

s
exp(−λ(t − u))dWu.

 (13)

Therefore, the distribution of r
t
 conditioned on F

s
 is given by applying the 

following result: 
Lemma 1 Let f:Ω × [s,t]→R be Itô integrable and deterministic, i.e., independent of 
ω ∈ Ω. Then 

implicitly increases the influence of the randomness. Thus, increasing 
the mean reversion leads to a decrease in the level of the long end of the 
 volatility. 

3 Mathematical Background
In this section we will solve and discuss the Heston and the Hull–White SDE, 
recall the Hull–White decomposition and review relevant formulae for pric-
ing. Then we apply these results to deduce the characteristic function of the 
asset price process. The characteristic function is the main ingredient for 
pricing options in such modeling frameworks. The application and the nec-
essary algorithms are detailed in the next article. 

3.1 The Heston Model
The Heston stochastic volatility model is given by equations (3) and (4) where 
the function r(t) = r is a positive constant. The model has been introduced in 
Heston (1993) and has been the base for further research since, see Andersen 
(2006), Bin (2007), Lord and Kahl (2000), Lord and Kahl (2006), or Muskulus 
(2007), only to mention a few.

The number of research papers on this subject suggest that the model is 
widely applied and there is a strong need for efficient numerical methods.

If we denote d := 4κv̄
ω2 and n := 4κ exp(−κ(T−t))

ω2(1−exp(−κ(T−t)))  for the variance we 
have 

 
Q (vT < x|vt) = Fχ2

(
x · n

exp(−κ (T − t))
, d, n

)
 (7)

with F
χ2

( y, d, n) denoting the non-central χ2 distribution with d degrees of 
freedom and n as the non-centrality parameter. Let T and t be given and T > t 
then from the properties of the non-central χ2 distribution it is known that: 

 E[vT |vt] = v + (vt − v) exp(−κ (T − t))  (8)

 

V[vT|vt] = vtω
2 exp(−κ (T − t))

κ
(1 − exp(−κ (T − t)))

+ vω2

2κ
(1 − exp(−κ (T − t)))2  (9)

Thus, the variance grows with growing ω and decreases with increasing κ. A 
well-known fact is that if V

0
 > 0 and if 2κv– ≥ ω2 - known as the Feller condition - 

the process v
t
 can never reach 0. If the Feller condition is not fulfilled, zero is 

accessible but strongly reflecting. As for a general class of financial models 
the prices for European calls and puts can be computed semi-analytically. A 
formula for the expectation of the call option value at time t denoted by C(t) 
is 

 
C(t) = ±

[
e−d(T−t)S(0)P1(±) − e−r(T−t)KP2(±)

]
 (10)

with 

 
Dj = 1

2
+ 1

π

∫ ∞

0
R

(
ϕj(z)e−izy

iz

)
dz; Pj(±) = 1 − ±1

2
± Dj

 

We assumed that ϕ is the characteristic function of the underlying model 
and that it is analytic and bounded in a strip 0 ≤ I(z) ≤ 1. We consider 

^
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∫ t

s
f (u)dWu ∼ N

(
0,

∫ t

s
f 2(u)du

)
.

 

Thus, r
t
 | F

s
 is normally distributed with parameters

 E[rt | Fs] = exp(−λ(t − s))rs + λ

∫ t

s
exp(−λ(t − u))θudu  and  (14)

 
V[rt | Fs] = η2

2λ
(1 − exp(−2λ(t − s))).  (15)

This observation leads to the following consideration which is known as the 
Hull–White decomposition. 
Lemma 2 Defining ψ

t
 = E[r

t
 | F

0
] as in (14) we have 

 rt = r̃t + ψt  (16)

where r̃
t
 is basic Ornstein Uhlenbeck mean reverting 

 dr̃t = −λr̃tdt + ηdWt, r̃0 = 0.  (17)

From (13) we have r̃t = η
∫ t

0
exp(−λ(t− u))dWu so r̃

t
 has zero mean and vari-

ance as in (15). With some more work we arrive at 

 E

[
exp

(
−

∫ t

s
r̃udu

)]
= exp(C(s, t))  with 

 
C(s, t) = η2

2λ3

(
λ(s − t) − 2(1 − exp(−λ(t − s)) + 1

2
(1 − exp(−2λ(t − s))

)
.

 

Thus the value P(0,T) of a zero coupon bond paying one unit at maturity T is 

 
P(0, T) = E[D(0, T)] = exp

(
−

∫ T

0
ψudu + C(0, T)

)
 

at present. Equivalently 

 
ψT = − ∂

∂T
log P(0, T) + ∂

∂T
C(0, T) = f (0, T) + η2

2λ2
(1 − exp(−λT))2  (18)

with f(t,T) denoting instantaneous forward rates. From (14) we observe that 
q 

t
 determines ψ

t 
via the ODE θt = 1

λ
∂
∂t

ψt +ψt . Substituting (18) in this equa-
tion yields 

 
θt = f (0, t) + 1

λ

∂

∂t
f (0, t) + η2

2λ2
(1 − exp(−2λt)).  (19)

Setting f(0,T) in (19) equal to the market instantaneous forward rates f M(0,T) 
we have adjusted q such that the Hull–White model reproduces exactly the 
market discount curve P M(0,T). The superscript M indicates that the values are 
calculated from a known yield curve. It does only involve interpolation but 
no further modeling. We have modeled the yield curve as a class as follows: 

class InterestCurve

{

 public:

        //input matrix with two columns. Maturity and discount 

 factor.

        InterestCurve(NumericMatrix<double>& DiscountCurve);

        ~InterestCurve();

        double YieldCurve(double t);   //Y(0,t) as 

 BrigoMercurio2006, def 1.3.1

        double ZeroBondCurve(double t);//P(0,t) as 

 BrigoMercurio2006, def 1.3.2

        double InstForward(double t);  //f(0,t) as 

 BrigoMercurio2006, def 1.4.2

 private:

        NumericMatrix<double> itsDiscountCurve;

       //Converts zero bond values to simply-compounded rates

        inline double ZeroBondToYield(double t, double 

 ZeroBond);       

};

The simplicity of the normally distributed Hull–White short rate which 
results in high performance for calibration purposes which is discussed in 
a later article also has a serious drawback. Short rates can become negative 
with positive probability! This is less important in practice since negative 
short rates will typically occur far out of a two-sigma neighborhood of their 
mean. The problem lies rather in the justification of the model in principal. 
A model that predicts that people could demand a reward for possessing 
other’s money might hardly be acceptable but is used in practice so. For com-
pleteness we remark that the probability of negative short rates is given by 

 

Q (rt < 0) = �

(
− ψt√

V[rt | F0]

)

 

with Φ the standard Gaussian distribution function.
In order to compute zero bond values we have to know the distribution 

of the integrated short rate process given by Rt,T =
∫ T

t
r(u)du | Ft. Here 

we use the fact that integrated Gaussian processes are Gaussian again. The 
parameters are 

 
E[Rt,T | Ft] = B(t, T)(rt − ψt) + log

(
PM(0, t)

PM(0, T)

)
+ 1

2
(V(0, T) − V(0, t))  (20)

and 

V[Rt,T | Ft] = η2

λ2

(
T − t + 2

λ
exp(−λ(T − t)) − 1

2λ
exp(−2λ(T − t)) − 3

2λ

)
 (21)

with 

 B(t, T) = 1

λ
(1 − exp(−λ(T − t))) (22)

This leads to the zero bond formula 

 P(t, T) = A(t, T) exp(−B(t, T)rt)  with (23)

 
A(t, T) = PM(0, T)

PM(0, t)
exp

(
B(t, T)f M(0, t) − η2

4λ
(1 − exp(−2λt))B(t, T)2

)
.

 

This formula can be implemented using the model parameters as well as 
the necessary computations using a yield curve. The following code snippet 
illustrates the computation: 

void HullWhite::ZeroBondOption::run()
{
        //computation of price, see BrigoMercurio2006, 
 section 3.3.2
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        double P_T = getZeroBondValue(itsT);
        double P_S = getZeroBondValue(itsBondMaturity);
        double sigma_p = itsEta * sqrt((1.0 - exp(-2.0 * 
 itsLambda * itsT)) / (2.0 * itsLambda)) * 
  factorB(itsT, itsBondMaturity);
        double h = (1.0 / sigma_p) * log (P_S / (P_T * 
 itsK)) + sigma_p / 2.0;
        
        if(itsCorP == 1)
        //equation 3.40
             itsPrice = itsN * (P_S * CumulativeNormal(h) 
  - itsK * P_T * CumulativeNormal
   (h - sigma_p));
        else
        //equation 3.41
              itsPrice = itsN * (itsK * P_T * 
 CumulativeNormal(-h + sigma_p) - P_S * 
  CumulativeNormal(-h));
}

Basic interest rate derivatives such as caplets and floorlets can be expressed 
in terms of zero bond options. Therefore, it is possible to apply Equation (23) 
to price such options.

The following code snippet illustrates the implementation of the caplet/
floorlet pricing. 

void HullWhite::CapletFloorlet::run()

{

        itsCorP = -itsCorF + 1;

        itsT = itsStartT;

        itsBondMaturity = itsEndT;

        itsN = itsCapletFloorletN

            * (1.0 + itsCapletFloorletK * (itsEndT - 

  itsStartT));

        itsK = 1.0 / (1.0 + itsCapletFloorletK * (itsEndT - 

  itsStartT));

        //equivalence of caplets/floorlets and ZBPs/ZBCs, 

  see [BrMe]

    HullWhite::ZeroBondOption::run();

}

4 Heston–Hull–White characteristic function
After reviewing the basic features of the model we proceed by reviewing a 
method for pricing European call and put options. To this end we have to 
compute an expected value 

 
CFt (T, K) = E(D(t, T)(ST − K)+ | Ft).  (24)

The possible application of the Fast Fourier Transform to derive option 
values relies on the availability of a closed formula for the characteristic 
function of the log price process. We discuss an algorithm for applying the 
technique to our particular problem in the second article of this series. The 
assumption that the driving Wiener process in (5) is independent of those 
in (3) and (4) will effect that the characteristic function of the Heston–Hull–

White process is essentially the characteristic function of the pure Heston 
model up to a factor coming from the Hull–White short rate model. For this 
purpose note that for X

t
= logS

t
 we have by Itô’s formula 

 

dXt = 1

St
dSt − 1

2

1

S2
t

(dSt)
2

= rtdt − vt

2
dt + √

vtdWt

= rtdt + dXHt  (25)

Here X
H
 is the log price process of the pure Heston model (3) – (4) with 

r
t
 = 0 = const. Integrating (25) from s to T gives 

 XT = Rs,T + XHT  (26)

with initial conditions set equal, X
s
 = X

Hs
. The additional summand 

Rs,T =
∫ T

s
rtdt  can be interpreted as a correction of the term r(T–s) that the 

pure Heston model would produce assuming a constant short rate r.
Note that since both the short rate process (5) as well as its inte grated 

version are Gaussian processes their characteristic functions are 
given by 

 

φHW (u, t, T) = E[exp(iurT ) | Ft] = exp

(
iuμHW − σ 2

HWu2

2

)
 (27)

with m 
HW

 and σ2
HW

 as in (14) and (15) and 

 
φR(u, t, T) = E[exp(iuRt,T ) | Ft] = exp

(
iuμR − σ 2

R u2

2

)
 (28)

This can be implemented in C++ using the following code: First, we need 
some functionality for computing the mean and the variance. 

double HullWhite::Model::getMean(double r_s, double s, 
double t) const
{
        return r_s * exp(-itsLambda * (t - s)) + alpha(t) - 
 alpha(s) * exp(-itsLambda * (t - s));
}

double HullWhite::Model::getVariance(double s, double t) 
const
{
        return (itsEta * itsEta) / (2.0 * itsLambda) * (1.0 - 
 exp(-2.0 * itsLambda * (t - s)));
}

Then, the characteristic function can be computed using the following piece 
of code: 

complex<double> HullWhite::Model::CharFuncOfIntegral
(complex<double> u, double T) const
{
        return exp(getMeanOfIntegral(itsRInst, 0.0, T) * u 
  * IU
        - 0.5 * getVarianceOfIntegral(0.0, T) * u * u);
}

^
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complex<double> Heston::Model::CharFunc(complex<double> 
u, double S, double T) const
{
        complex<double> U1;
        U1 = u * (u + IU);

        double gamma = 0.5 * itsOmega * itsOmega;

        complex<double> alpha = -0.5 * U1;
        complex<double> beta = itsKappa - itsRho * itsOmega 
 * u * IU;

        complex<double> D = sqrt(beta * beta - 4.0 * alpha 
 * gamma);
        complex<double> G = (beta - D) / (beta + D);
        complex<double> B = ((beta - D) / (itsOmega * 
 itsOmega)) * ((1.0 - exp(- D * T))
            / (1.0 - G * exp(- D * T)));
        complex<double> psi = (G * exp(- D * T) - 1.0) /
 (G - 1.0);
        complex<double> A = ((itsKappa * itsVLong) / 
 (itsOmega * itsOmega))
            * ((beta - D) * T - 2.0 * log(psi));

      //For the HHW model itsR will be set zero
        return exp(A + B * itsVInst + IU * u * (itsR * T + 
 log(S)));
}

with m
R
 and f 2

R
 as in (20) and (21). Since the derivation of the Heston characteris-

tic function is detailed in Heston (1993) and observing that R
t,T

 and X
HT

 we have:
Theorem 3  The Heston–Hull–White characteristic function f 

HHW
(u,t,T)=E[exp(iu

X
T
):|:Ft] is given by 

 φHHW (u, t, T) = φR(u, t, T)φH(u, t, T)  

where f
H
 is the Heston characteristic function with zero short rate, Equation (12 ). 

For some indices it is possible to get quotes of forward starting call and 
put options. Such options can be priced prevailing the forward characteris-
tic function is known. A general mechanism for using the forward charac-
teristic function is given in Beyer  and Kienitz (2009). For the Heston–Hull–
White model we have:
Theorem 4  The Heston–Hull–White forward characteristic function 

 φF
HHW (u, t, T, S) = E[exp(iu(XS − XT )) | Ft]  for t < T < S 

is given by 

 
φF

HHW (u, t, T, S) = φF
R(u, t, T, S) φF

H(u, t, T, S)
 

with 

φF
R(u, t, T, S) = E[exp(iu(Rt,S − Rt,T )) | Ft]

= exp

(
iu

(
− B(T, S)ψT + log

(
PM(0, T)

PM(0, S)

)
+ 1

2
(V(0, S) − V(0, T))

)

− V(T, S)u2

2

)
· φHW (B(T, S)u, t, T)

 

(see (18), (22), (21), (27)) and with the forward characteristic function of the 
pure Heston model with zero short rate 

 

φF
H(u, t, T, S) = E[exp(iu(XHS − XHT )) | Ft]

= exp

[
AH(u, T, S) +

(
exp(−κ (T − t))Bσ (u, T, S)

1 − 2γ Bσ (u, T, S)

)
vt + iuXt

]

×
(

1

1 − 2γ Bσ (u, T, S)

) 2κv
ω2

 

with A
H
, Bs  

, v
t
 and X

t
 as in theorem 3 and γ = ω2

4κ
(1 − exp(−κ (T − t))). 

This can be shown as follows: As in (26) we decompose X
T
 = R

t,T
+ H

HT
 and 

X
S 
= R

t,S
+X

HS
 to see that 

 

exp(iu(XS − XT )) = exp(iu((XHS − XHT ) + (Rt,S − Rt,T )))

= exp(iuRT,S) exp(iu(XHS − XHT ))
 

which by independence gives the factorization into the forward character-
istic functions of the integrated short rate process and of the Heston process 
with drift 0.

Now the function f F
R
 can be computed as follows. 

 

φF
R(u, t, T, S) = E[exp(iuRT,S) | Ft] = E[E[exp(iuRT,S) | FT ] | Ft]

(28)= exp

(
iu

(
− B(T, S)ψT + log

(
PM(0, T)

PM(0, S)

)

+ 1

2
(V(0, S) − V(0, T))

)
− V(T, S)u2

2

)
E[exp(iuB(T, S)rT ) | Ft]

 

and (27) gives the result.
For the derivation of the Heston forward characteristic function f F

H
 we 

refer to appendix C, lemma C.2.1 of Bin (2007). Note that the formulas for 
A

H
 and Bs given there are slightly mistaken. On the right hand side the time 

variable should read τ instead of T.

complex<double> HestonHullWhite::EuropeanOp::

CharFunc(complex<double> u) const

{

        return HullWhite::Model::CharFuncOfIntegral(u + IU, 

  itsT) * Heston::Model::CharFunc(u, itsS / 

   itsScale, itsT);

}
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