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In this paper we survey a wide selection of the interpolation algorithms that are in use in financial markets for con-

struction of curves such as forward curves, basis curves, and most importantly, yield curves. In the case of yield curves

we also review the issue of bootstrapping and discuss how the interpolation algorithm should be intimately connected

to the bootstrap itself.

As we will see, many methods commonly in use suffer from problems: they posit unreasonable expections, or are not

even necessarily arbitrage free. Moreover, many methods result in material variation in large sections of the curve when

only one input is perturbed (the method is not local). In Hagan and West [2006] we introduced two new interpolation

methods - the monotone convex method and the minimal method. In this paper we will review the monotone convex

method and highlight why this method has a very high pedigree in terms of the construction quality criteria that one

should be interested in.

1. Basic yield curve mathematics

Much of what is said here is a reprise of the excellent introduction in [Rebonato, 1998, §1.2].

The term structure of interest rates is defined as the relationship between the yield-to-maturity on a zero coupon bond

and the bond’s maturity. If we are going to price derivatives which have been modelled in continuous-time off of the

curve, it makes sense to commit ourselves to using continuously-compounded rates from the outset.

Now is denoted time 0. The price of an instrument which pays 1 unit of currency at time t - such an instrument is

called a discount or zero coupon bond - is denoted Z(0, t). The inverse of this amount could be denoted C(0, t) and

called the capitalisation factor: it is the redemption amount earned at time t from an investment at time 0 of 1 unit

of currency in said zero coupon bonds. The first and most obvious fact is that Z(0, t) is decreasing in t (equivalently,

C(0, t) is increasing). Suppose Z(0, t1) < Z(0, t2) for some t1 < t2. Then the arbitrageur will buy a zero coupon bond

for time t1, and sell one for time t2, for an immediate income of Z(0, t2)− Z(0, t1) > 0. At time t1 they will receive 1

unit of currency from the bond they have bought, which they could keep under their bed for all we care until time t2,

when they deliver 1 in the bond they have sold.

What we have said so far assumes that such bonds do trade, with sufficient liquidity, and as a continuum i.e. a zero

coupon bond exists for every redemption date t. In fact, such bonds rarely trade in the market. Rather what we need

to do is impute such a continuum via a process known as bootstrapping.
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Figure 1. The arbitrage argument that shows that Z(0, t) must be decreasing
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It is more common for the market practitioner to think and work in terms of continuously compounded rates. The time

0 continuously compounded risk free rate for maturity t, denoted r(t), is given by the relationship

C(0, t) = exp(r(t)t)(1)

Z(0, t) = exp(−r(t)t)(2)

r(t) = −1

t
ln Z(0, t)(3)

In so-called normal markets, yield curves are upwardly sloping, with longer term interest rates being higher than short

term. A yield curve which is downward sloping is called inverted. A yield curve with one or more turning points is

called mixed. It is often stated that such mixed yield curves are signs of market illiquidity or instability. This is not

the case. Supply and demand for the instruments that are used to bootstrap the curve may simply imply such shapes.

One can, in a stable market with reasonable liquidity, observe a consistent mixed shape over long periods of time.

The shape of the graph for Z(0, t) does not reflect the shape of the yield curve in any obvious way. As already

mentioned, the discount factor curve must be monotonically decreasing whether the yield curve is normal, mixed

or inverted. Nevertheless, many bootstrapping and interpolation algorithms for constructing yield curves miss this

absolutely fundamental point.

Interestingly, there will be at least one class of yield curve where the above argument for a decreasing Z function does

not hold true - a real (inflation linked) curve. Because the actual size of the cash payments that will occur are unknown

(as they are determined by the evolution of a price index, which is unknown) the arbitrage argument presented above

does not hold. Thus, for a real curve the Z function is not necessarily decreasing (and empirically this phenomenon

does on occasion occur).

1.1. Forward rates. If we can borrow at a known rate at time 0 to date t1, and we can borrow from t1 to t2 at a rate

known and fixed at 0, then effectively we can borrow at a known rate at 0 until t2. Clearly

Z(0, t1)Z(0; t1, t2) = Z(0, t2)(4)

is the no arbitrage equation: Z(0; t1, t2) is the forward discount factor for the period from t1 to t2 - it has to be this

value at time 0 with the information available at that time, to ensure no arbitrage.

The forward rate governing the period from t1 to t2, denoted f(0; t1, t2) satisfies

exp(−f(0; t1, t2)(t2 − t1)) = Z(0; t1, t2)

Immediately, we see that forward rates are positive (and this is equivalent to the discount function decreasing). We

have either of

f(0; t1, t2) = − ln(Z(0, t2))− ln(Z(0, t1))

t2 − t1
(5)

=
r2t2 − r1t1

t2 − t1
(6)

Let the instantaneous forward rate for a tenor of t be denoted f(t), that is, f(t) = limε↓0 f(0; t, t + ε), for whichever t

this limit exists. Clearly then

f(t) = − d

dt
ln(Z(t))(7)

=
d

dt
r(t)t(8)

So f(t) = r(t) + r′(t)t, so the forward rates will lie above the yield curve when the yield curve is normal, and below the

yield curve when it is inverted. By integrating,1

r(t)t =

∫ t

0

f(s) ds(9)

Z(t) = exp

(
−

∫ t

0

f(s) ds

)
(10)

1We have r(s)s + C =
∫

f(s) ds, so r(t)t = [r(s)s]t0 =
∫ t
0 f(s) ds.
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Also

riti − ri−1ti−1

ti − ti−1
=

1

ti − ti−1

∫ ti

ti−1

f(s) ds(11)

which shows that the average of the instantaneous forward rate over any of our intervals [ti−1, ti] is equal to the discrete

forward rate for that interval. Finally,

r(t)t = ri−1ti−1 +

∫ t

ti−1

f(s) ds, t ∈ [ti−1, ti](12)

which is a crucial interpolation formula: given the forward function we easily find the risk free function.

2. Interpolation and bootstrap of yield curves - not two separate processes

As has been mentioned, many interpolation methods for curve construction are available. What needs to be stressed

is that in the case of bootstrapping yield curves, the interpolation method is intimately connected to the bootstrap, as

the bootstrap proceeds with incomplete information. This information is ‘completed’ (in a non unique way) using the

interpolation scheme.

In Hagan and West [2006] we illustrated this point using swap curves; here we will make the same points focusing on

a bond curve. Suppose we have a reasonably small set of bonds that we want to use to bootstrap the yield curve. (To

decide which bonds to include can be a non-trivial exercise. Excluding too many runs the risk of disposing of market

information which is actually meaningful, on the other hand, including too many could result in a yield curve which is

implausible, with a multitude of turning points, or even a bootstrap algorithm which fails to converge.) Recall that we

insist that whatever instruments are included will be priced perfectly by the curve.

Typically some rates at the short end of the curve will be known. For example, some zero-coupon bonds might trade

which give us exact rates. In some markets, where there is insufficient liquidity at the short end, some inter-bank money

market rates will be used.

Each bond and the curve must satisfy the following relationship:

[A] =

n∑
i=0

piZ(0; tsettle, ti)

where

• A is the all-in (dirty) price of the bond;

• tsettle is the date on which the cash is actually delivered for a purchased bond;

• p0, p1, . . . , pn are the cash flows associated with a unit bond (typically p0 = e c
2
, pi = c

2
for 1 ≤ i < n and

pn = 1 + c
2

where c is the annual coupon and e is the cum-ex switch);

• t0, t1, . . . , tn are the dates on which those cash flows occur.

On the left is the price of the bond trading in the market. On the right is the price of the bond as stripped from the

yield curve. We rewrite this in the computationally more convenient form

(13) [A]Z(0, tsettle) =

n∑
i=0

piZ(0, ti)

Suppose for the moment that the risk free rates (and hence the discount factors) have been determined at t0, t1, . . . , tn−1.

Then we solve Z(0, tn) easily as

Z(0, tn) =
1

pn

[
[A]Z(0, tsettle)−

n−1∑
i=0

piZ(0, ti)

]

which is written in the form of risk-free rates rather than discount factors as

rn =
1

tn

[
ln pn − ln

[
[A]e−rsettletsettle −

n−1∑
i=0

pie
−riti

]]
(14)

where the ti’s are now denominated in years and the relevant day-count convention is being adhered to.

Of course, in general, we do not know the earlier rates, neither exactly (because it is unlikely that any money market

instruments expire exactly at ti) nor even after some interpolation (the rates for the smallest few ti might be available



4 PATRICK S. HAGAN AND GRAEME WEST

after interpolation, but the later ones not at all). However, as in the case of swap curves, (14) suggests an iterative

solution algorithm: we guess rn, indeed other expiry-date rates for other bonds, and take the rates already known

from e.g. the money market, and insert these rates into our interpolation algorithm. We then determine rsettle and

r0, r1, . . . , rn−1. Next, we insert these rates into the right-hand side of (14) and solve for rn. We then take this new

guess for this bond, and for all the other bonds, and again apply the interpolation algorithm. We iterate this process.

Even for fairly wild curves (such as can often be the case in South Africa) this iteration will reach a fixed point with

accuracy of about 8 decimal places in 4 or 5 iterations. This then is our yield curve.

3. How to compare yield curve interpolation methodologies

In general, the interpolation problem is as follows: we have some data x as a function of time, so we have τ1, τ2, . . . , τn

and x1, x2, . . . , xn known. An interpolation method is one that constructs a continuous function x(t) satisfying

x(τi) = xi for i = 1, 2, . . . , n. In our setting, the x values might be risk free rates, forward rates, or some transformation

of these - the log of rates, etc. Of course, many choices of interpolation function are possible - according to the nature of

the problem, one imposes requirements additional to continuity, such as differentiability, twice differentiability, conditions

at the boundary, and so on.

The Lagrange polynomial is a polynomial of degree n−1 which passes through all the points, and of course this function

is smooth. However, it is well known that this function is inadequate as an interpolator, as it demonstrates remarkable

oscillatory behaviour.

The typical approach is to require that in each interval the function is described by some low dimensional polynomial, so

the requirements of continuity and differentiability reduce to linear equations in the coefficients, which are solved using

standard linear algebraic techniques. The simplest example are where the polynomials are linear, and these methods

are surveyed in §4. However, these functions clearly will not be differentiable. Next, we try quadratics - however here

we have a remarkable ‘zig-zag’ instability which we will discuss. So we move on to cubics - or even quartics - they

overcome these already-mentioned difficulties, and we will see these in §5.

All of the interpolation methods considered in Hagan and West [2006] appear in the rows of Table 1.

We will restrict attention to the case where the number of inputs is reasonably small and so the bootstrapping algorithm

is able to price the instruments exactly, and we restrict attention to those methods where the instruments are indeed

always priced exactly.

The criteria to use in judging a curve construction and its interpolation method that we will consider are:

(a) In the case of yield curves, how good do the forward rates look? These are usually taken to be the 1m or 3m forward

rates, but these are virtually the same as the instantaneous rates. We will want to have positivity and continuity

of the forwards.

It is required that forwards be positive to avoid arbitrage, while continuity is required as the pricing of interest

sensitive instruments is sensitive to the stability of forward rates. As pointed out in McCulloch and Kochin [2000],

‘a discontinuous forward curve implies either implausible expectations about future short-term interest rates, or

implausible expectations about holding period returns’. Thus, such an interpolation method should probably be

avoided, especially when pricing derivatives whose value is dependent upon such forward values.

Smoothness of the forwards is desirable, but this should not be achieved at the expense of the other criteria

mentioned here.

(b) How local is the interpolation method? If an input is changed, does the interpolation function only change nearby,

with no or minor spill-over elsewhere, or can the changes elsewhere be material?

(c) Are the forwards not only continuous, but also stable? We can quantify the degree of stability by looking for the

maximum basis point change in the forward curve given some basis point change (up or down) in one of the inputs.

Many of the simpler methods can have this quantity determined exactly, for others we can only derive estimates.

(d) How local are hedges? Suppose we deal an interest rate derivative of a particular tenor. We assign a set of admissible

hedging instruments, for example, in the case of a swap curve, we might (even should) decree that the admissible

hedging instruments are exactly those instruments that were used to bootstrap the yield curve. Does most of the

delta risk get assigned to the hedging instruments that have maturities close to the given tenors, or does a material

amount leak into other regions of the curve?

We will now survey a handful of these methods, and highlight the issues that arise.
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4. Linear methods

4.1. Linear on rates. For ti−1 < t < ti the interpolation formula is

r(t) =
t− ti−1

ti − ti−1
ri +

ti − t

ti − ti−1
ri−1(15)

Using (8) we get

(16) f(t) =
2t− ti−1

ti − ti−1
ri +

ti − 2t

ti − ti−1
ri−1

Of course f is undefined at the ti, as the function r(t)t is clearly not differentiable there. Moreover, in the actual

rate interpolation formula, by the time t reaches ti, the import of rt−1 has been reduced to zero - that rate has ‘been

forgotten’. But we clearly see that this is not the case for the forward, so the left and right limits f(t+i ) and f(t−i ) are

different - the forward jumps. Furthermore, the choice of interpolation does not prevent negative forward rates: suppose

we have the (t, r) points (1y, 8%) and (2y, 5%). Of course, this is a rather contrived economy: the one year interest rate

is 8% and the one year forward rate in one year’s time is 2%. Nevertheless, it is an arbitrage free economy. But using

linear interpolation the instantaneous forwards are negative from about 1.84 years onwards.

4.2. Linear on the log of rates. Now for ti−1 ≤ t ≤ ti the interpolation formula is

ln(r(t)) =
t− ti−1

ti − ti−1
ln(ri) +

ti − t

ti − ti−1
ln(ri−1)

which as a rate formula is

r(t) = r

t−ti−1
ti−ti−1
i r

ti−t
ti−ti−1
i−1(17)

A simple objection to the above formula is that it does not allow negative interest rates. Also, the same argument as

before shows that the forward jumps at each node, and similar experimentation will provide an example of a Z function

which is not decreasing.

4.3. Linear on discount factors. Now for ti−1 ≤ t ≤ ti the interpolation formula is

Z(t) =
t− ti−1

ti − ti−1
Zi +

ti − t

ti − ti−1
Zi−1

which as a rate formula is

r(t) =
−1

t
ln

[
t− ti−1

ti − ti−1
e−riti +

ti − t

ti − ti−1
r−ri−1ti−1

]
(18)

Again, the forward jumps at each node, and the Z function may not be decreasing.

4.4. Raw interpolation (linear on the log of discount factors). This method corresponds to piecewise constant

forward curves. This method is very stable, is trivial to implement, and is usually the starting point for developing

models of the yield curve. One can often find mistakes in fancier methods by comparing the raw method with the more

sophisticated method.

By definition, raw interpolation is the method which has constant instantaneous forward rates on every interval ti−1 <

t < ti. From (11) we see that that constant must be the discrete forward rate for the interval, so f(t) =
riti−ri−1ti−1

ti−ti−1

for ti−1 < t < ti. Then from (12) we have that

r(t)t = ri−1ti−1 + (t− ti−1)
riti − ri−1ti−1

ti − ti−1

By writing the above expression with a common denominator of ti− ti−1, and simplifying, we get that the interpolation

formula on that interval is

r(t)t =
t− ti−1

ti − ti−1
riti +

ti − t

ti − ti−1
ri−1ti−1(19)

which explains yet another choice of name for this method: ‘linear rt’; the method is linear interpolation on the points

riti. Since ±riti is the logarithm of the capitalisation/discount factors, we see that calling this method ‘linear on the

log of capitalisation factors’ or ‘linear on the log of discount factors’ is also merited.

This raw method is very attractive because with no effort whatsoever we have guaranteed that all instantaneous forwards

are positive, because every instantaneous forward is equal to the discrete forward for the ‘parent’ interval. As we have
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seen, this is an achievement not to be sneezed at. It is only at the points t1, t2, . . . , tn that the instantaneous forward

is undefined, moreover, the function jumps at that point.

4.5. Piecewise linear forward. Having decided that the raw method is quite attractive, what happens if we try to

remedy its only defect in the most obvious way? What we will do is that instead of the forwards being piecewise

constant we will demand that they be a piecewise continuous linear function. What could be more natural than to

simply ask to gently rotate the raw interpolants so that they are now not only piecewise linear, but continuous as well?

Unfortunately, this very plausible requirement gives rise to at least two types of very unpleasant behaviour indeed. This

is easily understood by means of an example.

Firstly, suppose we have a curve with input zero coupon rates at every year node, with a value of r(t) = 5% for

t = 1, 2, . . . , 5 and r(t) = 6% for t = 6, 7, . . . , 10. We must have f(t) = r(1) for t ≤ 1. In order to assure continuity,

we see then we must have f(t) = r(i) for every i ≤ 5. Now, the discrete forward rate for [5,6] is 11%. In order for the

average of the piecewise linear function f on the interval [5,6] to be 11% we must have that f(6) = 17%. And now in

turn, the discrete forward rate for [6,7] is 6% and so in order for the average of the piecewise linear function f on the

interval [6,7] to be 6% we must have that f(7) = −5%. This zig-zag feature continues recursively; see Figure 2. Note

also the implausible shape of the actual yield curve itself.

Secondly, suppose now we include a new node, namely that r(6.5) = 6%. It is fairly intuitive that this imparts little

new information2. Nevertheless, the bootstrapped curve changes dramatically. The ‘parity of the zig-zag’ is reversed.

So we see that the localness of the method is exceptionally poor.
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Figure 2. The piecewise linear forward method.

5. Splines

The various linear methods are the simplest examples of polynomial splines: a polynomial spline is a function which

is piecewise in each interval a polynomial, with the coefficients arranged to ensure at least that the spline coincides

with the input data (and so is continuous). In the linear case that is all that one can do - the linear coefficients are

now determined. If the polynomials are of higher degree, we can use up the degrees of freedom by demanding other

properties, such as differentiability, twice differentiability, asymptotes at either end, etc.

The first thing we try is a quadratic spline.

2It would be wrong to say that there is no new information; that would be the case under linear interpolation of rates, but not

necessarily here.
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5.1. Quadratic splines. To complete a quadratic spline of a function x, we desire coefficients (ai, bi, ci) for 1 ≤ i ≤ n−1.

Given these coefficients, the function value at any term τ will be

(20) x(τ) = ai + bi(τ − τi) + ci(τ − τi)
2 τi ≤ τ ≤ τi+1

The constraints will be that the interpolating function indeed meets the given data (and hence is continuous) and the

entire function is differentiable. There are thus 3n − 4 constraints: n − 1 left hand function values to be satisfied,

n − 1 right hand function values to be satisfied, and n − 2 internal knots where differentiability needs to be satisfied.

However, there are 3n−3 unknowns. With one degree of freedom remaining, it makes sense to require that the left-hand

derivative at τn be zero, so that the curve can be extrapolated with a horizontal asymptote.

Suppose we apply this method to the rates (so xi = ri). The forward curves that are produced are very similar to

the piecewise linear forward curves - the curve can have a ‘zig-zag’ appearance, and this zig-zag is subject to the same

parity of input considerations as before.

So, next we try a cubic spline.

5.2. Cubic splines. This time we desire coefficients (ai, bi, ci, di) for 1 ≤ i ≤ n − 1. Given these coefficients, the

function value at any term τ will be

(21) x(τ) = ai + bi(τ − τi) + ci(τ − τi)
2 + di(τ − τi)

3 τi ≤ τ ≤ τi+1

As before we have 3n − 4 constraints, but this time there are 4n − 4 unknown coefficients. There are several possible

ways to proceed to find another n constraints. Here are the ones that we have seen:

• xi = ri. The function is required to be twice differentiable, which for the same reason as previously adds

another n − 2 constraints. For the final two constraints, the function is required to be linear at the extremes

i.e. the second derivative of the interpolator at τ1 and at τn are zero. This is the so-called natural cubic spline.

• xi = ri. The function is again required to be twice differentiable; for the final two constraints we have that

the function is linear on the left and horizontal on the right. This is the so-called financial cubic spline Adams

[2001].

• xi = riτi. The function is again required to be twice differentiable; for the final two constraints we have that

this function is linear on the right and quadratic on the left. This is the quadratic-natural spline proposed in

McCulloch and Kochin [2000].

• xi = ri. The values of bi for 1 < i < n are chosen to be the slope at τi of the quadratic that passes through

(τj , rj) for j = i − 1, i, i + 1. The value of b1 is chosen to be the slope at τ1 of the quadratic that passes

through (τj , rj) for j = 1, 2, 3; the value of bn is chosen likewise. This is the Bessel method [de Boor, 1978,

2001, Chapter IV], although often somewhat irregularly called the Hermite method by software vendors.

• xi = riτi. Again, Bessel interpolation.

• Going one step further, quartic splines. According to Adams [2001] the quartic spline gives the smoothest

interpolator of the forward curve. The spline can proceed on instantaneous forward rates, this time there are

5n − 5 unknowns and 3 additional conditions at τ1 or τn required. Although one must ask: when does one

actually have a set of instantaneous forwards as inputs for interpolation? Alternatively if we apply (9) then the

inputs are risk free rates, and the spline is of the form r(τ) = ai
τ

+ bi + ciτ + diτ
2 + eiτ

3 + giτ
4, with 6n − 6

unknowns and 4 additional conditions required.

• xi = ri. The monotone preserving cubic spline of Hyman [1983]. The method specifies the values of bi for

1 ≤ i ≤ n, in a way to be discussed in more detail shortly.

Significant problems can become apparent when using some of these methods. The spline is supposed to alleviate the

problem of oscillation seen when fitting a single polynomial to a data set (the Lagrange polynomial), nevertheless,

significant oscillatory behaviour can still be present. Furthermore, the various types of clamping we see with some

of the methods above (clamping refers to imposing conditions at the boundaries τ1 or τn) can compromise localness

of the interpolator, sometimes grossly. In fact, the iterative procedure from §2 often fails to converge for the quartic

interpolation methods, and we exclude them from further analysis.

The method of Hyman is a method which attempts to address these problems. This method is quite different to the

others; it is a local method - the interpolatory values are only determined by local behaviour, not global behaviour.

This method ensures that in regions of monotonicity of the inputs (so, three successive increasing or decreasing values)
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the interpolating function preserves this property; similarly if the data has a minimum/maximum then the output

interpolator will have a minimum/maximum at the node.

6. Monotone convex

Many of the ideas of the method of Hyman will now have a natural development - the monotone convex method was

developed to resolve the only remaining deficiency of Hyman [1983]. Very simply, none of the methods mentioned so far

are aware that they are trying to solve a financial problem - indeed, the breeding ground for these methods is typically

engineering or physics. As such, there is no mechanism which ensures that the forward rates generated by the method

are positive, and some simple experimentation will uncover a set of inputs to a yield curve which give some negative

forward rates under all of the methods mentioned here, as seen in Hagan and West [2006]. Thus, in introducing the

monotone convex method, we use the ideas of Hyman [1983], but explicitly ensure that the continuous forward rates

are positive (whenever the discrete forward rates are themselves positive).

The point of view taken in the monotone convex method is that the inputs are (or can be manipulated to be) discrete

forwards belonging to intervals; the interpolation is not performed on the interest rate curve itself. We may have actual

discrete forwards - FRA rates. On the other hand if we have interest rates r1, r2, . . . , rn for periods τ1, τ2, . . . , τn

then the first thing we do is calculate fd
i =

riτi−ri−1τi−1
τi−τi−1

for 1 ≤ i ≤ n, r0 = 0. (Here we also check that these are all

positive, and so conclude that the curve is legal i.e. arbitrage free (except in those few cases where forward rates may

be negative). As an interpolation algorithm the monotone convex method will now bootstrap a forward curve, and then

if required recover the continuum of risk free rates using (12).

One rather simple observation is that all of the spline methods we saw in §5 fail in forward extrapolation beyond the

interval [τ1, τn]. Clearly if the interpolation is on rates then we will apply horizonal extrapolation to the rate outside

of that interval: r(τ) = r1 for τ < τ1 and r(τ) = rn for τ > τn. So far so good. What happens to the forward rates?

Perhaps surprisingly we cannot apply the same extrapolation rule to the forwards, in fact, we need to set f(τ) = r1 for

τ < τ1 and f(τ) = rn for τ > τn - consider (8). This makes it almost certain that the forward curve has a material

discontinuity at τ1, and probably one at τn too (the latter will be less severe as the curve, either by design or by nature,

probably has a horizontal asymptote as τ ↑ τn).

In order to avoid this pathology, we now have terms 0 = τ0, τ1, . . . , τn and the generic interval for consideration is

[τi−1, τi]. A ‘short rate’ (instantaneous) rate may be provided, if not, the algorithm will model one. Usually the shortest

rate that might be input will be an overnight rate, if it is provided, the algorithm here simply has some ‘overkill’ - there

will be an overnight rate and an instantaneous short rate - but it need not be modified.

fd
i is the discrete rate which ‘belongs’ to the entire interval [τi−1, τi]; it would be a mistake to model that rate as being

the instantaneous rate at τi. Rather, we begin by assigning it to the midpoint of the interval, and then modelling the

instantaneous rate at τi as being on the straight line that joins the adjacent midpoints. Let this rate f(τi) be denoted

fi. This explains (22). In (23) and (23) the values f0 = f(0) and fn = f(τn) are selected so that f ′(0) = 0 = f ′(τn).

Thus

fi =
τi − τi−1

τi+1 − τi−1
fd

i+1 +
τi+1 − τi

τi+1 − τi−1
fd

i , for i = 1, 2, . . . , n− 1(22)

f0 = fd
1 − 1

2
(f1 − fd

1 )(23)

fn = fd
n − 1

2
(fn−1 − fd

n)(24)

Note that if the discrete forward rates are positive then so are the fi for i = 1, 2, . . . , n− 1.

We now seek an interpolatory function f defined on [0, τn] for f0, f1, . . . , fn that satisfies the conditions below (in

some sense, they are arranged in decreasing order of necessity).

(i)
1

τi − τi−1

∫ τi

τi−1

f(t)dt = fd
i , so the discrete forward is recovered by the curve, as in (11).

(ii) f is positive.

(iii) f is continuous.

(iv) If fd
i−1 < fd

i < fd
i+1 then f(τ) is increasing on [τi−1, τi], and if fd

i−1 > fd
i > fd

i+1 then f(τ) is decreasing on

[τi−1, τi].
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Let us first normalise things, so we seek a function g defined on [0, 1] such that3

g(x) = f(τi−1 + (τi − τi−1)x)− fd
i .(25)

Before proceeding, let us give a sketch of how we will proceed. We will choose g to be piecewise quadratic in such a way

that (i) is satisfied by construction. Of course, g is continuous, so (iii) is satisfied. As a quadratic, it is easy to perform

an analysis of where the minimum or maximum occurs, and we thereby are able to apply some modifications to g to

ensure that (iv) is satisfied, while ensuring (i) and (iii) are still satisfied.

Also, we see a posteriori that if the values of fi had satisfied certain constraints, then (ii) would have been satisfied. So,

the algorithm will be to construct (22), (23) and (24), then modify the fi to satisfy those constraints, then construct

the quadratics, and then modify those quadratics. Finally,

f(τ) = g

(
τ − τi−1

τi − τi−1

)
+ fd

i .(26)

Thus, the current choices of fi are provisional; we might make some adjustments in order to guarantee the positivity of

the interpolating function f .

Here follow the details. We have only three pieces of information about g: g(0) = fi−1 − fd
i , g(1) = fi − fd

i , and∫ 1

0
g(x) dx = 0. We postulate a functional form g(x) = K + Lx + Mx2, having 3 equations in 3 unknowns we get


1 0 0

1 1 1

1 1
2

1
3







K

L

M


 =




g(0)

g(1)

0


, and easily solve to find that

g(x) = g(0)[1− 4x + 3x2] + g(1)[−2x + 3x2](27)

0
x = 0
τ = τi−1

x = 1
τ = τi

g(0)

g(1)

Figure 3. The function g

Note that by (22) that (iv) is equivalent to requiring that if fi−1 < fd
i < fi then f(τ) is increasing on [τi−1, τi], while if

fi−1 > fd
i > fi then f(τ) is decreasing on [τi−1, τi]. This is equivalent to requiring that if g(0) and g(1) are of opposite

sign then g is monotone.

Now

g′(x) = g(0)(−4 + 6x) + g(1)(−2 + 6x)

g′(0) = −4g(0)− 2g(1)

g′(1) = 2g(0) + 4g(1)

g being a quadratic it is now easy to determine, simply by inspecting g′(0) and g′(1), the behaviour of g on [0, 1]. The

cases where g′(0) = 0 and g′(1) = 0 are crucial; these correspond to g(1) = −2g(0) and g(0) = −2g(1) respectively.

These two lines divide the g(0)/g(1) plane into eight sectors. We seek to modify the definition of g on each sector,

taking care that on the boundary of any two sectors, the formulae from those two sectors actually coincide (to preserve

continuity). In actual fact the treatment for every diametrically opposite pair of sectors is the same, so we really have

four cases to consider, as follows (refer Figure 4):

3Strictly speaking, we are defining functions gi, each corresponding to the interval [τi−1, τi]. As the gi are constructed one at a time,

we suppress the subscript.
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A
A
A
A
A
A
A
AU

A
A

A
A

A
A

A
AK

HHHHHHHHHHHHHHHj

HHHHHHHHY

g(0)

g(1)

g(1) = −2g(0)

g(0) = −2g(1)
(i)

(ii)

(iv)

(iii)

(ii)

(iv)

(iii)

(i)

C
A B

D

Figure 4. The reformulated possibilities for g

(i) In these sectors g(0) and g(1) are of opposite signs and g′(0) and g′(1) are of the same sign, so g is monotone, and

does not need to be modified.

(ii) In these sectors g(0) and g(1) are also of opposite sign, but g′(0) and g′(1) are of opposite sign, so g is currently

not monotone, but needs to be adjusted to be so. Furthermore, the formula for (i) and for (ii) need to agree on

the boundary A to ensure continuity.

(iii) The situation here is the same as in the previous case. Now the formula for (i) and for (iii) need to agree on the

boundary B to ensure continuity.

(iv) In these sectors g(0) and g(1) are of the same sign so at first it appears that g does not need to be modified.

Unfortunately this is not the case: modification will be needed to ensure that the formula for (ii) and (iv) agree

on C and (iii) and (iv) agree on D.

The origin is a special case: if g′(0) = 0 = g′(1) then g(x) = 0 for all x, and fd
i−1 = fd

i = fd
i+1, and we put f(τ) = fd

i

for τ ∈ [τi−1, τi].

So we proceed as follows:

(i) As already mentioned g does not need to be modified. Note that on A we have g(x) = g(0)(1− 3x2) and on B we

have g(x) = g(0)(1− 3x + 3
2
x2).

(ii) A simple solution is to insert a flat segment, which changes to a quadratic at exactly the right moment to ensure

that
∫ 1

0
g(x) dx = 0. So we take

g(x) =





g(0) for 0 ≤ x ≤ η

g(0) + (g(1)− g(0))

(
x− η

1− η

)2

for η < x ≤ 1
(28)

η = 1 + 3
g(0)

g(1)− g(0)
=

g(1) + 2g(0)

g(1)− g(0)
(29)

Note that η −→ 0 as g(1) −→ −2g(0), so the interpolation formula reduces to g(x) = g(0)(1 − 3x2) at A, as

required.

(iii) Here again we insert a flat segment. So we take

g(x) =





g(1) + (g(0)− g(1))

(
η − x

η

)2

for 0 < x < η

g(1) for η ≤ x < 1

(30)

η = 3
g(1)

g(1)− g(0)
(31)
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Note that η −→ 1 as g(1) −→ − 1
2
g(0), so the interpolation formula reduces to g(x) = g(0)(1− 3x + 3

2
x2) at B, as

required.

(iv) We want a formula that reduces in form to that defined in (ii) as we approach C, and to that defined in (iii) as we

approach D. This suggests

g(x) =





A + (g(0)−A)

(
η − x

η

)2

for 0 < x < η

A + (g(1)−A)

(
x− η

1− η

)2

for η < x < 1

(32)

where A = 0 when g(1) = 0 - so the first line satisfies (iii)) and A = 0 when g(0) = 0 (so the second line satisfies

(ii). Straightforward calculus gives

∫ 1

0

g(x) dx =
2

3
A +

η

3
g(0) +

1− η

3
g(1)

and so

A = − 1
2

[ηg(0) + (1− η) g(1)]

A simple choice satisfying the various requirements is

η =
g(1)

g(1) + g(0)
(33)

A = − g(0)g(1)

g(0) + g(1)
(34)

6.1. Ensuring positivity. Suppose we wish to guarantee that the interpolatory function f is everywhere positive.

Clearly from the formula (26) it suffices to ensure that g(x) > −fd
i for x ∈ [0, 1]. Now g(0) = fi−1 − fd

i > −fd
i and

g(1) = fi − fd
i > −fd

i since fi−1, fi are positive. Thus the inequality is satisfied at the endpoints of the interval. Now,

in regions (i), (ii) and (iii), g is monotone, so those regions are fine.

In region (iv) g is not monotone. g is positive at the endpoints and has a minimum of A (as in (34)) at the x-value η (as

in (33)). So, it now suffices to prove that g(0)g(1)
g(0)+g(1)

< fd
i . This is the case if fi−1, fi < 3fd

i . To see this, note that then

0 < g(0), g(1) < 2fd
i and the result follows, since if 0 < y, z < 2a then y+z

yz
= 1

z
+ 1

y
> 1

2a
+ 1

2a
= 1

a
and so yz

y+z
> a.

We choose the slightly stricter condition fi−1, fi < 2fd
i . Thus, our algorithm is

(1) Determine the fd
i from the input data.

(2) Define fi for i = 0, 1, . . . , n as in (22), (23) and (24).

(3) If f is required to be everywhere positive, then collar f0 between 0 and 2fd
1 , for i = 1, 2, . . . , n− 1 collar fi

between 0 and 2min(fd
i , fd

i+1), and collar fn between 0 and 2fd
n. If f is not required to be everywhere positive,

simply omit this step.

(4) Construct g with regard to which of the four sectors we are in.

(5) Define f as in (26).

(6) If required recover r as in (12). Integration formulae are easily established as the functions forms of g are straight-

forward.

Pseudo-code for this recipe is provided in an Appendix. Working code for this interpolation scheme is available from

Wilmott.com or from the second author’s website.

6.2. Amelioration. In Hagan and West [2006] an enhancement of this method is considered where the curve is ame-

liorated (smoothed). This is achieved by making the interpolation method slightly less local. Roughly speaking, to

determine each fi we use not only the discrete forwards immediately to the left and right but also those two steps away.

Thus, we have a playoff between locality and smoothness. For details, refer to Hagan and West [2006]. This is the only

change to the algorithm specified above.

The code at the second author’s website includes an implementation of the amelioration option.
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Figure 5. The g function as we cross the boundaries. From left to right: boundaries A, B, C and

D. From top to bottom: approaching the boundary, at the boundary (central), leaving the boundary.

Only at the boundary of C and D are there discontinuities.

7. Hedging

We can now ask the question: how do we use the instruments which have been used in our bootstrap to hedge other

instruments? In general the trader will have a portfolio of other, more complicated instruments, and will want to

hedge them against yield curve moves by using liquidly traded instruments (which, in general, should exactly be those

instruments which were used to bootstrap the original curve). For simplicity, we will assume that these instruments are

indeed available for hedging, and the risky instrument to be hedged is nothing more complicated that another vanilla

swap: for example, one with term which is not one of the bootstrap terms, is a forward starting swap, or is a stubbed

swap.

Suppose initially that, with n instruments being used in our bootstrap, there are exactly n yield curve movements that

we wish to hedge against. It is easy to see that we can construct a perfect hedge. First one calculates the square

matrix P where Pij is the change in price of the jth bootstrapping instrument under the ith curve. Next we calculate

the change in value of our risk instrument under the ith curve to form a column vector ∆V . The quantity of the ith
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bootstrapping instrument required for the perfect replication is the quantity Qi where Q is the solution to the matrix

equation PQ = ∆V . Assuming for the moment that P is invertible, we find the solution.

Of course, in reality, the set of possible yield curve movements is far, far greater. What one wants to do then is find a

set of n yield curve changes whose moves are somehow representative. Some methods have been suggested as follows:

• Perturbing the curve: creation of bumps. In bumping, we form new curves indexed by i: to create the ith curve

one bumps up the ith input rate by say 1 basis point, and bootstraps the curve again.

• Perturbing the forward curve with triangles. One approach is to again form new curves, again indexed by i:

the ith curve has the original forward curve incremented by a triangle, with left hand endpoint at ti−1, fixed

height say one basis point and apex at ti, and right hand endpoint at ti+1. (The first and last triangle will in

fact be right angled, with their apex at the first and last time points respectively.)

• Perturbing the forward curve with boxes. In boxes: the ith curve has the original forward curve incremented

by a rectangle, with left hand endpoint at ti−1 and right hand endpoint at ti, and fixed height say one basis

point. Such a perturbation curve corresponds exactly with what we get from bumping, if one of the inputs is a

ti−1 × ti FRA rate, we bump this rate, and we use the raw interpolation method.

More generally the user might want to define generic key terms e.g. 1w, 1m, 3m, 6m, 1y, 2y, etc. and define

triangles or boxes relative to these terms - the inputs to the bootstrap do not necessarily correspond to these

nodes.

In either case we have (an automated or user defined) set of dates t1, t2, . . . , tn which will be the basis for

our waves, where the triangles are defined as above.

Some obvious ideas which are just as obviously rejected are to form corresponding perturbations to the yield curve itself

- such curves will not be arbitrage free (the derived Z function will not be decreasing).

As an example, consider a 51m swap, where (for simplicity, and indeed, in some markets, such as the second author’s

domestic market) both fixed and floating payments in swaps occur every 3 months. Thus our swap lies between the 4

and 5 year swap, which let us assume are inputs to the curve.

The type of results we get are in Figure 6. The very plausible and popular bump method performs adequately for many

methods, but some methods - for example, the minimal method - can be rejected out of hand if bumping is to be used.

Furthermore, for all of the cubic splining methods, there is hedge leakage of varying degrees. Perturbing with triangles

can be rejected out of hand as a method - indeed, the pathology that occurs here is akin to the pathology that arises

when one uses the piecewise forward linear method of bootstrap: adding or removing an input to the bootstrap will

reverse the sign of the hedge quantities before the input in question. Anyway, to have these magnitudes in the hedge

portfolio is simply absurd. Perturbing with boxes is the method of choice, but unfortunately does not enable us to

distinguish between the quality of the different interpolation methods.

8. Conclusion

The comparison of the methods we analyse in Hagan and West [2006] appears in Table 1.

It is our opinion that the new method derived in Hagan and West [2006], namely monotone convex (in particular, the

unameliorated version) should be the method of choice for interpolation. To the best of our knowledge this is the only

published method where simultaneously

(1) all input instruments to the bootstrap are exactly reproduced as outputs of the bootstrap,

(2) the instantaneous forward curve is guaranteed to be positive if the inputs allow it (in particular, the curve is

arbitrage free), and

(3) the instantaneous forward curve is typically continuous.

In addition, as bonuses

(4) the method is local i.e. changes in inputs at a certain location do not affect in any way the value of the curve at

other locations.

(5) the forwards are stable i.e. as inputs change, the instantaneous forwards change more or less proportionately.

(6) hedges constructed by perturbations of this curve are reasonable and stable.

In Hagan and West [2006] we have reviewed many interpolation methods available and have introduced a couple of new

methods. In the final analysis, the choice of which method to use will always be subjective, and needs to be decided on
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Figure 6. The obvious superiority of using forward boxes to determine hedge portfolios: not only is

the hedge portfolio simple and intuitive, but the portfolio composition is practically invariant under

the interpolation method.

a case by case basis. But we hope to have provided some warning flags about many of the methods, and have outlined

several qualitative and quantitative criteria for making the selection on which method to use.
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Forwards Forward Method Forwards Bump hedges

Yield curve type positive? smoothness local? stable? local?

Linear on discount no not continuous excellent excellent very good

Linear on rates no not continuous excellent excellent very good

Raw (linear on log of discount) yes not continuous excellent excellent very good

Linear on the log of rates no not continuous excellent excellent very good

Piecewise linear forward no continuous poor very poor very poor

Quadratic no continuous poor very poor very poor

Natural cubic no smooth poor good poor

Hermite/Bessel no smooth very good good poor

Financial no smooth poor good poor

Quadratic natural no smooth poor good poor

Hermite/Bessel on rt function no smooth very good good poor

Monotone piecewise cubic no continuous very good good good

Quartic no smooth poor very poor very poor

Monotone convex (unameliorated) yes continuous very good good good

Monotone convex (ameliorated) yes continuous good good good

Minimal no continuous poor good very poor

Table 1. A synopsis of the comparison between methods

Pseudo code for monotone convex interpolation

The code at the second author’s website will differ slightly from the code below as it implements both the unameliorated

and ameliorated option in one module. The pseudo-code here is only for the unameliorated option.

First the estimates for f0, f1, . . . , fn. Various arrays have already been dimensioned, the raw data inputs have already

been provided, it has been specified with the boolean variable ‘Negative Forwards Allowed’ if instantaneous forwards

can be negative, and it has been specified with the boolean variable ‘InputsareForwards’ whether inputs are rates

r1, r2, . . . , rn or discrete forwards fd
1 , fd

2 , . . . , fd
n. Further, a ‘collar’ and ‘min’ utility functions are used (not shown).

Of course, collar(a, b, c) = max(a, min(b, c)).

Private Sub fi_estimates()

’extend the curve to time 0

Terms(0) = 0

Values(0) = Values(1)

’step 1

If InputsareForwards = False Then

For j = 1 To n

fdiscrete(j) = (Terms(j) * Values(j) - Terms(j - 1) * Values(j - 1)) / _

(Terms(j) - Terms(j - 1))

Next j

Else

For j = 1 To n

fdiscrete(j) = Values(j)

Next j

End If

’step 2

For j = 1 To n - 1

f(j) = (Terms(j) - Terms(j - 1)) / (Terms(j + 1) - Terms(j - 1)) * fdiscrete(j + 1) _

+ (Terms(j + 1) - Terms(j)) / (Terms(j + 1) - Terms(j - 1)) * fdiscrete(j)

Next j

’step 3

If Negative_Forwards_Allowed = False Then
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f(0) = Util.collar(0, fdiscrete(1) - 0.5 * (f(1) - fdiscrete(1)), 2 * fdiscrete(1))

f(n) = Util.collar(0, fdiscrete(n) - 0.5 * (f(n - 1) - fdiscrete(n)), 2 * fdiscrete(n))

For j = 1 To n - 1

f(j) = Util.collar(0, f(j), 2 * Util.Min(fdiscrete(j), fdiscrete(j + 1)))

Next j

end if

fi_estimates_are_Calced = True

End Sub

Having found the estimates for f0, f1, . . . , fn, we can find the value of f(τ) for any τ . The key function here is

‘LastIndex’, which determines the unique value of i for which τ ∈ [τi, τi+1). Extrapolation is as in the third paragraph

of §6.

Public Function Forward(Term As Double) As Double

If fi_estimates_are_Calced = False Then fi_estimates

If Term <= 0 Then

Forward = f(0)

ElseIf Term >= Terms(n) Then

Forward = Interpolant(Terms(n))

Else

i = Util.LastIndex(dTerms, Term)

’the x in (25)

x = (Term - Terms(i)) / (Terms(i + 1) - Terms(i))

g0 = f(i) - fdiscrete(i + 1)

g1 = f(i + 1) - fdiscrete(i + 1)

If x = 0 Then

G = g0

ElseIf x = 1 Then

G = g1

ElseIf (g0 < 0 And -0.5 * g0 <= g1 And g1 <= -2 * g0) _

Or (g0 > 0 And -0.5 * g0 >= g1 And g1 >= -2 * g0) Then

’zone (i)

G = g0 * (1 - 4 * x + 3 * x ^ 2) + g1 * (-2 * x + 3 * x ^ 2)

ElseIf (g0 < 0 And g1 > -2 * g0) Or (g0 > 0 And g1 < -2 * g0) Then

’zone (ii)

’(29)

eta = (g1 + 2 * g0) / (g1 - g0)

’(28)

If x <= eta Then

G = g0

Else

G = g0 + (g1 - g0) * ((x - eta) / (1 - eta)) ^ 2

End If

ElseIf (g0 > 0 And 0 > g1 And g1 > -0.5 * g0) _

Or (g0 < 0 And 0 < g1 And g1 < -0.5 * g0) Then

’zone (iii)

’(31)

eta = 3 * g1 / (g1 - g0)

’(30)

If x < eta Then

G = g1 + (g0 - g1) * ((eta - x) / eta) ^ 2

Else

G = g1
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End If

ElseIf g0 = 0 And g1 = 0 Then

G = 0

Else

’zone (iv)

’(33)

eta = g1 / (g1 + g0)

’(34)

A = -g0 * g1 / (g0 + g1)

’(32)

If x <= eta Then

G = A + (g0 - A) * ((eta - x) / eta) ^ 2

Else

G = A + (g1 - A) * ((eta - x) / (1 - eta)) ^ 2

End If

End If

’(26)

Forward = G + fdiscrete(i + 1)

End If

End Function

Equivalently, we can find the value of r(τ) for any τ .

Public Function Interpolant(Term As Double) As Double

If fi_estimates_are_Calced = False Then fi_estimates

If Term <= 0 Then

Interpolant = f(0)

ElseIf Term > Terms(n) Then

Interpolant = Interpolant(Terms(n))

Else

i = Util.LastIndex(dTerms, Term)

L = Terms(i + 1) - Terms(i)

’the x in (25)

x = (Term - Terms(i)) / L

g0 = f(i) - fdiscrete(i + 1)

g1 = f(i + 1) - fdiscrete(i + 1)

If x = 0 Or x = 1 Then

G = 0

ElseIf (g0 < 0 And -0.5 * g0 <= g1 And g1 <= -2 * g0) _

Or (g0 > 0 And -0.5 * g0 >= g1 And g1 >= -2 * g0) Then

’zone (i)

G = L * (g0 * (x - 2 * x ^ 2 + x ^ 3) + g1 * (-x ^ 2 + x ^ 3))

ElseIf (g0 < 0 And g1 > -2 * g0) Or (g0 > 0 And g1 < -2 * g0) Then

’zone (ii)

’(29)

eta = (g1 + 2 * g0) / (g1 - g0)

’(28)

If x <= eta Then

G = g0 * (Term - Terms(i))

Else

G = g0 * (Term - Terms(i)) + (g1 - g0) * (x - eta) ^ 3 / (1 - eta) ^ 2 / 3 * L

End If

ElseIf (g0 > 0 And 0 > g1 And g1 > -0.5 * g0) _

Or (g0 < 0 And 0 < g1 And g1 < -0.5 * g0) Then
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’zone (iii)

’(31)

eta = 3 * g1 / (g1 - g0)

’(30)

If x < eta Then

G = L * (g1 * x - 1 / 3 * (g0 - g1) * ((eta - x) ^ 3 / eta ^ 2 - eta))

Else

G = L * (2 / 3 * g1 + 1 / 3 * g0) * eta + g1 * (x - eta) * L

End If

ElseIf g0 = 0 And g1 = 0 Then

G = 0

Else

’zone (iv)

’(33)

eta = g1 / (g1 + g0)

’(34)

A = -g0 * g1 / (g0 + g1)

’(32)

If x <= eta Then

G = L * (A * x - 1 / 3 * (g0 - A) * ((eta - x) ^ 3 / eta ^ 2 - eta))

Else

G = L * (2 / 3 * A + 1 / 3 * g0) * eta _

+ L * (A * (x - eta) + (g1 - A) / 3 * (x - eta) ^ 3 / (1 - eta) ^ 2)

End If

End If

’(12)

Interpolant = 1 / Term * (Terms(i) * Values(i) + fdiscrete(i + 1) * (Term - Terms(i)) + G)

End If

End Function

Working code for this interpolation scheme, for both the unameliorated and ameliorated options, with proper dimen-

sioning of all arrays and code for all the missing functions, is available from Wilmott.com or from the second author’s

website.
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