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The Short Rate Dynamics

• The Vasicek model describes the short rate’s Q dynamics by the following SDE:

drt = (θ − art) dt + σ dwt (1)

where θ, a > 0, and σ are constants.

• An explicit formula for rt: Start with:

d(eatrt) = eat drt + aeatrt dt = θeat dt + eatσ dwt,

• so:

eatrt = r0 + θ

∫ t

0

eas ds + σ

∫ t

0

easdws.

• Simplifying:

rt = r0e
−at +

θ

a
(1− e−at) + σ

∫ t

0

e−a(t−s) dws. (2)
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• Recall

rt = r0e
−at +

θ

a
(1− e−at) + σ

∫ t

0

e−a(t−s) dws. (3)

• As the starting time is arbitrary:

rt = rse
−a(t−s) +

θ

a
(1− e−a(t−s)) + σ

∫ t

s

e−a(t−τ) dwτ . (4)

• (??) implies that rt is Gaussian at each t, with

– expectation:

EQ[rt] = r0e
−at +

θ

a
(1− e−at), and

– variance:

VarQ [rt] = σ2E

[(∫ t

0

e−a(t−s) dw(s)

)2
]

= σ2

∫ t

0

e−2a(t−s) ds =
σ2

2a
(1−e−2at).
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Dynamics of Bond Price

• We now show that the bond price is lognormally distributed in the Vasicek model:

– By definition of the risk-neutral measure Q, the zero coupon bond price is:

Pt(T ) = EQ
[
e−

∫ T
t r(s) ds | Ft

]
. (5)

– ¿From (??), (interchanging t, s)

Pt(T ) = A(t, T )e−B(t,T )rt (6)

–

B(t, T ) =

∫ T

t

e−a(s−t) ds, and

–

A(t, T ) = E
[
e−

∫ T
t {θ

a(1−e−a(s−t))+σ
∫ s
t e−a(s−τ) dw(τ)} ds

]
.

– A(t, T ), B(t, T ) deterministic, rt Gaussian ⇒ Pt(T ) lognormal.
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Explicit Bond Pricing Formula

• Can evaluate A(t, T ), B(t, T ) - see Lamberton & Lapeyre, pages 128-129.

• Alternative approach: use Pt(T ) = V (t, rt), where V (t, r) solves BVP consisting of

PDE:

Vt + (θ − ar)Vr + 1
2σ

2Vrr = rV

subject to the final-time condition V (T, r) = 1 for all r.

• Guess a solution of the form:

V (t, r; T ) = A(t, T )e−B(t,T )r.
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• Considered as functions of t, A(t, T ) and B(t, T ) solve the ODE’s:

–

At − θAB + 1
2σ

2AB2 = 0 and Bt − aB + 1 = 0

subject to:

A(T, T ) = 1 and B(T, T ) = 0.

• Get:

B(t, T ) =
1

a
(1− e−a(T−t))

• and:

A(t, T ) = exp

[(
θ

a
− σ2

2a2

)
(B(t, T )− T + t)− σ2

4a
B2(t, T )

]
.
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Term Structure and Volatility

• Only three parameters ⇒ special term structure.

• By definition, the initial instantaneous forward rate curve f0(T ) = −∂ ln P0(T )
∂T .

• After some calculations, in the Vasicek model, one has:

f0(T ) =
θ

a
+ e−aT

(
r0 −

θ

a

)
− σ2

2a2
(1− e−aT )2.

• Volatility of f , σ(t, T ) is defined by

dft(T ) = (stuff) dt + σ(t, T ) dwt.

• ln Pt(T ) = ln A(t, T )−B(t, T )rt, implies

ft(T ) = −∂T ln A(t, T ) + ∂TB(t, T )rt,

• Itô’s formula gives:

σ(t, T ) = σ∂TB(t, T ) = σe−a(T−t).
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Validity of Black’s Formula

• We now show that Pt(T ) is lognormal under the forward-risk-neutral measure QT .

(The measure under which tradeables normalized by P (t, T ) are martingales.)

• Already know that Pt(T ) is lognormal under the risk-neutral measure Q, but here

we’re interested in a different numeraire.

• Change-of-numeraire in the one-factor setting:

– The risk-neutral measure is associated with the risk-free money-market account

β as numeraire (by definition dβt = rtβt dt with β0 = 1).

– Say N is another numeraire, and Q is the associated equivalent martingale mea-

sure.

– Only positive tradeables can be numeraires, so the risk-neutral process for N is

dNt = rtNt dt + σN
t Nt dwt

where σN
t is in general stochastic and w is a Q standard Brownian motion.
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• Itô’s formula gives:

d

(
βt

Nt

)
= βt d(N−1

t ) + N−1
t dβt

• After some algebra:

d

(
βt

Nt

)
=

βt

Nt
(σN

t )2 dt− βt

Nt
σN

t dwt.

• βt
Nt

is a Q-martingale, i.e.

d

(
βt

Nt

)
= − βt

Nt
σN

t dwt

where w is a Q-Brownian motion.

• Therefore:

dwt = −σN
t dt + dwt.
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• What is the SDE for the short rate in the Vasicek model under the forward-risk-neutral

measure QT?

– Numeraire is Pt(T ) = A(t, T )e−B(t,T )rt

– Ito ⇒ the (uusal lognormal) volatility of Pt(T ) is −B(t, T )σ.

– The preceding calculation gives:

dwt = σB(t, T ) dt + dwt.

– Conclusion:

drt = (θ − art) dt + σ dwt = [θ − art − σ2B(t, T )] dt + σ dwt,

where w is a QT standard Brownian motion.

• This SDE shows that short rates are normal and bond prices are lognormal, as under

the risk-neutral measure Q.
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