#### **Black's Model With Default**

PETER CARR

Bloomberg LP and Courant Institute, NYU

Continuous Time Finance Lecture 5

# **Assumptions**

- Zero interest rates.
- ullet Futures price  $F_t$  at time  $t \in [0,T]$  for maturity  $T' \geq T$
- $\bullet$  F: continuous time stochastic process.
- Futures: continuous marking to market.
- ullet  $\mathbb{P}$ : Statistical probability measure
- ullet W: Standard Brownian motion under  $\mathbb{P}$ .
- ullet N: Standard Poisson process under  ${\mathbb P}.$

• Black model:

$$\frac{dF_t}{F_t} = \alpha dt + \sigma dW_t, \qquad t \in [0, T], \tag{1}$$

- $F_0$  and  $\sigma$  known positive constants.
- Cox Ross single jump Poisson model:

$$\frac{dF_t}{F_{t-}} = \mu dt + (e^j - 1)dN_t, \qquad t \in [0, T], \tag{2}$$

- $\bullet$   $F_0$  known positive constant,  $\mu$  and j real numbers of opposite sign.
- ullet In (1) no need to know risk premium lpha
- In (2) no need to know arrival rate  $\lambda_p$

- ullet Both models give complete market  $\Rightarrow$  Unique RN  ${\mathbb Q}$
- ullet After Measure Change  $\mathbb{P} o \mathbb{Q}$ 
  - Black's model: Volatility  $\sigma$  unchanged.
  - Cox Ross model:  $\mu$  and j unchanged.
  - Black model: risk premium  $\alpha = 0$  ( $\mathbb{Q}$  risk-neutral measure).
  - Cox Ross model: risk-neutral arrival rate of a jump is  $\lambda_q \equiv -\frac{\mu}{e^j-1}$ .
- Intuition: no need to know  $\alpha$  in Black's model,  $\lambda_p$  in jump model because info contained in futures price (known).
- ullet  $\alpha$  in Black's model changes,  $\mu$  in pure jump model does not.
- Fundamental Rules:
  - 1.  $\mathbb{Q}$  is defined so that F is a  $\mathbb{Q}$  martingale
  - 2. A change of measure cannot change the numerical value of a parameter that can be estimated with certainty by continuous observation of a (segment of) a single path.

# **Dynamic Duo: Jumping to Default**

- More realistic stochastic process for F combines both processes.
- Waiting time  $\tau$  to the first jump of N: exponentially distributed r.v. with constant parameter  $\lambda_p > 0$ .
- ullet Let au be the default time of the limited liability asset underlying the futures.
- $t < \tau$ :  $F_t$  follows geometric Brownian motion with constant drift  $\alpha$ , constant volatility  $\sigma$ .
- $\bullet$  At  $\tau$ , F drops to zero and remains there afterwards.
- Put it all together (under  $\mathbb{P}$ ):

$$\frac{dF_t}{F_{t-}} = \alpha dt + \sigma dW_t - dN_t, \qquad t \in [0, T], \tag{3}$$

- $F_0$  and  $\sigma$  are known positive constants.
- Comparing (3) with (2), jump size j set to negative infinity, and B.M. has been introduced.
- Once F hits zero, it absorbs there: increments multiplied by  $F_{t-}=0$ .
- No need to know  $\alpha$  or  $\lambda_p$  can actually assume  $\alpha$  real-valued stochastic process,  $\lambda_p$  positive stochastic process.
- ullet Default Indicator Process D: defined by  $D_t=1(N_t>0)$  gives:

$$\frac{dF_t}{F_{t-}} = \alpha dt + \sigma dW_t - dD_t, \qquad t \in [0, T], \tag{4}$$

- (4) is a continuous time trinomial model up to  $\tau$ :
  - Brownian increments generate moves up and down of order  $\sqrt{dt}$
  - The Poisson process generates an O(dt) probability of a large down move in the price of order one.

- Perfect replication of every derivative on futures price path, requires ability to dynamically trade three assets.
- Dynamic trading in just the money market account and the futures contract may work for some payoffs, but it will not suffice for all payoffs.
- Assume futures written on a stock, and introduce a credit default swap (CDS) written on a bond issued by the stock issuer.
- Assume zero recovery rate for the bond for simplicity ⇒ Default event causes both the bond price and the stock price to vanish (think Enron).
- ullet For simplicity, assume that the CDS rate is constant and observable at  $\lambda_q > 0$ .
- Further assume that the CDS rate is paid continuously, rather than periodically.
- ullet As a result, prior to default, an investor can access the payoff  $dD_t \lambda_q dt$  at zero cost.

# **Analysis**

• Let  $V(F,t): \mathbb{R} \times [0,T] \mapsto \mathbb{R}$  be a  $C^{2,1}$  function. Itô's lemma for semi-martingales implies:

$$V(F_{T},T) = V(F_{0},0) + \int_{0}^{T} \frac{\partial V}{\partial F}(F_{t-},t)dF_{t} + \int_{0}^{T} \left[ \frac{\partial V}{\partial t}(F_{t-},t) + \frac{\sigma^{2}F_{t-}^{2}}{2} \frac{\partial^{2}V}{\partial F^{2}}(F_{t-},t) \right] dt + \int_{0}^{T} \left[ V(0,t) - V(F_{t-},t) - \frac{\partial V}{\partial F}(F_{t-},t)(0-F_{t-}) \right] dD_{t}.$$
 (5)

• Add and subtract so that last term in (5) is gain from dynamically trading a CDS:

$$V(F_T,T)$$

$$= V(F_{0}, 0) + \int_{0}^{T} \frac{\partial V}{\partial F}(F_{t-}, t) dF_{t}$$

$$+ \int_{0}^{T} \left\{ \frac{\partial V}{\partial t}(F_{t-}, t) + \frac{\sigma^{2} F_{t-}^{2}}{2} \frac{\partial^{2} V}{\partial F^{2}}(F_{t-}, t) + \lambda_{q} \left[ V(0, t) - V(F_{t-}, t) + \frac{\partial V}{\partial F}(F_{t-}, t) F_{t-} \right] \right\} dt$$

$$+ \int_{0}^{T} \left[ V(0, t) - V(F_{t-}, t) + \frac{\partial V}{\partial F}(F_{t-}, t) F_{t-} \right] (dD_{t} - \lambda_{q} dt).$$
(6)

• Suppose V(F, t) solves the following partial differential difference equation (PDDE):

$$\frac{\partial V}{\partial t}(F,t) + \frac{\sigma^2 F^2}{2} \frac{\partial^2 V}{\partial F^2}(F,t) + \lambda_q \left[ V(0,t) - V(F,t) + \frac{\partial V}{\partial F}(F,t)F \right] = 0, \quad (7)$$

on the domain:  $F > 0, t \in [0, T]$  and with terminal condition:

$$V(F,T) = f(F), \qquad F > 0. \tag{8}$$

- The solution to this Cauchy problem exists and is unique.
- (6) reduces to:

$$f(F_T) = V(F_0, 0) + \int_0^T \frac{\partial V}{\partial F}(F_{t-}, t) dF_t + \int_0^T \left[ V(0, t) - V(F_{t-}, t) + \frac{\partial V}{\partial F}(F_{t-}, t) F_{t-} \right] (dD_t - \lambda_q dt).$$
(9)

- Charge  $V(F_0,0)$  dollars initially hold  $\frac{\partial V}{\partial F}(F_{t-},t)$  futures and  $V(0,t)-V(F_{t-},t)+\frac{\partial V}{\partial F}(F_{t-},t)F_{t-}$  CDS at each  $t\in[0,T]$
- Achieve final payoff  $f(F_T)$ .

• Recall:

$$f(F_{T}) = V(F_{0}, 0) + \int_{0}^{T} \frac{\partial V}{\partial F}(F_{t-}, t) dF_{t} + \int_{0}^{T} \left[ V(0, t) - V(F_{t-}, t) + \frac{\partial V}{\partial F}(F_{t-}, t) F_{t-} \right] (dD_{t} - \lambda_{q} dt).$$

- Positions in the two risky hedge instruments will vanish after the default time.
- Replication is achieved without knowledge of the drift or the arrival rate of jumps (under  $\mathbb{P}$ ).
- If the futures price behaved as in (4), it would be trivial to estimate  $\sigma$ .
- This model has all of the econometric advantages of the simpler Black model: parameters needed to price are easily determined from sample path, quantities which are difficult to estimate from the path are not needed for pricing.

### **Pricing a Call**

- $\bullet \ C(F,t) = V(F,t) \ \ {\rm value \ function \ when \ terminal \ payoff \ is} \ f(F) = (F-K)^+.$
- $f(0) = 0 \Longrightarrow C(0, t) = 0$ .
- PDDE (7) simplifies to the following PDE:

$$\frac{\partial C}{\partial t}(F,t) + \frac{\sigma^2 F^2}{2} \frac{\partial^2 C}{\partial F^2}(F,t) - \lambda_q C(F,t) + \lambda_q F \frac{\partial C}{\partial F}(F,t) = 0 \tag{10}$$

on domain  $F>0, t\in [0,T]$ , w. terminal condition  $C(F,T)=(F-K)^+, F>0.$ 

- ullet This is Black Scholes boundary value problem with F replacing S &  $\lambda_q$  replacing r.
- Defaultable call value is thus:

$$C(F,t) = FN(d_1) - Ke^{-\lambda_q(T-t)}N(d_2),$$
 (11)

$$d_1 \equiv \frac{\ln(F/K) + (\lambda_q + \sigma^2/2)(T - t)}{\sigma\sqrt{T - t}} \qquad d_2 \equiv d_1 - \sigma\sqrt{T - t}. \tag{12}$$

#### **Incomplete Market**

- Suppose that there is no credit default swap.
- Assume (unrealistically) that investors can trade only the futures and the money market account.
- ullet In such a setting, the market is incomplete and the parameter  $\lambda_q$  is not known.
- Call payoff cannot be perfectly replicated  $\Leftrightarrow$  There exists an infinite number of martingale measures  $\mathbb{Q}$ , all consistent with the initial observed futures price  $F_0$ .
- For pricing calls, there is a one to one correspondence between martingale measures  $\mathbb{Q}$  and the parameter  $\lambda_q$  appearing in (11).
- Each martingale measure produces a call value  $C(F, t; \lambda_q)$  obtained by evaluating (11) at the associated  $\lambda_q$ .

# **Call Value Range in Incomplete Market**

- Recall that the Black Scholes call value increases in r, so C increases in  $\lambda_q$ .
- ullet As  $\lambda_q$  approaches zero, the call value approaches the Black model value with volatility  $\sigma$ .
- ullet As  $\lambda_q$  approaches infinity, the call value approaches F.
- ullet The range of arbitrage-free call values is between the Black model value and F.
- This range reduces to a single point, once the market price of the CDS or the market price of another option becomes known.