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We develop the theory of hedging a European call option in the Black model augmented by the possi-

bility of default in the underlying asset. We model default as a drop to zero and we assume that the credit

default swap rate is constant. In this setting, we show that the call’s payoff can be perfect replicated by

dynamic trading in the underlying futures and in credit default swaps.

I thank the members of Bloomberg’s QFR and QFD groups for their comments. I am solely responsible

for any errors.



I Assumptions

We assume zero interest rates for simplicity. Let Ft be the futures price at time t ∈ [0, T ] for maturity

T ′ ≥ T . We assume that F is a continuous time stochastic process and that the futures contract enjoys

continuous marking to market. Let P denote statistical probability measure.

Let W be a standard Brownian motion under P. In the Black model, one assumes that the futures price

F of the underlying asset is the unique solution of the following stochastic differential equation (SDE):

dFt

Ft

= αdt + σdWt, t ∈ [0, T ], (1)

where F0 and σ are known positive constants.

Let N be a standard Poisson process under P, which starts at zero and jumps by one at independent

exponentially distributed times. In the Cox Ross single jump Poisson model, one alternatively assumes

that F uniquely solves the following SDE:

dFt

Ft−
= µdt + (ej − 1)dNt, t ∈ [0, T ], (2)

where F0 is a known positive constant and µ and j are known real numbers of opposite sign.

In (1), one does not need to know the risk premium α, and in (2), one does not need to know the

arrival rate λp of jumps under P. In both models, dynamic trading in futures and the riskless asset renders

the market complete. As a result, the martingale measure Q that is equivalent to P is unique. When

one changes measure from P to Q in the Black model, the volatility σ is unchanged because it is a path

property. Likewise, when one changes measure from P to Q in the Cox Ross single jump model, µ and

j are unchanged because they are path properties. In contrast, when one changes measure from P to Q

in the Black model, the risk premium α becomes zero (justifying the description of Q as the risk-neutral

measure). Analogously, when one changes measure from P to Q in the Cox Ross single jump model, recall

that the risk-neutral arrival rate of a jump is identified as λq ≡ − µ
ej−1

. Intuitively, one does not need to

know α in the Black model or λp in the pure jump model because their information content is subsumed

1



in the underlying futures price (which is known). Notice that the drift α in the Black model does change

when one changes measures, while the drift µ in the pure jump model does not.

All of these results are consequences of the following two fundamental rules:

1. Q is defined so that F is a Q martingale

2. A change of measure cannot change the numerical value of a parameter that can be estimated with

certainty by continuous observation of a (segment of) a single path.

With all of this in mind, let us develop a third (more realistic) stochastic process for F which combines

the features of the above two processes. First, note that the waiting time τ to the first jump of N is an

exponentially distributed random variable with constant parameter λp > 0. In our application, we will let

τ be the default time of the limited liability asset underlying the futures. Prior to τ , we assume that F

follows geometric Brownian motion with constant drift α and constant volatility σ. At the default time τ ,

we will assume that F drops to zero and remains there afterwards. All of these features are captured if we

let F uniquely solve the following SDE under P:

dFt

Ft−
= αdt + σdWt − dNt, t ∈ [0, T ], (3)

where F0 and σ are known positive constants. Comparing (3) with (2), we see that the jump size j has

been set to negative infinity and that a Brownian motion has been introduced. Once F hits zero, it absorbs

there because increments in t, W , and N are multiplied by Ft− = 0 to get the change in F . We will not

need to know α or λp, so we can actually assume that α is some real-valued stochastic process and that

λp is some positive stochastic process.

It will be convenient to work with a default indicator process D defined by Dt = 1(Nt > 0). The

futures price process is then:

dFt

Ft−
= αdt + σdWt − dDt, t ∈ [0, T ], (4)
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One can think of (4) as a continuous time trinomial model up to the time of default. Prior to the default

time, increments in the Brownian motion generate equally likely small moves up and down of order
√

dt,

while the Poisson process generates an O(dt) probability of a large down move in the price of order one.

In order to perfectly replicate the payoff of every derivative security written on the futures price path, one

needs to be able to dynamically trade three assets. Dynamic trading in just the money market account

and the futures contract may work for some payoffs, but it will not suffice for all payoffs.

To deal with this issue, we think of the futures as written on a stock and we introduce a credit default

swap (CDS) written on a bond issued by the stock issuer. We assume zero recovery rate for the bond

for simplicity. As a result, the default event causes both the bond price and the stock price to vanish

(think Enron). For simplicity, we further assume that the CDS rate is constant and observable at λq > 0.

We further assume that the CDS rate is paid continuously, rather than periodically. As a result, prior to

default, an investor can access the payoff dDt − λqdt at zero cost.

II Analysis

To value European-style path-independent contingent claims, let V (F, t) : R×[0, T ] 7→ R be a C2,1 function.

Let Vt = V (Ft, t) be a continuous time stochastic process, which will eventually be the value process. From

Itô’s lemma for semi-martingales:

V (FT , T ) = V (F0, 0) +

∫ T

0

∂V

∂F
(Ft−, t)dFt +

∫ T

0

[
∂V

∂t
(Ft−, t) +

σ2F 2
t−

2

∂2V

∂F 2
(Ft−, t)

]
dt

+

∫ T

0

[
V (0, t)− V (Ft−, t)− ∂V

∂F
(Ft−, t)(0− Ft−)

]
dDt. (5)
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In order to represent the last term in (5) as the gain from dynamically trading a CDS, suppose that we

add and subtract the same term:

V (FT , T ) = V (F0, 0) +

∫ T

0

∂V

∂F
(Ft−, t)dFt

+

∫ T

0

{
∂V

∂t
(Ft−, t) +

σ2F 2
t−

2

∂2V

∂F 2
(Ft−, t) + λq

[
V (0, t)− V (Ft−, t) +

∂V

∂F
(Ft−, t)Ft−

]}
dt

+

∫ T

0

[
V (0, t)− V (Ft−, t) +

∂V

∂F
(Ft−, t)Ft−

]
(dDt − λqdt). (6)

Suppose we now require that the function V (F, t) solves the following partial differential difference

equation (PDDE):

∂V

∂t
(F, t) +

σ2F 2

2

∂2V

∂F 2
(F, t) + λq

[
V (0, t)− V (F, t) +

∂V

∂F
(F, t)F

]
= 0, (7)

on the domain F > 0, t ∈ [0, T ], subject to the following terminal condition:

V (F, T ) = f(F ), F > 0. (8)

The solution to this Cauchy problem exists and is unique. Then (6) reduces to:

f(FT ) = V (F0, 0) +

∫ T

0

∂V

∂F
(Ft−, t)dFt

+

∫ T

0

[
V (0, t)− V (Ft−, t) +

∂V

∂F
(Ft−, t)Ft−

]
(dDt − λqdt). (9)

Hence, by charging V (F0, 0) dollars initially and holding ∂V
∂F

(Ft−, t) futures and V (0, t) − V (Ft−, t) +

∂V
∂F

(Ft−, t)Ft− credit default swaps at each t ∈ [0, T ], the final payoff f(FT ) is achieved at T . Note that the

positions in the two risky hedge instruments will vanish after the default time.

Also note that replication is achieved without knowledge of the drift or the arrival rate of jumps (under

P). This is fortunate since it is not trivial to determine these parameters from the historical sample path

of the futures price, even if it is constant. Also note that if the futures price behaved as in (4), then it

would be trivial to estimate σ. As a result, this model has all of the econometric advantages of the simpler

Black model in that the parameters which one needs to price are easily determined from the sample path,

while the quantities which are difficult to estimate from the sample path are not needed for pricing.

4



To find the unique solution of the terminal value problem (7) and (8), we specialize the problem to

valuing a European call. Let C(F, t) = V (F, t) be the value function when the terminal payoff f(F ) =

(F −K)+. Since f(0) = 0 in this case, we have C(0, t) = 0 as well. As a result, the PDDE (7) simplifies

to the following PDE:

∂C

∂t
(F, t) +

σ2F 2

2

∂2C

∂F 2
(F, t)− λqC(F, t) + λqF

∂C

∂F
(F, t) = 0, (10)

on the domain F > 0, t ∈ [0, T ], subject to the following terminal condition:

C(F, T ) = (F −K)+, F > 0. (11)

We recognize this problem as the same one that Black Scholes solved, but with F replacing S and λq

replacing r. As a consequence, the defaultable call value is given by:

C(F, t) = FN(d1)−Ke−λq(T−t)N(d2), (12)

where:

d1 ≡
ln(F/K) + (λq + σ2/2)(T − t)

σ
√

T − t
d2 ≡ d1 − σ

√
T − t. (13)

III Incomplete Market

We now suppose that there is no credit default swap. Furthermore, we assume quite unrealistically that

investors cannot trade any other instrument other than the futures and the money market account. In such

a setting, the market is incomplete and the parameter λq is not known. Furthermore, the call payoff cannot

be perfectly replicated. There exists an infinite number of martingale measures Q all consistent with the

initial observed futures price F0. For the purpose of pricing calls, there is a one to one correspondence

between martingale measures Q and the parameter λq appearing in (12). Each martingale measure produces

an arbitrage-free call value C(F, t; λq) obtained by evaluating (12) at the associated λq. Since the martingale

measure is not unique. the arbitrage-free price of the call is not unique.

To determine the range of possible call values, recall that the Black Scholes call value is increasing in r

and hence that C is increasing in λq. As λq approaches zero, we know that the call value approaches the
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Black model value with volatility σ. As λq approaches infinity, we know that the call value approaches F .

As a result, the range of arbitrage-free call values is between the Black model value and F . This range

reduces to a single point, once the market price of the CDS or the market price of another option becomes

known.
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