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Motivation

• The classic prescription for hedging the market risk associated with derivatives

positions is to restrict the possible process dynamics sufficiently so that the

payoff can be spanned by (completely) dynamic trading in the underlying

asset(s). This approach introduces model risk.

• We explore alternative strategies for hedging claims written on the price path of

a single underlying asset.

• We are especially interested in replicating strategies that have some degree of

robustness built in.
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Robust Hedging

• A robust hedge strategy is one that theoretically works for two or more models.

• For example, PCP implies that the sale of a European call can be robustly

hedged by buying the underlying stock on margin and also buying the right put.

• As the example shows, robust hedging strategies typically work only for a small

class of claims being hedged. Also, they succeed even under stochastic volatility

and jumps. In fact, they succeed even though volatility of volatility and the

jump arrival rates are unknown. Hence, model risk is largely overcome.

• There may be restrictions on the stochastic process for the underlying asset

price. For example, a long forward position can be robustly replicated by

buying and borrowing only by assuming that dividends are suitably restricted.

• Robust hedging strategies may or may not be (fully) dynamic.
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Overview

There are 3 parts to this talk:

1. Hedging with Static Positions in European Options and their Underlying

2. Hedging with (just) Semi-Static Trading in the Underlying

3. Static Option Hedging plus Semi-Static Trading in their Underlying

Given the time constraint, I will give just one or two examples of each.
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Assumptions

• We assume that there are no frictions, no illiquidity, no default risk on the

overlying, and no arbitrage opportunities.

• The assets which trade continuously include:

– bonds of all maturities

– stocks

– equity forwards of all maturities and delivery prices

– equity futures of all maturities

– standard European equity options of all strikes and maturities.

• In general, future stock prices, interest rates, and dividends are arbitrarily

random, unless specifically indicated otherwise.
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Part 1: Static Hedging with European Options

• A put with strike K has payoff (K − ST )+
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Figure 1: Put Payoff
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Static Hedging with European Options

• A call with strike K has payoff (ST −K)+
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Figure 2: Call Payoff
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Static Hedging of P-I Payoffs

• Appendix 1 proves that for any generalized function f (S) and any scalar κ ≥ 0:

f (S) = f (κ) + f ′(κ)(S − κ)← tangent approximation

+

∞∫

κ

f ′′(K)(S −K)+dK +

κ∫

0

f ′′(K)(K − S)+dK ← tangent correction.

• This decomposition may be interpreted as a Taylor series expansion with

remainder of the final payoff f (·) about the expansion point κ.

• The first two terms give the tangent to the payoff at κ; the last two terms

continuously bend this tangent so it conforms to the nonlinear payoff.

• The payoff of an arbitrary claim has been decomposed into the payoff from

f (κ) bonds, f ′(κ) forward contracts with delivery price κ, f ′′(κ)dK calls struck

above κ, and f ′′(κ)dK puts struck below.
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From Payoffs to Prices

• Recall the decomposition of the payoff function f (S):

f (S) = f (κ) + f ′(κ)(S − κ)

+

∫ κ

0

f ′′(K)(K − S)+dK +

∫ ∞

κ

f ′′(K)(S −K)+dK.

• No arbitrage implies that the initial value V0[f ] can be expressed in terms of

the initial prices of the bond B0, calls C0(K), and puts P0(K) respectively:

V0[f ] = f (κ)B0 + f ′(κ)[C0(κ) − P0(κ)]

+

∫ κ

0

f ′′(K)P0(K)dK +

∫ ∞

κ

f ′′(K)C0(K)dK.

• When κ = F0, the second term vanishes by PCP, and the value decomposes as:

V0[f ] = f (F0)B0︸ ︷︷ ︸
intrinsic value

+

∫ F0

0

f ′′(K)P0(K)dK +

∫ ∞

F0

f ′′(K)C0(K)dK

︸ ︷︷ ︸
time value

.
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Example 1: In-The-Money Call

• Recall the decomposition into intrinsic and time value:

V0[f ] = f (F0)B0 +

∫ F0

0

f ′′(K)P0(K)dK +

∫ ∞

F0

f ′′(K)C0(K)dK.

• For example, suppose the final payoff is that of an in-the-money European call,

i.e. f (S) = (S −Kc)
+, Kc < F0. Formally using the above decomposition with

κ = F0 gives:

C0(Kc) = (F0 −Kc)B0 + P0(Kc),

which is Put Call Parity.

• Thus the equation at the top is a generalization of PCP to multiple options.
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Part 2: Semi-Static Trading in the Underlying

• Thus far, we have only spanned path-independent payoffs. However, for certain

path-dependent payoffs, the payoff can be spanned by just semi-static trading

in the underlying asset.

• By semi-static, we mean that trades can occur each time that the path must be

monitored to compute the payoff of the path-dependent claim. Hence, if the

path is continuously monitored as for some barrier options, trading might be

continuous. We will therefore focus on (the bigger class of) path-dependent

claims with discrete path monitoring.

• As usual, no assumption is made regarding the stochastic process of the

underlying. This is useful because even though a model may have worked well

in the past, there is no guarantee that it will continue to work well in the future.
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Example: Serial Covariance Contract

• Suppose that we partition the time set [0, T ) into n time intervals of the form

[ti, ti+1), where:

0 ≡ t0 ≤ t1 ≤ t2 ≤ ...tn−1 ≤ tn ≡ T.

• Let Fi denote the futures price at time ti for maturity T . We assume

marking-to-market occurs at each ti.

• Suppose that the payoff on a serial covariance contract is defined as:

Covn ≡
1

n− 1

n−1∑

i=1

(
Fi − Fi−1

Fi−1

)(
Fi+1 − Fi

Fi

)
.

In words, the payoff is the average of the products of adjacent returns.

• How do we hedge and price this highly path-dependent payoff?
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Robust Hedging of Covariance Contracts

• Recall that the payoff on a covariance contract was defined as:

Covn ≡
1

n− 1

n−1∑

i=1

(
Fi − Fi−1

Fi−1

)(
Fi+1 − Fi

Fi

)
.

• Let r(t) be the deterministic spot interest rate at time t.

• Suppose we do nothing from day 0 to day 1. If we hold
e
−

∫ tn
ti+1

r(u)du
(Fi−Fi−1)

(n−1)FiFi−1
futures contracts from time ti to time ti+1, i = 1, . . . , n− 1, then we receive(

e
−

∫ tn
ti+1

r(u)du
(Fi−Fi−1)

(n−1)FiFi−1

)
× (Fi+1 − Fi) in marking-to-market proceeds at time

ti+1.

• The future value of these proceeds are
(

(Fi−Fi−1)
(n−1)FiFi−1

)
× (Fi+1 − Fi) by time tn.

• Summing over i = 1, 2, . . . , n− 1, the sum of the future values of the

marking-to-market proceeds by time tn is 1
n−1

n−1∑
i=1

(
Fi−Fi−1

Fi−1

)(
Fi+1−Fi

Fi

)
.
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Pricing Covariance Contracts

• Recall that the payoff on a covariance contract was defined as:

Covn ≡
1

n− 1

n−1∑

i=1

(
Fi − Fi−1

Fi−1

)(
Fi+1 − Fi

Fi

)
.

• The last page showed that by semi-statically trading futures, this payoff could

be perfectly replicated.

• As the initial position is zero futures and as the futures trading strategy is

trivially self-financing, the arbitrage-free value of the payoff on the covariance

contract is zero.
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Why?

• Recall that the payoff on a covariance contract was defined as:

Covn ≡
1

n− 1

n−1∑

i=1

(
Fi − Fi−1

Fi−1

)(
Fi+1 − Fi

Fi

)
.

• It is well known that no arbitrage implies the existence of a probability measure

Q equivalent to the original measure P such that the futures price is a

martingale.

• This martingale is adapted to the futures price process.

• Hence, payoffs of the form
∫ T

0 Nf
t dFt are priced at 0 so long as Nf

t just depends

on time and the futures price path up to t.

• The covariance contract payoff defined above is just a special case.

• All martingales have increments which are uncorrelated. All we have done is to

demonstrate the trading strategy in futures that enforces this result.

• One can also trade cross auto-covariance (for zero if written on futures prices).
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Part 3: Static Option + Semi-static Underlying

• For certain path-dependent payoffs,the payoff can be spanned by combining a

static position in options with semi-static trading in the underlying.

• As usual, no assumption on the stochastic process for the underlying is needed.

• We illustrate with three examples. The first has discrete path monitoring while

the second and third have continuous path monitoring.
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Example 1: Local Variation

• Consider a finite set of discrete times {t0, t1, . . . , tn} at which one can trade

futures contracts.

• Let Fi denote the price traded at on day i, for i = 0, 1, . . . , n.

• For any K > 0, consider the payoff:
n∑

i=1

[1(Fi−1 ≤ K)(Fi −K)+ + 1(Fi−1 > K)(K − Fi)
+],

Thus for each time i, the payoff is zero if there is no cross of K. If there is a

cross from below, the payoff is Fi −K > 0. If there is a cross from above, the

payoff is K − Fi > 0.

• We refer to this payoff as the variation of the F process at time n, localized to

the strike K.

17



Robust Hedging of Local Variation

• It is a tautology that the target payoff
n∑

i=1

[
1(Fi−1 ≤ K)(Fi −K)+ + 1(Fi−1 > K)(K − Fi)

+
]

= (Fn −K)+ − (F0 −K)+ −
n∑

i=1

1(Fi−1 > K)(Fi − Fi−1).

• Hence, the claim paying the local variation can be hedged by buying a call and

eliminating its intrinsic value whenever it is positive by shorting the forward

contract with delivery price K.

• The fair price of the local variation is the initial premium of the OTM option

with the same underlying, strike, and maturity.
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Observations and Generalizations

• By integating K from 0 to infinity, one can also create the payoff
n∑

i=1

(Fi − Fi−1)
2.

• Dividing by n, this payoff is the floating part of a price variance swap.

• More generally, one can create the payoff
n∑

i=1

g(Fi, Fi−1) by combining

semi-static trading in the underlying with a static position in options of all

strikes maturing at tn if and only if g11(Fi, Fi−1) is independent of Fi−1.

• This condition is violated for standard variance swaps and hence exact

replication requires further assumptions.

19



Example 2: Hyper Options

• To the pantheon of exotic options, we introduce HYPER options (High

Yielding Performance Enhancing Reversible options).

• As usual, a hyper option is issued as either a call or a put.

• A hyper option is similar to an American option in that it can be exercised

early, but it also differs from an American option in that it can be exercised an

unlimited number of times.

• Exercising a hyper option not only locks in the exercise value, but it also turns

a hyper call into a hyper put and vice versa.

• Thus after a hyper call is first exercised, it can be exercised next as a put, then

as a call, etc. The strike, maturity, and underlying are never changed.

• Since a hyper option can be exercised an unlimited number of times, all of the

exercise proceeds are deferred without interest to maturity.

• As usual, a hyper option need never be exercised, so it has nonnegative value.
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Hyper Options on Forward Prices

• In this presentation, we will only consider hyper options written on the forward

price F of some underlying asset. We assume that both the hyper option and

the forward contract mature at some fixed date T .

• If a hyper call is exercised at any time t ∈ [0, T ], then the owner will receive

Ft −K at T , where K denotes the strike price of the hyper option.

• Exercising the hyper call converts it into the corresponding hyper put.

• We do not require that the hyper call be ITM for it to be exercised. If the

owner exercises his hyper call while F < K to obtain the ITM hyper put, then

F −K is negative so the owner owes K − F to the writer at maturity.

• If a hyper put is exercised at any time t ∈ [0, T ], then the owner will receive

K − Ft at T and the hyper put reverses into the corresponding hyper call.

• At maturity, the hyper option can be exercised for the final time or it can

expire worthless.
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Get Plenty of Exercise

• We restrict ourselves to exercise strategies which include exercising at maturity

if and only if it is ITM.

• We refer to such a strategy as sensible. Sensible strategies permit exercise prior

to maturity as well.

• We say that a sensible exercise strategy is optimal if it is value maximizing.

• Depending on the price path which is realized, we will show that it can be

optimal for the owner of a hyper option to exercise early one or more times.

• In fact, at any time prior to maturity, there is always positive probability of

multiple optimal early exercises.

• Thus, the writer of a hyper option must find a hedging strategy which defends

against these multiple optimal early exercises.

• Ideally, this hedging strategy would also be immune to model risk.
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The Hyper American

• Recall that a hyper option is a multiply exerciseable American option whose

polarity switches on each exercise.

• Since hyper options can potentially be exercised infinitely often, all exercise

proceeds are deferred without interest to maturity.

• When the hyper option is written on a forward price as we assume, then at any

time there is positive probability of multiple optimal early exercises.

• All of this suggests that a hyper option has greater value than a standard

American option on the forward price (which has a positive early exercise

premium).
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Objects May Appear Larger...

• Assuming only frictionless markets and no arbitrage, we show that a hyper

option has exactly the same value as the corresponding European option,

regardless of the model.

• Thus, no arbitrage forces the hyper call to have the same value as the European

call with the same underlying, strike, and maturity. The analogous statement

holds for puts.

• The reason for these surprising results is that all sensible exercise strategies are

also optimal.

• Note that this result differs from Merton’s classical result for American calls on

non-dividend paying stocks. For these options, the optimal exercise strategy is

to wait to maturity and exercise if and only if the call is ITM then.
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Robust Hedging of Hyper Options

• Let Ch
t and P h

t denote the respective prices at time t ∈ [0, T ] of hyper calls &

puts with fixed strike K & fixed maturity T .

• Let Ce
t and P e

t denote the corresponding European option prices, which satisfy:

Ce
t − P e

t = Bt(Ft −K), t ∈ [0, T ].

• Consider the following polarity matching strategy for hedging the sale of a

hyper option: Buy a call, and

1. If the owner is holding the hyper option as a call, hold nothing else,

otherwise:

2. If the owner is holding the hyper option as a put, also be short a forward

contract struck at K. Thus, the net position is long 1 synthetic put.

• From put call parity written above, this strategy perfectly replicates the payoffs

to a hyper option and hence we conclude from no arbitrage that:

Ch
t = Ce

t P h
t = P e

t , t ∈ [0, T ].
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Concluding Remarks on Hyper Options

• The two examples in this part are linked. The local variation of the price path

arises if the owner of the hyper option adopts an exercise strategy which

monitors the path discretely and exercises as soon as the option is ITM.

• Other exercise strategies can be used to generate upper bounds on the number

of upcrosses or downcrosses of a given spatial interval.

• Roger Lee and I have also looked at hyper options on the spot price and other

variations on the hyper option payoff.
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Example 3: Variance Swaps

• Variance swaps now trade actively over the counter on both stock indices and

stocks.

• The long position in a variance swap pays a fixed amount at the contract’s

maturity in return for a standard estimate of the realized variance of a specified

underlying over the contract’s life.

• The fixed amount is initially determined so that the variance swap is costless to

enter. When converted to an annualized volatility, this fixed amount is called

the variance swap rate.
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Variance Swap Term Sheet
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Variance Swap Quotes
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Robust Replication of Variance Swaps

• Suppose no frictions, arbitrage, or rates and that the underlying spot price S is

positive and continuous. Then under Q:

dSt = σtStdWt, t ∈ [0, T ].

• The payoff on a (continuously monitored) variance swap on $1 of notional is:

1

T

∫ T

0

(
dSt

St

)2

− V S2
0 =

1

T

∫ T

0

σ2
t dt − V S2

0 .
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Robust Replication of Variance Swaps

• Recall that the payoff on a (continuously monitored) variance swap is:

1

T

∫ T

0

(
dSt

St

)2

− V S2
0 =

1

T

∫ T

0

σ2
t dt − V S2

0 ,

where V S0 is the initial variance swap rate.

• This payoff can be spanned without specifying a stochastic process for σ.

• As we will see, the robust replicating strategy combines a static position in

T−maturity options with dynamic trading in the underlying over [0, T ].
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Reminder: Static Hedging of the Log Payoff

• Recall that for general f , for any expansion point κ ≥ 0, and for any S ≥ 0,

f (S) = f (κ)+f ′(κ)(S−κ)+

∫ ∞

κ

f ′′(K)(S−K)+dK +

∫ κ

0

f ′′(K)(K−S)+dK

• In terms of the bond price B0, and call and put prices C0(K) and P0(K), a

claim on any “European-style” payoff f (ST ) has time-0 value

f (κ)B0 + f ′(κ)[C0(κ) − P0(κ)] +

∫ ∞

κ

f ′′(K)C0(K)dK +

∫ κ

0

f ′′(K)P0(K)dK.

• There are no restrictions on the underlying price process, but we do assume the

existence of T -maturity European options of all strikes. See

Breeden-Litzenberger (78) and Carr-Madan (98) for further details.
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Example: log(ST/S0)

• Suppose the payoff to be replicated is XT = log(ST/S0).

• Then expand f (S) := log(S/S0) about κ = S0.

• The initial value of a claim on XT is therefore

−
∫ S0

0

1

K2
P0(K)dK −

∫ ∞

S0

1

K2
C0(K)dK.

So hold −(1/K2)dK units of each out-of-the-money option.

• This decomposition will be useful when we robustly replicate a variance swap.
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Further Assumptions

• Assume no frictions, no arbitrage, and no rates for simplicity.

• Assume a +ve continuous price process S for t ∈ [0, T ], so that under Q

dSt = σtStdWt, t ∈ [0, T ],

where W is a Q standard Brownian motion.

• While S is continuous over time, σ need not be.

• Let Xt := log(St/S0). We want to create the payoff

〈X〉T ≡
∫ T

0

(dXt)
2 =

∫ T

0

(
dSt

St

)2

=

∫ T

0

σ2
t dt.
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Realized Variance and Log Payoffs

• Recalling that Xt := log
(

St
S0

)
and dSt = σtStdWt, Itô’s rule implies:

XT =

∫ T

0

1

St
dSt +

1

2

∫ T

0

(
−1

S2
t

)
σ2

t S
2
t dt =

∫ T

0

1

St
dSt −

1

2

∫ T

0

σ2
t dt.

• So the realized and annualized variance 〈X〉T
T
≡ 1

T

∫ T

0
σ2

t dt is just twice the

difference between the arithmetic mean of the instantaneous returns and their

geometric mean:

〈X〉T
T

=
2

T

[∫ T

0

1

St
dSt −XT

]
=

∫ T

0

2

TSt
dSt

︸ ︷︷ ︸
dynamic underlying

+
2

T
log

(
S0

ST

)

︸ ︷︷ ︸
static options

.
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Robustly Replicating a Variance Swap

• Recall that:

〈X〉T
T
≡

1

T

∫ T

0

σ2
t dt =

∫ T

0

2

TSt
dSt +

2

T
log

(
S0

ST

)
.

• So, a dynamic position in 2
TSt

shares held at each time t combined with a static

options position with initial value:
∫ S0

0

2

TK2
P0(K)dK +

∫ ∞

S0

2

TK2
C0(K)dK,

replicates the payoff to the floating part of a variance swap.
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Summary and General Conclusions

• We have shown how to robustly replicate the payoffs from path-independent

payoffs, serial covariation contracts, local variation contracts, hyper options,

and variance swaps.

• Many of the claims had the same price as a single European option, despite the

fact that their payoff was path-dependent.

• In general, the greater the usage of options in the hedge, the less one is relying

on a model.

• For other examples of robustly replicable payoffs, see my presentation “Hedging

with Options” at:

http://www.math.nyu.edu/research/carrp/papers/pdf/HWOpres4.pdf
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App: Replic’g Payoffs with Bonds & Options

• For any fixed κ, the fundamental theorem of calculus implies:

f (S) = f (κ) + 1S>κ

∫ S

κ

f ′(u)du − 1S<κ

∫ κ

S

f ′(u)du

= f (κ) + 1S>κ

∫ S

κ

[
f ′(κ) +

∫ u

κ

f ′′(v)dv

]
du

−1S<κ

∫ κ

S

[
f ′(κ) −

∫ κ

u

f ′′(v)dv

]
du.

• Noting that f ′(κ) is independent of u, Fubini’s theorem implies:

f (S) = f (κ) + f ′(κ)(S − κ) + 1S>κ

S∫

κ

S∫

v

f ′′(v)dudv

+1S<κ

κ∫

S

v∫

S

f ′′(v)dudv.
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• Integrating over u yields:

f (S) = f (κ) + f ′(κ)(S − κ) + 1S>κ

S∫

κ

f ′′(v)(S − v)dv

+1S<κ

κ∫

S

f ′′(v)(v − S)dv

= f (κ) + f ′(κ)(S − κ) +

∞∫

κ

f ′′(v)(S − v)+dv

+

κ∫

0

f ′′(v)(v − S)+dv.

• Q.E.D. (quite easily done).
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