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Forward Equations (1)

• BWD Equation: 
price of one option              for different

• FWD Equation: 
price of all options             for current

• Advantage of FWD equation:
– If local volatilities known, fast computation of implied 

volatility surface,
– If current implied volatility surface known, extraction of 

local volatilities,
– Understanding of forward volatilities and how to lock 

them.
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Forward Equations (2)

• Several ways to obtain them:
– Fokker-Planck equation:

• Integrate twice Kolmogorov Forward Equation
– Tanaka formula:

• Expectation of local time
– Replication

• Replication portfolio gives a much more financial 
insight
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Fokker-Planck

• If
• Fokker-Planck Equation:

• Where      is the Risk Neutral density. As 

• Integrating twice w.r.t. x:
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FWD Equation: dS/S = σ(S,t) dW
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FWD Equation: dS/S = r dt + σ(S,t) dW
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FWD Equation: dS/S = (r-d) dt + σ(S,t) dW
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Stripping Formula

– If               known, quick computation of all                
today,

– If  all                 known:

Local volatilities extracted from vanilla prices
and used to price exotics.
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Smile dynamics: Local Vol Model (1)

• Consider, for one maturity, the smiles associated 
to 3 initial spot values

Skew case

– ATM short term implied follows the local vols
– Similar skews

+S0S−S

Local vols

−S Smile

0 Smile S
+S Smile

K
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Smile dynamics: Local Vol Model (2)

• Pure Smile case

– ATM short term implied follows the local vols
– Skew can change sign

K−S 0S +S

Local vols

−S Smile

0 Smile S

+S Smile
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Summary of LVM Properties

is the initial volatility surface

• compatible with local vol

• compatible with = (local vol)²

• deterministic function of (S,t)

future smile = FWD smile from local vol

( )tS,σ =⇔Σ σ0

Tk,σ̂

( )ωσ [ ]KSE T =⇔Σ 20 σ

⇔

0Σ



Volatility Replication
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Volatility Replication
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Examples

Local Time at 
level K

Absolute 
Variance Swap

FWD Variance 
Swap

Corridor 
Variance Swap

Variance Swap
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Conditional Instantaneous FWD 
Variance 
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Deterministic future smiles

S0

K

ϕ

T1 T2
t0

It is not possible to prescribe just any future 
smile
If deterministic, one must have

Not satisfied in general
( ) ( ) ( )dSTSCTStStSC TKTK 1,10000, ,,,,,

22 ∫= ϕ
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Det. Fut. smiles & no jumps 
=> = FWD smile

If 

stripped from SmileS.t

Then, there exists a 2 step arbitrage:
Define 

At t0 : Sell 

At t:

gives a premium = PLt at t, no loss at T

Conclusion:               independent of                        
from initial smile
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Consequence of det. future smiles

• Sticky Strike assumption: Each (K,T) has a fixed               
independent of (S,t)

• Sticky Delta assumption: depends only on 
moneyness and residual maturity

• In the absence of jumps,
– Sticky Strike  is arbitrageable
– Sticky ∆ is (even more) arbitrageable

),( TKimplσ

),( TKimplσ
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Example of arbitrage with Sticky Strike
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Arbitraging Skew Dynamics

• In the absence of jumps, Sticky-K is arbitrageable and Sticky-∆ even more so.

• However, it seems that quiet trending market (no jumps!) are Sticky-∆.

In trending markets, buy Calls, sell Puts and ∆-hedge.

Example:
tS1K

2K
12 KK PCPF −≡

21,σσ

Vega  > Vega
2K 1K

21,σσ

Vega  < Vega
2K 1K

S

S P

PF

F

∆-hedged PF gains 
from S induced 
volatility moves.



Skew from Historical Prices
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Theoretical Skew from Prices

?

ð

Problem : How to compute option prices on an underlying without options?

For instance : compute 3 month 5% OTM Call from price history only.

1) Discounted average of the historical Intrinsic Values.

Bad : depends on bull/bear, no call/put parity.

2) Generate paths by sampling 1 day return recentered histogram.

Problem : CLT ðconverges quickly to same volatility for all strike/maturity; 
breaks autocorrelation and vol/spot dependency.
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Theoretical Skew from Prices (2)

3) Discounted average of the Intrinsic Value from recentered 3 month 
histogram.

4) ∆-Hedging  : compute the implied volatility which makes the ∆-hedging a 
fair game. 
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Theoretical Skew
from historical prices

How to get a theoretical Skew just from spot price 
history?
Example: 
3 month daily data
1 strike 
– a) price and delta hedge for a given     within Black-Scholes

model
– b) compute the associated final Profit & Loss: 
– c) solve for
– d) repeat a) b) c) for general time period and average
– e) repeat a) b) c) and d) to get the “theorical Skew”

1TSkK =
σ

( )σPL
( ) ( )( ) 0/ =kPLk σσ
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IV. Volatility Expansion
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Introduction

• This talk aims at providing a better
understanding of:

– How local volatilities contribute to the value of
an option

– How P&L is impacted when volatility is
misspecified

– Link between implied and local volatility
– Smile dynamics
– Vega/gamma hedging relationship
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Framework & definitions

• In the following, we specify the dynamics
of the spot in absolute convention (as 
opposed to proportional in Black-Scholes) 
and assume no rates:

• : local (instantaneous) volatility
(possibly stochastic)

• Implied volatility will be denoted by 

dS dWt t t=σ
σ

$σ
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P&L of a delta hedged option

P&L

St t+∆

St

Θ

Break-even
points

σ ∆t

−σ ∆t

Option Value

St

Ct
Ct t+ ∆

S

Delta 
hedge
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P&L of a delta hedged option (2)

P&L P&L 

Expected P&L = 0 Expected P&L > 0

Correct Volatility higher than

St t+ ∆StSt t+ ∆St

Ito: When , spot dependency disappears∆t → 0

1st 1st
1st 1st
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Black-Scholes PDE

P&L is a balance between gain from Γ and

From Black-
Scholes PDE:( ) P L dtt t dt& , + = +
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P&L over a path
Total P&L over a path

= Sum of P&L over all small time intervals

Spot

Time

GammaP L

dt
T

&

( )

=

−∫1
2

2
0
2

00
σ σ Γ

No assumption is made
on volatility so far
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General case

• Terminal wealth on each path is:

( is the initial price of the option)( )X Σ0

( )wealth  =  T X dt
T

Σ Γ0
2

0
2

00

1
2+ −∫ ( )σ σ

• Taking the expectation, we get:

[ ]E X E S dSdt
Tϕ σ σ ϕwealthT = + −

∞

∫∫( ) [ ( )| ]Σ Γ0 0
2

0
2

00

1
2

• The probability density φ may correspond to the density of
a NON risk-neutral process (with some drift) with volatility σ.



Bruno Dupire 33

Non Risk-Neutral world
• In a complete model (like Black-Scholes), the drift does
not affect option prices but alternative hedging strategies
lead to different expectations

L

Profile of a call (L,T) for 
different vol assumptions

Example: mean reverting process
towards L with high volatility around L

We then want to choose K (close to L) 
T and σ0 (small) to take advantage of it.

In summary: gamma is a volatility
collector and it can be shaped by:

• a choice of strike and maturity,
• a choice of σ0 , our hedging volatility.
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Average P&L

• From now on, φ will designate the risk neutral density
associated with . 

•In this case, E[wealthT] is also and we have:  

dS dWt t= σ

( )X Σ

X X E S dS dt
T

( ) ( ) [ ( )| ]Σ Σ Γ= + −
∞

∫∫0 0
2

0
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2 σ σ ϕ

• Path dependent option & deterministic vol: 

X X E S dS dt( ) ( ) ( ) [ | ]Σ Σ Γ= + −∫∫0
2

0
2

0
1
2 σ σ ϕ

• European option & stochastic vol:
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2 σ σ ϕ
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Quiz

• Buy a European option at 20% implied vol

• Realised historical vol is 25%

• Have you made money ?

Not necessarily!

High vol with low gamma, low vol with high gamma
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Expansion in volatility

• An important case is a European option with
deterministic vol:

C C dS dt( ) ( ) ( )Σ Σ Γ= + −∫∫0
2

0
2

0
1
2 σ σ ϕ

• The corrective term is a weighted average of the volatility
differences

• This double integral can be approximated numerically
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P&L: Stop Loss Start Gain

• Extreme case: σ δ0 00= ⇒ =Γ K

( ) ( )C S K K t K t dt
T

( ) ( ) , ,Σ = − ++ ∫0
2

0

1
2 σ ϕ

• This is known as Tanaka’s formula

t

Delta = 100%
K

Delta = 0%

S
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Local / Implied volatility relationship

13

15
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19

21

23

Implied volatility

strike maturity

11

15

19

23

27

31

Local volatility

spot time

Aggregation

Differentiation
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Smile stripping: from implied to local

•Stripping local vols from implied vols is the
inverse operation:

σ

∂
∂
∂
∂

2
2

2

2( , )S T

C
T
C

K

= (Dupire 93)

•Involves differentiations
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From local to implied: a simple case

Let us assume that local volatility is a 
deterministic function of time only:

( )dS t dWt t= σ

In this model, we know how to combine local 
vols to compute implied vol:

( )
( )

$σ
σ

T
t dt

T

T

=
∫ 2

0

Question: can we get a formula with ? ( )σ S t,
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From local to implied volatility
• When =  implied volσ 0

1
2

02
0
2

0( )σ σ ϕ− =∫∫ Γ dSdt σ
σ ϕ

ϕ0
2

2
0

0

= ∫∫
∫∫

Γ

Γ

dSdt
dSdt⇒

⇒• depends onΓ0 0σ solve by iterations

•Implied Vol is a weighted average of Local Vols

(as a swap rate is a weighted average of FRA)
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Weighting scheme
•Weighting Scheme: proportional to Γ0 ϕ

Out of the
money
case:

t
S

Γ0 ϕ

At the
money
case:

S0=100
K=100

S0=100
K=110
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Weighting scheme (2)
• Weighting scheme is roughly proportional to 
the brownian bridge density

Brownian bridge density:

( ) [ ]BB x t P S x S KK T t Tϕ , , = = =
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Time homogeneous case

S0

S

Kα(S)

TM (K>S0)

( )α
ϕ

ϕ
S

dt

dSdt
=

∫
∫∫

Γ

Γ

0

0

$ ( ) ( )σ α σ2 2= ∫ S S dS

ATM (K=S0) O
S0

S

α(S)

σ T
small

S0

S

α(S) S0

S

Kα(S)

large
σ T
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Link with smile

S0

K2

K1

t

and are 

averages of the same local 

vols with different weighting

schemes

$σ K1
$σ K2

=> New approach gives us a direct expression for 
the smile from the knowledge of local volatilities

But can we say something about its dynamics?
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Smile dynamics

23.5

24

24.5

25

25.5

26

S0 K

t

S1

Weighting scheme imposes 
some dynamics of the smile for 
a move of the spot:
For a given strike K, 

(we average lower volatilities)
S K↑ ⇒ ↓$σ

Smile today (Spot St)

StSt+dt

Smile tomorrow (Spot St+dt)
in sticky strike model

Smile tomorrow (Spot St+dt)
if σATM=constant

Smile tomorrow (Spot St+dt)
in the smile model

&



Bruno Dupire 47

Sticky strike model

A  sticky strike model ( ) is arbitrageable.( )$ $σ σK Kt =

Let us consider two strikes K1 < K2

The model assumes constant vols σ1 > σ2 for example

σ1 dt

σ2 dt

1C(K
1 )

Γ 1/
Γ 2*

C(
K 2)

σ1 dt

dt2σ

1C(K
1 )

1C
(K

2)

By combining K1 and K2 options, we build a position with no gamma and
positive theta (sell 1 K1 call, buy Γ1/Γ2 K2 calls)
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Vega analysis

•If  & are constantσ σ0

C C dSdt( ) ( ) ( )Σ Σ Γ= + − ∫∫0
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σ σ ϕ

σ σ ε2
0
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2
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Gamma hedging vs Vega hedging

• Hedge in Γ insensitive to realised
historical vol

• If Γ=0 everywhere, no sensitivity to 
historical vol => no need to Vega hedge

• Problem: impossible to cancel Γ now for 
the future

• Need to roll option hedge
• How to lock this future cost?
• Answer: by vega hedging
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Superbuckets: local change in local vol

X X E S dS dt( ) ( ) ( ) [ | ]Σ Σ Γ= + −∫∫0
2

0
2

0
1
2 σ σ ϕ

For any option, in the deterministic vol case:

For a small shift ε in local variance around (S,t), we have:

( ) ( ) ( )

X X E S

dX
d

E S t S S t
S t

( ) ( ) [ | ]

[ , | ] ,
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0 0

2 0

1
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ε ϕ

σ
ϕ
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d

S t S t
S tσ

ϕ
( , )

, ,
2 0

1
2= ΓFor a european option:
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Superbuckets: local change in implied vol

Local change of implied volatility is obtained by combining
local changes in local volatility according a certain weighting

( ) ( )
( )
( )

dC
d

dC
d

d
d$ $σ σ

σ
σ2 2

2

2= ∫

weighting obtain
using stripping 

formula

sensitivity in 
local vol

Thus: 
cancel sensitivity to any move of implied vol

<=> cancel sensitivity to any move of local vol
<=> cancel all future gamma in expectation
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Conclusion

• This analysis shows that option prices are 
based on how they capture local volatility

• It reveals the link between local vol and
implied vol

• It sheds some light on the equivalence
between full Vega hedge (superbuckets) 
and average future gamma hedge



Bruno Dupire 53

Delta Hedging

• We assume no interest rates, no dividends, and absolute 
(as opposed to proportional) definition of volatility

• Extend f(x) to f(x,v) as the Bachelier (normal BS) price of 
f for start price x and variance v:

with f(x,0) = f(x)
• Then,
• We explore various delta hedging strategies),(1),( vxfvxf =

∫
−

−
≡≡ dyeyf

v
XfEvxf v

xy
vx 2

)(
,

2

)(
2
1)]([),(
π

2 xxv
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Calendar Time Delta Hedging

• Delta hedging with constant vol: P&L depends on the 
path of the volatility and on the path of the spot price.

• Calendar time delta hedge: replication cost of

• In particular, for sigma = 0, replication cost of ∫ −+
t

uxx dudQVfTXf
0

2
,0

2
0 )(

2
1).,( σσ

)).(,( 2 tTXf t −σ

∫+
t

uxxdQVfXf
0 ,00 2

1)(

)( tXf
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Business Time Delta Hedging

• Delta hedging according to the quadratic variation: 
P&L that depends only on quadratic variation and 
spot price

• Hence, for 

And the replicating cost of is
finances exactly the replication of f until

txtxxtvtxtt dXfdQVfdQVfdXfQVLXdf =+−=− ,0,0,0 2
1),(

,,0 LQV T ≤

t

t

uuxtt dXQVLXfLXfQVLXf ∫ −+=−
0 ,00,0 ),(),(),(

),( ,0 tt QVLXf − ),( 0 LXf

),( 0 LXf LQV =ττ ,0:
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Daily P&L Variation
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Tracking Error Comparison



V. Stochastic Volatility Models
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Hull & White
•Stochastic volatility model Hull&White (87)

P
tt

P
tt

t

t

dZdtd

dWrdt
S

dS

βασ

σ

+=

+=

•Incomplete model, depends on risk premium
•Does not fit market smile

Strike price
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ρ Z W, < 0ρZ W, = 0
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Role of parameters

• Correlation gives the short term skew
• Mean reversion level determines the long term 

value of volatility
• Mean reversion strength

– Determine the term structure of volatility
– Dampens the skew for longer maturities

• Volvol gives convexity to implied vol
• Functional dependency on S has a similar effect 

to correlation
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Heston Model
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Spot dependency

2 ways to generate skew in a stochastic vol model

-Mostly equivalent: similar (St,σt ) patterns, similar 
future 
evolutions
-1) more flexible (and arbitrary!) than 2)
-For short horizons: stoch vol model local vol model 
+ independent noise on vol. 
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Convexity Bias
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Impact on Models

• Risk Neutral drift for instantaneous forward 
variance

• Markov Model:
fits initial smile with local vols( ) dWtSf
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Smile dynamics: Stoch Vol Model (1)

Skew case (r<0)

- ATM short term implied still follows the local vols

- Similar skews as local vol model for short horizons
- Common mistake when computing the smile for another
spot: just change S0 forgetting the conditioning on σ :
if S : S0 → S+ where is the new σ ?

Local vols

+S0S−S

−S Smile

0 Smile S
+S Smile

K

σ
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Smile dynamics: Stoch Vol Model (2)

• Pure smile case (r=0)

• ATM short term implied follows the local vols
• Future skews quite flat, different from local vol

model
• Again, do not forget conditioning of vol by S

Local vols
−S Smile

0 Smile S

+S Smile

−S 0S +S K

σ
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Forward Skews

In the absence of jump :

model fits market 

This constrains

a) the sensitivity of the ATM short term volatility wrt S;

b) the average level of the volatility conditioned to ST=K.

a) tells that the sensitivity and the hedge ratio of vanillas depend on the 
calibration to the vanilla, not on local volatility/ stochastic volatility.

To change them, jumps are needed.

But b) does not say anything on the conditional forward skews.
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Sensitivity of ATM volatility / S

S∂
∂ 2σ

At t, short term ATM implied volatility ~ σt.

As σt is random, the sensitivity is defined only in average:
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Optimal hedge of vanilla under calibrated stochastic volatility corresponds to       
perfect hedge ratio under LVM.
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