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The Model

• Described by the SDE for the short rate:

dr = (θ(t)− ar) dt + σ dw (1)

– Orignial Article: Rev. Fin. Stud. 3, no. 4 (1990) 573-592

– See also Sections 23.11-23.12 of Hull(5th edition).

– Our version simplified : a and σ constant.

– AKA Extended Vasicek.

– θ determined uniquely by term structure.
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Solving for r(t)

•
d(eatr) = eat dr + aeatr dt = θ(t)eat dt + eatσ dw,

•
eatr(t) = r(0) +

∫ t

0

θ(s)eas ds + σ

∫ t

0

easdw(s).

• Simplify:

r(t) = r(0)e−at +

∫ t

0

θ(s)e−a(t−s) ds + σ

∫ t

0

e−a(t−s) dw(s). (2)

• Since the starting time is arbitrary:

r(t) = r(s)e−a(t−s) +

∫ t

s

θ(τ )e−a(t−τ) ds + σ

∫ t

s

e−a(t−τ) dw(τ ).

• Note: r(t) is Gaussian.
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Solving for P (t, T )

• P (t, T ) = V (t, r(t)) where V solves the PDE

Vt + (θ(t)− ar)Vr +
1

2
σ2Vrr − rV = 0

• Final-time condition V (T, r) = 1 for all r at t = T .

• Ansatz:

V = A(t, T )e−B(t,T )r(t). (3)

• A and B must satisfy:

At − θ(t)AB +
1

2
σ2AB2 = 0 and Bt − aB + 1 = 0

• Final-time conditions

A(T, T ) = 1 and B(T, T ) = 0.
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• B independent of θ, so solution is same as in Vasicek:

B(t, T ) =
1

a

(
1− e−a(T−t)

)
. (4)

• Solving for A requires integration of θ:

A(t, T ) = exp

[
−

∫ T

t

θ(s)B(s, T ) ds− σ2

2a2
(B(t, T )− T + t)− σ2

4a
B(t, T )2

]
.

(5)
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Determining θ from the term structure at time 0

• Goal: demonstrate the relation

θ(t) =
∂f

∂T
(0, t) + af (0, t) +

σ2

2a
(1− e−2at). (6)

• Note: HJM gives a simple proof of this relation.

• For now, use explicit representation of P (t, T ) given by (3)-(5).

• Recall

f (t, T ) = −∂ log P (t, T )/∂T

.
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• We have

− log P (0, T ) =

∫ T

0

θ(s)B(s, T ) ds+
σ2

2a2
(B(0, T )−T )+

σ2

4a
B(0, T )2 +B(0, T )r0.

• Differentiating and using that B(T, T ) = 0 and ∂TB − 1 = −aB:

f (0, T ) =

∫ T

0

θ(s)∂TB(s, T ) ds−σ2

2a
B(0, T )+

σ2

2a
B(0, T )∂TB(0, T )+∂TB(0, T )r0.

• Differentiating again, get:

∂Tf (0, T ) = θ(T ) +

∫ T

0

θ(s)∂TTB(s, T ) ds− σ2

2a
∂TB(0, T )

+
σ2

2a
[(∂TB(0, T ))2 + B(0, T )∂TTB(0, T )] + ∂TTB(0, T )r0.
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• Combine these equations, and use a∂TB + ∂TTB = 0

• Get:

af (0, T ) + ∂Tf (0, T ) = θ(T )− σ2

2a
(aB + ∂TB) +

σ2

2a
[aB∂TB + (∂TB)2 + B∂TTB].

• Substitute formula for B and simplify, to get

af (0, T ) + ∂Tf (0, T ) = θ(T )− σ2

2a
(1− e−2aT ),

• This is equivalent to (6).
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A convenient representation

• (6)seems to imply need for differentiated term structure ∂Tf (0, T ) for calibration.

• Problem: differentiation amplifies effect of observation-error.

• Actually, need only f .

• Try a representation of the form

r(t) = α(t) + x(t) (7)

• α(t) deterministic, x(t) solves

dx = −ax dt + σ dw with x(0) = 0.
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• Calculation gives

α′ + aα = θ and α(0) = r0

• α(t) + x(t) solves the SDE for r(t) with initial condition.

• Uniqueness ⇒ equals r(t).

• The ODE for α: (eatα)′ = eatθ

• Solution:

α(t) = r0e
−at +

∫ t

0

e−a(t−s)θ(s) ds.
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• Substituting (6), get

α(t) = r0e
−at +

∫ t

0

∂s[e
−a(t−s)f (0, s)] +

σ2

2a
e−a(t−s)(1− e−2as) ds.

• Simplifies to

α(t) = f (0, t) +
σ2

2a2
(1− e−at)2.

• Decomposition (7) expresses r as sum of:

– deterministic α(t) reflecting the term structure at time 0

– random process x(t) entirely independent of market data. Validity of Black’s

formula. The situation is exactly the same as for Vasicek.
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Validity of Black’s formula

• SDE for the interest rate under the forward-risk-neutral measure is

dr = [θ(t)− ar − σ2B(t, T )]dt + σdw

• dw is a Brownian motion under this measure.

• This is a version of Hull-White with a different choice of θ.

• Get bond prices lognormal ⇒ Black’s formula is valid.
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