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Forward Equatlons (1)

. BWD Equatlon
price of one option C(X,, T, )for different (S,t)
 FWD Equation:

price of all options C(K,T)for current(SO,tO)
« Advantage of FWD equation:

— |If local volatilities known, fast computation of implied
volatility surface,

— If current implied volatility surface known, extraction of
local volatilities,

— Understanding of forward volatilities and how to lock
them.
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Forward Equatlons (2)

. Several ways to obtaln them

— Fokker-Planck equation:
* Integrate twice Kolmogorov Forward Equation

— Tanaka formula:
« Expectation of local time
— Replication

« Replication portfolio gives a much more financial
iInsight
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If dx=b(x,t)dW

2(1.2
Fokker-Planck Equation: op_10 (b ¢)
or 2 ox’
0°C

Where @ is the Risk Neutral density. As ¢ = K>

2 2
2[9C) o 2C| oS
ot oK" ) 1 oK

Ox” ot 2 ox”

Integrating twice w.rt. x: 6C b’ &°C
or 2 K>
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C —C
K., T+6T T
Define CS 1§<TT = T+6 K,

ol

CS,?T,T at T

ol — 0 o (K.7) K*6,;

-ST -ST
K K

2 2
Equating prices at t;: oc _o (K,T)Kz o°C
oT 2 oK’
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CK,T+6T

v W rK 5T — 0
——— >

Ke™ K — S

FWD Equation: dS/S =r dt + o(S,t) dW

AN Sk CS ¢ at T =Time Value + Intrinsic Value
(Strike Convexity) (Interest on Strike)

 KDig, ,

K ) S

Equating prices atty: [0C _ Gz(K,T) % 0°C

oT

2

oK*

_x9
oK
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FWD Equation: dS/S = (r-d) dt + o(S,t) dW

CcS rat T = TV + Interests on K
— Dividends on S

2
o*(K,T) K5, .
5T — 0 ? 2
ﬂ\ N d)K (r—d)K Digy,
K4 K ———l K 4.C m—S
—d-Cy, o
: : _ 2 2
Equating prices at t,;| 0C _o (K,T)Kz 0 (; ( d)Ké—C—d C
oT 2 oK oK
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Stripping Formula

(r—d)KZ—]i—d-C

oC o’(K,T)K* o°C
oT 2 oK?

— If o(K,T)known, quick computation of all C, ,(S,.z,)
today,

—If all C,(S,.%) known:

28C+(r—d)K8C+dC
oT oK

o(K,T)=

\ e 0°C
OK*
Local volatilities extracted from vanilla prices

and used to price exotics.
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Smile dynamics: Local Vol Model (1)

« Consider, for one maturity, the smiles associated
to 3 initial spot values

Skew case

Local vols

Smile §,

S-S5, St > K
— ATM short term implied follows the local vols
— Similar skews
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Smile dynamics: Local Vol Model (2)
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Local vols

Smile S§°

— ATM short term implied follows the local vols
— Skew can change sign

Bruno Dupire 10



Summary of LVM Propertles

20 is the initial volatility surface

» 6(S.1) compatible with Lo<>c=local vol

+ o{w) compatible with To<> Elo3Sr=K | = (local vol)?

« oOxr deterministic function of (S,t)

&S future smile = FWD smile from local vol
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Volatility Replication



Volatility Replication

d?S =o,dW  Apply lto to f(S,t).

df = f,dS+ fdt+1 f. .0 Sdt

= j Sis(S,00.8%dt =2 f(S;,T) = £ (8,00 = | £,(S,,0)dt = [ £5(S,,0)dS,

g 2N
h'd Y
European PF A-hedge
’ 2 g
To replicate jg(S,t)afdt findf: g(S,0) = f(S,0)S :f :H?
0
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Examples

G G B e e e O o e o P i s

Vanance Swap 2(S.1) = S0 - —ln(i)
O HO07L(5) | S
g\\:vVelli)pVariance g(S,0) =1 ,,() f (S,t)=—1n§0)x1m(t)
Cgfigl#::z Swap| ¢ (5,8) = f(S,0)= (5 _250)2
|Lec\)/Ce?IKT e g(s.0=6,5)  |risn-C KK>
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Conditional Instantaneous FWD

From local time:

o _, C(K.T)
EL[ o-t5K(S)dt}_2 =

Differentiating wrt T:

E[G;5K(ST)]= E[O';‘ST :K]'E[5K(ST)]= 2 0

X
K?* o

C
T(K,T)

0°C
oK*

And, as: El5.(S))]= (K,T)

oC
) ) aT(K’T)
Eloils, = K]- K 8°C
oK ?

=0,.(K,T)

(K,T)
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Deterministic future smiles

It IS not pOSSIb|e to prescrlbe Just any future
smile

If deterministic, one must have
CK,Tz(Soato):I(D(SoatoaSaTl)CK,Tz(S >Tl)dS
Not satisfied in general

0 T 1 T2
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Det. Fut. smiles & no jumps
=> = FWD smlle

(K T K+ 6K T+5T)

H(S LK T)/ VKT(S t);t G (K T)_ lim o

sK—0 P

/ ol —0
stripped from SmileS.t
Ks
Then, there exists a 2 step arbitrage'
Define So
PL, = (EZ(K,T)—VK,T(S,t)) - (S.4,K,T) i
Att0: Sell PL,-(Dig,_,, - ngm ) Pt T

2 crssell 33K, T), ,

AL 5p s c[S—e,5+é]

gives a premium = PLtatt, nolossat T

Conclusion: Vi »(S:2) independent of (S,¢)= Vir (S,.t,)= O'Z(K,T)
from initial smile
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Consequence of det. future smiles |

* Sticky Strike assumption: Each (K,T) has a fixed 0, (K,T)
independent of (S,t)

* Sticky Delta assumption: 0, (K,T) depends only on
moneyness and residual maturity

e In the absence of jumps,
— Sticky Strike 1s arbitrageable

— Sticky A is (even more) arbitrageable
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Example of arbitrage with Sticky Strike
Each CK T Ilves in |ts Black Scholes ( impl (K T ) )WorId
¢, =Cy, C,=Cy , assume o, >0,

P&L of Delta hedge position over dt:

SPL(C,)=1((8S) - o,85t)T,

SPL(C,)=1((65) - ,8%)r, //F{Cc

SPL(T,C, -T,C,)= rzrz S (o2 -0t >0

A If no jump

(no T, free @)
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Arbitraging Skew Dynamics

* In the absence of jumps, Sticky-K is arbitrageable and Sticky-A even more so.

* However, it seems that quiet trending market (no jumps!) are Sticky-A.
|:> In trending markets, buy Calls, sell Puts and A-hedge.

Example:

PF=Cy P

S/'I:><

S\I:><

c,,0, /

Vega >Vega

01,0, \

Vega <Vega

—> PF

—> PF

A-hedged PF gains
from S induced
volatility moves.

Bruno Dupire
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Skew from Historical Prices



Theoretical Skew from Prices

Problem : How to compute option prices on an underlying without options?
For instance : compute 3 month 5% OTM Call from price history only.
1) Discounted average of the historical Intrinsic Values.
Bad : depends on bull/bear, no call/put parity.
2) Generate paths by sampling 1 day return recentered histogram.

Problem : CLT mconverges quickly to same volatility for all strike/maturity;
breaks autocorrelation and vol/spot dependency.

Bruno Dupire 22



Theoretical Skew from Prices (2)

&

3) Discounted average of the Intrinsic Value from recentered 3 month
histogram.

4) A-Hedging : compute the implied volatility which makes the A-hedging a
fair game.

vol skew : quadratic minimization
0.26 T T T

0251
0zaf
02|
0.2}
oz
o2t Y

049t \
018}

017} d

0.16 | I L | I | L 1 I
E 92 94 98 o8 100 102 104 106 108 110
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Theoretical Skew

from historical prices

How to get a theoretical Skew just from spot price
history?

S
Example: STWK
3 month daily data i . |

: T, —t 7
1strike K=k S, 1
— a) price and delta hedge for a given g within Black-Scholes
model
— b) compute the associated final Profit & Loss: PL(G )
_ ¢) solve for o(k)/ PL(o(k))=0
— d) repeat a) b) c) for general time period and average
— €) repeat a) b) c) and d) to get the “theorical Skew”
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1IVV. Volatility Expansion



Introduction

. ThIS taIk aims at prowdlng a better
understanding of:

— How local volatilities contribute to the value of
an option

— How P&L is impacted when volatility is
misspecified

— Link between implied and local volatility
— Smile dynamics
— Vega/gamma hedging relationship
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Framework & definitions

A A A A R R R A R
| | | |

and assume no rates:
ds, = o, dW
* O :local (instantaneous) volatility
(possibly stochastic)
» Implied volatility will be denoted by &
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P&L of a delta hedged option

Option Value P&L

Break-even |
points

N
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P&L of a delta hedged option (2)

Volatility higher than

Correct

Ist

st
1 t

\\ St Sz+At

P

e
&L

Expected P&L = ()

\FS/ St+Az

P&L

Expected P&L >

hl

Ito: When At — 0, spot dependency disappears
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‘ Black-Scholes PDE

P&L 1s a balance between gain from I" and

o2 From Black- o>
P& L(mdt) = 7F0 +0, |dt Scholes PDE: ©, = —70Fo

=> discrepancy if o different from

1
gain over dt = 5(02 — 0o, )Fodt
¢ 0 > 0, Profit

Magnified by I’
00<00:Loss} ASHIEEDY Lo

Bruno Dupire 30



L
e
(©
Q.
©
-
)
>
O
—
o
al

Total P&L over a path

intervals

11mc

Sum of P&L over all small t

31

' de

101 1S Ma

No assumpt

on volatility so far
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General case

* Terminal wealth on each path is:

wealth.; X( I (o — o, )T dt

(X(Z,) is the initial price of the option)
» Taking the expectation, we get:
T (oo
E[wealth,| = X(Z)+3 | | BT, -2 S)pdSat

» The probability density ¢ may correspond to the density of
a NON risk-neutral process (with some drift) with volatility o.
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Non Risk-Neutral world

a complete model (like Black-Scholes), the drift does
not affect option prices but alternative hedging strategies
lead to different expectations

Example: mean reverting process
towards L with high volatility around L

We then want to choose K (close to L)
T and o, (small) to take advantage of it.

. . Profile of a call (L,T) for
In summary: gamma is a volatility different vol assumptions

collector and it can be shaped by:

* a choice of strike and maturity,
 a choice of 0,, our hedging volatility.
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Average P&L

e e e e e e e e e e e e e e e PR e e e

* From now on, ¢ will designate the risk neutral density
associated with dS, = odW,.

*In this case, E[wealth ] is also X(X) and we have:

X(2)=X(E)+%] [ EIT,(6® ~o?)ISTpdS di
» Path dependent option & deterministic vol:

X(2)= X(Z) +% ] | (6® —02) E[T,|S] 9 dS di

» European option & stochastic vol:

C(2) = C(Ey) + 5[ [(E[6?1S1-02)T, pdS di
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« Buy a

European option at 20% implied vol

» Realised historical vol is 25%

* Have you made money ?

Not necessarily!

High vo

| with low gamma, low vol with high gamma

Bruno Dupire

35



Expan3|on In volatlllty

* An |mportant case is a European optlon with
deterministic vol:

‘ C(2)=C(Z) +4[[(c° =o)L, pdSdt |

* The corrective term is a weighted average of the volatility
differences

 This double integral can be approximated numerically
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P&L: Stop Loss Start Gain

« Extreme case: o,=0=1,=9;

C(x)=(S,~K)" +%] o(K.0) p(K.1)dr

* This is known as Tanaka’s formula

A

S
Delta = 100%

K
Delta = 0%

\ 4
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Local / Implied volatility relationship

Implied volatility

Aity

Aggregation

S’CmA
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Smile stripping: from implied to local

Stripping local vols from implied vols is the
Inverse operation:

oC
oT
7°C
oK

o’ (S,T)=2

(Dupire 93)

*Involves differentiations
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From local to implied: a simple case

Let us assume that local volatility is a
deterministic function of time only:

ds, = o(t) dw,

In this model, we know how to combine local
vols to compute implied vol:

Question: can we get a formula with J(S,t) ?

Bruno Dupire 40



From local to implied volatility

* When &, = implied vol

|| o°T pdsSd
 [[r,pdsdt

;H(Gz—o;f)l“ogodet:O =%

- |, depends on o, —> solve by iterations

Implied Vol is a weighted average of Local Vols

(as a swap rate is a weighted average of FRA)
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Weighting scheme

[ s S

*Weighting Scheme: proportional to I, @

At the Out of the
money
moncy case:
case: r (p
S\l/ t
S,=100 S,=100 g
K=100 K=110 aEiEceeee
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Weighting scheme (2)

* Weighting scheme 1s roughly proportional to
the brownian bridge density

Brownian bridge density:

BB(pK,T(x,t) = P[St = x‘ST = K]
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| Time homogeneous case
dS _ Irowt
.[ a(S)G (S) aS) [[rypdsar
ATM (K=S,) OTM (K>S,)
o(S) S, o(S) S‘ : K
0\/? ‘
small
S S
ou(S)
o T
large
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Link with smile

o k, and o K, are |! K,
averages of the same local
vols with different weighting | K,
schemes 3

=> New approach gives us a direct expression for
the smile from the knowledge of local volatilities

But can we say something about its dynamics?
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Smile dynamics

| 'eighting scheme 1imposes

some dynamics of the smile for S 1

a move of the spot: Sy K
For a given strike K, , [
ST=6.4

(we average lower volatilities) t
Smile today (Spot S,) % -

A\ 4

= Smile tomorrow (Spot S_ ) 255 \\"

in sticky strike model o5 |

Smile tomorrow (Spot S_ ;) | *°]
if o,y =constant wal

Smile tomorrow (Spot S, ;) 25 g
1n the smile model t+dt

S
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Sticky strike model

A sticky strike model ( G (#) = G ) is arbitrageable.
Let us consider two strikes K, <K,

The model assumes constant vols o; > o, for example

-
@
-

z

By combining K, and K, options, we build a position with no gamma and
positive theta (sell 1 K, call, buy I')/T", K, calls)
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Vega analysis

oif O &00 are constant

C(Z)=C(Z,)+ %(0'2 —0,)|| T, pdSd

2
« o'=0,+¢

C(o; +&)=C(c; )+ g%“ﬂgﬂdet

| - |
—

o°C

oo’
X & oot &
oo Aot do ot

Vega = 20

Bruno Dupire
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Gamma hedglng VS Vega hedglng

. Hedge Ig I' . |nsenS|t|ve to reallsed
historical vol

 If =0 everywhere, no sensitivity to
historical vol => no need to Vega hedge

* Problem: impossible to cancel I' now for
the future

* Need to roll option hedge
* How to lock this future cost?
* Answer: by vega hedging
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%%

Superbuckets: local change in local vol

For any option, in the deterministic vol case:

X(2)=X(E)+5 [ [ (06> —6?) EIT,|S1 p dS di

For a small shift € in local variance around (S,t), we have:
1
X(Z) = X(Z,)+5 ¢E[L,|S]¢
dX
d(G(ZS,t)

—

- L EIT,(S,1)[51 ¢(S,7)

dC
(o,

For a european option:

) =%FO(S, t)ol S, 1)
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Superbuckets: local change in implied vol

Local change of implied volatility is obtained by combining
local changes in local volatility according a certain weighting

dC jddc d(o?)

d(&) 7 d(e’)d(57)
sensitivity in weighting obtain
local vol using stripping

formula

cancel sensitivity to any move of implied vol
cancel sensitivity to any move of local vol
cancel all future gamma in expectation

Bruno Dupire
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Conclusion

. ThIS anaIyS|s shows that optlon prlces are
based on how they capture local volatility

* |t reveals the link between local vol and
implied vol

* |t sheds some light on the equivalence
between full Vega hedge (superbuckets)
and average future gamma hedge
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Delta Hedging

« We assume no interest rates, no dividends, and absolute
(as opposed to proportional) definition of volatility

« Extend f(x) to f(x,v) as the Bachelier (normal BS) price of
f for start price x and variance v:

with f(x,0) = f(
 Then,

« We eprOf@xv\gr;olujs delta hedging strategies
% ? 2 XX )

()’

¥ === fwe  d
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Calendar Time Delta Hedging

« Delta hedging with constant vol: P&L depends on the
path of the volatility and on the path of the spot price.

« Calendar time delta hedge: replication cost of

f(XﬂGz'(T_t))

 In particuléﬁ?‘fof’é@ﬁ%% 0, EHicatideBost of
S (X))

1 ¢
f(X)+= [ £.dQV,,
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Business Time Delta Hedging

« Delta hedging according to the quadratic variation:
P&L that depends only on quadratic variation and
spot price
df (X,,L=0V,,)= f.dX, - [,dOV,,, +— fxdeVOt fdX,

OV, <L,
* Hence, for
FXL=0V, )= f(Xo, L)+ [ f.(X,.L-0V,,) dX,

f (X, L=0V,,) | Jf(Xy, L)
rBhdrne replicating cost of S r.iov,. =L
finances exactly the replication of f until
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ally P&L Variation

P&L from delta hedging
0.005 : _ T T |

-0.005

-0.01
= Calendar Time
— BUSINESS time

0015 SN FOS— ....................... L :
-0.02 | T T —— (RE— — ‘

-0.025

-0.03 | | | | | | |
-0.2 -0.15 -01 -0.05 0 0.05 0.1 0.15 0.2

Change in underlying
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Tracking Error Comparison

x10° Calender time vs Business time hedging
T T

0.5 0.6 0.7 0.8 0.9 1
Time

Brunc 57




V. Stochastic Volatility Models



Hull & White

+Stochastic volatility model Hull&White (87)
ds ,

=rdt +o,dw *

t

do, =adt + BdZ '

*Incomplete model, depends on risk premium
*Does not fit market smile

A A
F g
S S
T k]
2 o
= o
E E
Strike price > Strike price >
Pzw = P, w <0
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Role of parameters

* Correlation gives the short term skew

 Mean reversion level determines the long term
value of volatility

* Mean reversion strength
— Determine the term structure of volatility
— Dampens the skew for longer maturities

* Volvol gives convexity to implied vol

* Functional dependency on S has a similar effect
to correlation
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Heston Model

dv=AV-v)dt+n\vdZ (dW,dZ)=p dt

Solved by Fourier transform:

FWD
K

Cyr (x, v, T) =e' P (x, v, 2')— P, (x, v, 2')

x=In r=1—t
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Spot dependency

2 ways to generate skew in a stochastic vol model

D) o, =x/(S.1)pW,Z)=0

2) op(W,Z)#0 o 4
1 =
N
quo -=ST | -;ST

S

-Mostly equivalent: similar (St,ct ) patterns, similar
future

evolutions

-1) more flexible (and arbitrary!) than 2)

-For short horizons: stoch vol model < local vol model
+ independent noise on vol.
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Convexity Bias

dS = o, dW
ldo? = adZ =~  Elo?|S, =K|=02?
p(W.,Z)=0
NO! only E[af]zo-g
Elo?|S, = K]
5, K

o likely to be high if S, >>5, orS, <<,
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Impact on Models

 Risk Neutral drift for instantaneous forward
variance

 Markov Model:

— = f(S,t)odw fitsinitial smile with local vols (s,¢)

o’ (S,t
& f(S,1)=—=
Elo/|S,=8§]
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Smile dynamlcs Stoch Vol Model (1)

Skew case (r<O) e

Smile §,

— O

Smile S

s S, S m— K

- ATM short term implied still follows the local vols

Elo?r|s, =k |=o(k.T))
- Similar skews as local vol model for short horizons
- Common mistake when computing the smile for another

spot: just change S, forgetting the conditioning on o :
ifS:S, > S* where is the new ¢ ?
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Smile dynamics: Stoch Vol Model (2

* Pure smile case (r=0)

Q

Local vols

 ATM short term implied follows the local vols

* Future skews quite flat, different from local vol
model

* Again, do not forget conditioning of vol by S
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Forward Skew



Forward Skews

In the absence of jump :

model fits market <> VK, T E[GﬂST =K]=0, (K,T)
This constrains

a) the sensitivity of the ATM short term volatility wrt S;

b) the average level of the volatility conditioned to S;=K.

a) tells that the sensitivity and the hedge ratio of vanillas depend on the
calibration to the vanilla, not on local volatility/ stochastic volatility.

To change them, jumps are needed.

But b) does not say anything on the conditional forward skews.
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Sensitivity of ATM volatility / S

At t, short term ATM implied volatility ~ o..

As 0, is random, the sensitivity 95" is defined only in average:
oS

2
E[o).4 _Gtz‘Sét =S +85]=0..(S,+8S,t+ )0, (S, —1)~ aGl(géS,t) -dS
In average, s, follows o .

Optimal hedge of vanilla under calibrated stochastic volatility corresponds to
perfect hedge ratio under LVM.
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