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Abstract

We consider various methods for an efficient numerical computation of the
Delta vector of a Bermudan swaption in a LIBOR market model setting. All
methods are based on the least-squares Monte Carlo method of Longstaff

& Schwarz (2001). Among them, we present three new approaches: a new
version of the adjoint method introduced by Leclerc et al. (2009), a path-
wise method based on the use of the forward drift, and a likelihood ratio
approach. The new version of the adjoint method shows superior perform-
ance compared with the other methods.

1 Introduction

The computation of Bermudan swaption prices and price sensitivities in

a LIBOR market model (LMM) setting is a demanding task due to the high
dimension of the LMM and the Bermudan character of the payoffs. As
Bermudan swaptions are amongst the most liquidly traded callable LIBOR
exotics, computing their price and sensitivities efficiently is practically very
relevant.

In this paper we focus on the calculation of the Delta vector of a
Bermudan swaption. Based on the least-squares Monte Carlo (LSM) of
Longstaff & Schwarz (2001) for the calculation of the Bermudan swaption
price, we compare standard finite difference methods with variants of the
pathwise method and the likelihood ratio method. We will in particular
introduce a new version of the adjoint method that exhibits superior per-
formance and is easy to understand and to implement.

We will start by introducing different methods for calculating the Deltas
of an interest rate derivative under the LMM, and concentrate on the appli-
cation to Bermudan swaptions thereafter. Finally, we highlight the perform-
ance of the different methods via numerical examples.
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2 Computing Deltas in the LIBOR market model

The Delta A of a derivative is the partial derivative of'its price with respect

to the initial value of the underlying(s). According to Glasserman (2004) and
Korn et al. (2010) there are three main numerical methods to compute it: the
finite difference method (FDM), the pathwise method (PM), and the likelihood ratio
method (LRM).

The FDM is the industry standard as it is easy to implement. The PM is
unbiased and among the three, it has proved to be the most efficient one
given the required smoothness assumptions on the payoff functions are sat-
isfied. If the payoff function is not sufficiently smooth to apply the PM, the
LRM is an unbiased alternative for the computation of Delta.

In this section, we mainly discuss the last two methods and consider the
forward LIBOR rates as the underlyings. For this, we first introduce the basic
notations and concept of the LMM as introduced by Brace et al. (1997) and
Miltersen et al. (1997).

2.1 Basics of the LIBOR market model

We look at the tenor structure 0=T <T <...<T, =Twith é;:Ti+1 —T fori=0,
...,M—1.Given M zero bonds B (t),..., B, (t) with maturities T,..., T,,, we intro-
duce the forward LIBOR rate L(t) at time t for the time interval [T, T , ) as

1 (Bi(t) — Bi+1(t)

L =5\"5m0

) 0<t<T, i=0,....M—1.

Let 77(t) be the index of the next tenor after t, namely T, <t<T By
using the following process
1

n(t)—
B () =Byt [] (1+8L(T), 0<t<T
j=0
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as a numeraire, Jamshidian (1997) introduced a LMM under the spot measure.

The forward LIBORs L (t) under the spot measure have dynamics given by
dLi(t)
Li(t)

= wit)dt + " () dW*(t), te[0,T], i=1,....M—1

(1)

with W*a d-dimensional Brownian motion under the spot measure, deter-
ministic volatility functions ¢;:[0, T) = R%, and drift terms of the form

wil) =y

J=n(t)

8iLi(t)o;" (t)oy(t)

1T+oL(0)

This path dependence of the drift and the high dimension of the LMM
are reasons that Monte Carlo simulation is typically the method of choice
for price or sensitivitiy calculations of LIBOR derivatives.

We perform our simulations onatime grid {t,, ..., t,} 2{T, ....T,,_,}
witht, =T fori= .»M—1and thus N =0 and N =N. Under the spot
measure we use the Euler dlscretrzatron of the Ito formula in In(L, (t)) on
{ty ..., ty} via the new notations L(n) =Lt ), &(n) =t ), and o,(n )— olt)
with

v+ 1) = Liwesp ( (st = 5 ot

)h +\/—U Tl+l> (2)

forn=0,...,N-landi=7(t),...,M—1with drift terms
i
L,(n)oy(n)
i) =o"(n)- y I
sty 1 4iki(M)
whereh =t -t forn=0,...,N-1landZ(1),...,Z(N)~N(0,I)are
independent. Note that we have L(n)=L(N)forn=N.

2.2 Introduction of the pathwise method
To introduce the PM let g(L(T,, ,)) be the discounted payoff function of a gen-

eral LIBOR derivative. Then, the Delta vector has the form

IE" (g(L(Tyn-1))

A (g(L(Ty-1)) = 31(0)

,i=1,...,M

where E* denotes the expectation under the spot measure.

PM is based on interchanging the derivative with respect to L(0) with the
expectation. We then calculate this derivative along each simulated path
IgUT,,_,)
07L( )
if we have (in vector notation)

as and average over all paths. Hence, PM is applicable and unbiased

L(TM—1)))_ )

e f 080
A(g(L(TM_1))—IE( 310)

Asufficient condition for the validity of Equation (3) is the Lipschitz con-
tinuity of g (see Glasserman (2004)). The PM comes in two different variants:
the forward method (FM) and the adjoint method (AM).

2.2.1 The forward method

The FM has been introduced by Glasserman & Zhao (1999). We apply the
FM in the LMM as given by the dynamics (1) and the simulation formula (2)
under the spot measure. Introducing the notation
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I L;
A =22 e Ay = 2
aL(0) aL;(0)
forn=0,...,N,i,j=1, ..., M, the FM for the Delta vector is given by
0g(L(N)) _ 0g(L(N))
ALy = 2220 - 28D A,

3L(0) AL(N)

Further, to calculate the factor A(N) in formula (4), we introduce the (M x

(4)

M)-matrices D(n),n=0,...,N—1,by
aL 1 JaL 1
D(n) = (n;) ie. Dyn) = aLi(n +1)
dL(n) aL;(n)
fori,j=0,...,M—1.By the chain rule we obtain A(N) via the recursion
A(n+1)=Dn)- A(n), ie. Ajn+1) Z Dix(n) - Ayi(n) (5)
forn=0,...,N—1landi,j=0,...,M—1with the initial matrix A(0) =1I,,. Taking

the derivative of both sides of Equation (2) yields the exact formulas of the
recursions (5) in the LMM

Liln + 1) T L Seo(n)Agi(n)
Aji(n +1) = ———Aji(n) + Li(n + 1)hyo;' (n) - ——— i >t
sn +1) = 0= Agln) + Lin + Doy () k:%) Tt abmp | 2
(6)
Ag(n+1) = Agn), i< n(ty) (7)
forn=0,...,N-1,i=0,...,M—1,andj=0, ...,i. Note that the computing

time for (6) is mainly determined by the summation of the right-hand side of

(6), which only is O(M) for each j=1,...
step is bounded by O(M?).

Comparing the recursions (6), (7) with the equation (5) yields the repre-
sentation of the matrix D(n) in the LMM as

,i.Hence, the total time per recursion

1
1
Dn) = Dyftu)ntta)(1)
Dri—1,(t,)(1) Dyi—1,M-1(n)
with entries
1 i< n(ty)
Di(n) =} Liin+1)  Lifn + 1) llo(n)|1* 8ihs .
L0 Tronme ="
. B Li(n + 1)01. (n)oj(n)sjhn P> > )
i(n) = (1 + 8iLi(n))?
0 else.

2.2.2 The adjoint method

For presenting the AM of Giles & Glasserman (2006) we use the notation of
FM. Its main idea is an inversion of the recursion direction to obtain a more
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efficient way to compute the Delta. For this, note that from Equation (4) we
get

stz = 5 o
- 3?;(%” "D(N — 1)D(N — 2)---D(0) -A(0)
=vT(0)
=V'(0). )
where V(0) can be computed backwards on the grid {t,..., ¢} via
Vin)=D"(n) - V(n+ 1) (10)

forn=N-1, .., 0starting with

AL\ "
o= .

Relations (9) and (10) constitute AM. Replacing each D(n) term in the
detailed form of recursion (10),

Z D (n) - Vj(n + 1), (12)
by its explicit value, we obtain
L 1
Vim = 1 Dy )
Li(n)
M-
1+8L ZZL (n+ V)Vi(n + )oj(n) i > n(ts) (13)
Viln) =Viln+1) i < nfta) (14)

forn=N-1,..., 0,i=0,...,M—1, and the start vector (11). As the summation
on the right-hand side of (13) needs a time effort of O(M), the whole effort
per recursion step is bounded by O(M). This leads to a clear advantage of AM
compared with the recursion (6) of FM. A disadvantage of AM is that it needs
more storage space than FM.

2.2.3 Pathwise method under forward drift

To speed up the simulation of the LIBOR paths, Glasserman & Zhao (1999)
recommend the so-called forward drift approximation. This consists of using
the (constant and known) initial LIBOR L(0) in each drift term

— §L;(0)oj(n)

0 = 0. (n) -
Wi () =o' (n) };)pﬂ%( 0) (15)

As a direct consequence, we now have a representation for the forward
drift approximation of the forward LIBORs that does not need a recursion,
namely

n—1
Li(n) = Li(0) exp (Z ((u <l>——||al >h1+fa l+1)> (16)
1=0

forn=0,...,N,andi=0,...,M— 1. We use this concept as the basis for an
alternative pathwise method under forward drift (PFD), which is a biased
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simulation method without the need for recursions. Specifying the simula-
tion formula (16) of the L(N) fori=0, ..., M -1, we get

N;i—1

Li(N;) = Li(0) exp (Z ((Ml Ok —||01 )hl + Vo )z + 1 )) ' (17)

1=0
with Z(1), ..., Z(N) ~ M0,1 ) and £2(l) of formula (15). Taking the derivatives on
both sides of Equation (17) leads to

Li(Ni .
Aij(Ni):‘l{i:j}ﬁ +1{i=j} H_M] A1 oL 0)2 Zhla (Doy(1) (18)

fori,j=0,...,M—1.This allows a direct simulation of the Delta vector via
formula (4). As this method is a direct simulation and as the direction of
simulation plays no role, there is no adjoint version. Of course, the bias (by
using only the initial LIBOR) is a disadvantage. However, the method is fast
and much easier to implement than the exact pathwise methods.

2.3 The likelihood ratio method under forward drift

The forward drift approximation of the last setting and the ideas given in
Glasserman and Zhao (1999) allow the use of an LRM to compute the Delta
vector of a LIBOR derivative. For this, we consider the logarithm of the for-
ward drift approximation in relation (17):

Ni—1

+Z<M1(l)——llm ||>hl+2fo Z(1+1)  (19)

1,..,M-1,7(1),...,ZN) ~ N'(0,1), and ££2(l) as given in (15). We then
)in the common vector form

h‘lLi(Ni) = 11‘114

fori=
rewrite formula (19

X(L(0)) = f(L(0)) + Byo) - Zi(0)
with
lIlLl(N]) Z(l)
X(L(0)) = : eRM Zyg=| 1 | eRV
IIILM_l(N) Z(N)
InL;(0) + 000" (udy ) — Slowr(DI?) by
L) = : e R
InLy—1(0 +Zl o (;LM 1 () = Sllou—11?) by
Vhoo ! (0) Vi 0y (N1 = 1)
\/%O']\—AF_I(O) ‘/hN1_1O‘J\—/Ir_1(N1 — 1) \/hN_1(TZ\—/Ir_1(N — 1)

:BL(O)ER(M—l)x(N*d)

where the matrix B has rank M —1 and thus Y,
M — 1. Also, we have X( (0)) ~ N (z(L(0)), =
payoff function g

T
o= B,‘(O) also has rank

10y Using the alternative form of the

_(In LO(O))
= g(L(N
g < X(1(0)) &(L(N))
and due to Glasserman & Zhao (1999), we can compute the Delta vector in the
forward drift approximation LIBOR framework under the spot measure as:
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. lnLo(0)>>
o) _ (¢ (St

aL(0) 31(0)
o (4 (101000 e, OA(LO)
=5 (2 (i) (x000) oz - )
o(L
= 5 (swevnxo) - anon" =5 - L) o)

where the terms of the matrix Jz (L(0))/JL(0) are given by

Nj—1
(L) 1=} i > )6 <
m(Lo) _ 1{i=j} {i = j}§j tha
0L;(0) Li(0) (1 + &L;(0) P
fori,j=1,...,M—-1. IfB 1s quadratic, i.e. ifwe have M — 1 =N *d, then accord-

ing to Glasserman & Zhao (1999) we obtain the following simplified formula
of Equation (20):

IE*(GLIN)) _ s —1 9A(L(0))
[ ———;
:B—l,ﬂ/

Note in particular that the factor B!z’ in (21) is independent of the ran-
dom numbers and thus only has to be calculated once, independent of
all paths. The advantage of the LRM is that the method needs no smooth-
ness assumptions on the payoff functions. It is further fast to compute,
but tends to be inaccurate as it is both biased and typically admits a high
variance.

3 Computing the Delta vector of a Bermudan

swaption

In this section we specialize to the calculation of the Deltas of a Bermudan
swaption. We will mainly build on the idea of Piterbarg (2003), who used the
LIBOR paths simulated in the LSM algorithm of Longstaff & Schwarz (2001)
together with the computed optimal exercise times to apply the forward ver-
sion of the pathwise method for the calculation of the Deltas.

3.1 Bermudan swaption
A (H x M)-Bermudan swaption on the tenor structure 0=T,<... <T, =Tisan
interest rate derivative giving its owner the right to enter into a fixed-to-
floating interest rate swap at the tenor times between T, and T, ,.Ifan
(H x MyBermudan swaption is exercised at time T with H<r<M-1 then
the owner receives an (r X M)-interest rate swap, i.e. a set of coupons {X,|i=r, ...,
M —1}.In the LMM we have

Xi = pNG; (Li(T) — R),

i=v,...,M—1,

with R the fixed interest rate and N the face value. We call this a payer swap in
case of ¢ =1 or a receiver swap for ¢ =—1.The corresponding Bermudan swap-
tion is then called a payer-Bermudan swaption or a receiver-Bermudan swaption.
Further, each coupon X, is fixed at time T, but will be paid outatT,, . Thus,

X, has to be discounted back from T, , to the current time T, by using the dis-
count factor under the spot measure
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1
14 §Li(Tj)

pv, — BT _
T B (Ti)

j=0

With T the optimal (random!) exercise time, the value V¥
Bermudan swaption under the spot measure is given by

(Z PV1+1X1> : (22)

(T, attime T ofa

VH><M TO

To calculate this price we use the LSM algorithm. The main reason for
this is that besides the (approximate) price of the Bermudan swaption, it
also yields the (approximately) optimal exercise times T along each simu-
lated path.

3.2 Forward method

In addition to our discussion of the PM in Section 2.2, we have to take into
account that the owner of a Bermudan swaption has the choice of the exer-
cise time. Piterbarg (2003) has shown that for calculating the Deltas of a
Bermudan swaption one can use the optimal exercise strategy already deter-
mined during the calculation of’its price. Thus, a pathwise differentiation
with respect to the initial LIBOR vector L(0) is valid. For this, note in particu-
lar thatin the valuation formula(22) for a Bermudan swaption the payoff
components PV, and X fori=r,...,M—1 are both continuously differenti-
able with respect to the components of (0). Thus, suitable differentiation of
both sides of Equation (22)yields

M-1
A (Vif(To)) = B (Z A (PVMXi)) :
i=r (23)
i.e. the PM for calculating the Deltas of an (H X M)-Bermudan swaption is
unbiased. We can thus formulate the FM in the sense of Piterbarg (2003) as:

1. Execute the LSM algorithm and determine the optimal exercise times
along each simulated path.

2. Along each path calculate the Delta vectors of the payments from the
optimal exercise time up to the maturity of the Bermudan swaption
by the FM of Section 2.2.1 and add all these Delta vectors.

3. Take the average of all results over all paths.

Here, the exact forms ofA PV, X)fori=

i+177

have to be calculated by the FM and yield

.M-1landj=0,...,.M-1

A o : 81 A(N)
J (PViaXi) =14 < i} - PVigq - | 9N 8 85(N;) — 21 g |29

The Delta factors Aij(N) are obtained from the recursions (6) and (7).

3.3 Adjoint method
The first suggestion of AM for the calculation of the Delta vector of a
Bermudan swaption is obtained by replacing Step 2 of FM by:

2. Along each path calculate the Delta vector of the payments from the
optimal exercise time up to the maturity of the Bermudan swaption
by the AM of Section 2.2 and add all these Delta vectors.
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Thatis, fori=r,...,M—landj=0,...,M—1wecompute A (PV,  X)by AM
as presented in Sectlon 2.2.2.To avoid a notational conflict w1th the multi-

ple use of the adjoint vector V() of Section 2.2.2, we introduce

9 (PVi1X)

T : ) —
VI = =5

fori=r,...,.M—-1andj=0,...,M—1, leading to

VT(OIT) = A (PVi1X;) .
Due to Equation (9), the Delta vector A (PV, , X) can be obtained by AM as

A (PVi1 X)) = V' (0IT) = VT (Ni|T;) - D(N; — 1) - - D(0) (25)

yielding the Delta vector of the Bermudan swaption as

e ()

To avoid a multiple backward recursion for each time indexi=r, ...,
M —1, Leclerc et al. (2009) introduced a linear algebraic superposition vector
based on the linearity of the backward recursion (25). After starting atT,, |
the superposition vector collects the relevant payments at each payment
time. The exact form of this vector is given by

AT (vHxM To))

V(NM—11Tm-1) n=Ny_1=N
Vi) = DT(N;) - V(N; 4+ 1) + V(N;|T;) e{Njli=r,...,M—2}
D'(n)---DT(N, — 1) - V(N,) n < Ny (26)
DT(n)-+-D"(Nyy — 1) - V(Ny,)  else
forn=N,...,0.Using it, a single backward recursion will be enough to apply

AM for calculating the Deltas
M—1
> V(o) =DT()DT(1)--
i=r

For details, see Leclerc et al. (2009). By formula (29) we obtain a more

efficient version of Step 2 of the AM:

2. Combine the AM of Section 2.2 with the superposition vector of
Equation (26) to compute the Delta vector via the recursion (27) along
each path.

To complete the above AM we note that we obain

.DT(N—1)-V(N).

(27)

8i(Li(N;) — R)

T(INAT,): = 1{i < {\PV. . S G A wh
VI = 10 < s (1 =0 - SEEEAY  as)

fori=r,..,M—-1landj=0,...,M—-1

3.4 Adjoint method — New version

In this section we derive an alternative, simplified version of the AM of
Leclerc et al. (2009) for calculating the Delta vector of a Bermudan swaption
which is unbiased and as efficient as the original version. Note first that

due to the formulae (13) and (14), the operation D'(N) ... D"(N—1) - V(N,|T)
only changes the componentsi+1,...,M—1 of V(N,|T). Due to (28) they equal
zero. So we obtain
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V(0[T;) =D"(0)---D"(N; — 1) - V(N;|T;)

=D'(0)---D'(N; = )D'(Ny)---D'(N = 1) - VINIT) (59
fori=r,...,M—1.Equation (29)yields the basic relation for the new version

of the adJ oint method (NAM):

M-1
> ov(orT) = ZDT —1)- VINi|T3)
) M-1
=) D'(0) 1)-D'(Nj)---D"(N = 1) - V(Ni|Ty)

M-1
=D"(0)---D"(N—1)- ZV(NiITi)

M-1

=D"(0)---D'(N-1) Z( PV1+1X>
Ay Pvl-ﬂxi))T

f— T P T — .
=D'(0)---D'(N—1) ( )

(30)

Clearly, this formula is easier to implement and to understand than the
formula (27). It can be interpreted as formally shifting all payments from
the optimal exercise onwards to the maturity of the Bermudan swaption
and then performing a single backward recursion according to AM back to
the current time.

Further, formula (30) shows an advantage of NAM over FM according to the
statement of Giles & Glasserman (2006): “the adjoint method is beneficial if we are
interested in calculating sensitivities of a single function with respect to multiple changes
in the initial condition.” Although a Bermudan swaption is a portfolio with M —r
instruments, the sum of the payments can be identified as a single payment
that depends on M parameters, the initial LIBORs L (0), ..., L,, ,(0). This inter-
pretation shows that we are indeed in the situation where NAM outperforms
FM. Compared to AM and FM, in the NAM we replace Step 2 of the FM by:

2a. Along each path add the payments from the optimal exercise time to
the maturity of the Bermudan swaption.

2b. Along each path calculate the Delta vector with respect the above
sum by the AM of Section 2 applied to the above sum.

We also give the formula for the derivative of the sum of the payments
after the optimal exercise time in Equation (30):

M—1
P (TP 3 D PV F1{j > ) pNG; - PV,
= > 7). . PVig
dL;(N) 1+ 5iL;(j) e
forj=0,...,M—1.Letus also point out that the NAM is limited to the calcu-

lation of the Deltas because ofits structural form, while the AM of Leclerc
et al. (2009) can also be used for the calculation of other Greeks.

3.5 Pathwise method under forward drift
If we replace Step 2 of the FM by:

2. Along each path calculate the Delta vectors of all payments from the
optimal exercise time to maturity by PFD of Section 2.2.3 and add all
these Delta vectors.
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we obtain the PFD method. It is biased as we apply an unbiased method
to an approximate model. Note that we compute A, PV, X) foralli=r,
...M—-1,j=0,...,M—1via Equation (24) by the pathwise method under
forward drift. There, the matrix A(N) is derived from the direct simulation
formula (18).

3.6 Likelihood ratio method under forward drift

The LRM for the Bermudan swaption Deltas under forward drift as in
Section 3.5 is given by the LRM formula for the components of the A(PV,, X))
fori=r,...,M—1(see formula (20)):

A (PVirX0) = (PVin X)LXL(O) — LT LEL‘(&) - am‘o”J

3L;(0)

forj=1,...,M—1, using the following notation for a matrix or vector A:
I, 0
Alg=A- .
a=4-(g o)

If the matrix By is quadratic, we obtain the simplified version as
formula (21):

. aml(o
Aj (PVis1Xi) = (PVi1Xi) | Z1g0) N \;BL((%J . MJ
aL;(0) Nixd

forj=1,...,M—1.Thus, our LRM algorithm gets a new Step 2:

2. Along each path use the LRM of Section 2.3 to calculate the Delta vec-
tors of all payments from the optimal exercise time to maturity and
add up these Delta vectors.

4 Numerical results
We will illustrate the performance of the different algorithms by some
numerical examples. For this, we compare the FDM, the FM, the AM, its new
version NAM, PFD, and the LRM.

In our first example we consider a (2 x 20)-receiver-Bermudan swaption
and a corresponding (2 X 20)-payer-Bermudan swaption with identical
parameters and assumptions:

e Tenor structure {T,, ..., T, }.

e 0,=T ,—T =025 (year)foralli=0,..., 19.
* Implementation of the forward LIBORs on {t,...,t ,} ={T, ..., T, }.
e h =t  —t =025(year)foralln=0,...,18.

e Face value N'=10,000€.

 Fixed base rate of R=4.5%.

* Flatinitial LIBOR curve of [ (0)=5% foralli=0, ..., 19.

* One-dimensional constant volatility functions g,(t) = ... = ¢,,(t) =20%.

The LSM algorithm with 65,536 paths and antithetic variates yields

Price (€) Standard error
(2x20)-receiver-Bermudan swaption 115.94 0.247839
(2x20)-payer-Bermudan swaption 290.56 0.394865
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For calculating the Delta vector of both Bermudan swaptions we use
exactly the same paths for our six suggested methods. For FDM we use central
differences with mesh size e =0.0000001. Again, we use antithetic variates as vari-
ance reduction methods. The resulting numerical results are summarized
in Figures 1, 2 and Tables 1, 2 of Appendix A.

Figure 1 and Table 1 show the simulated Delta vectors of the receiver-
Bermudan swaption obtained by the six different algorithms. Figure 2 and
Table 2 show the same data for the payer-Bermudan swaption. The results in
both figures are quoted in changes per basis point bp. Thus, we have chosen
bp~ as the basic unit in both figures and both tables.

As FM, AM, and NAM are all implementations of the same PM, their
results agree. They only differ in the direction of the recursion, not in
the results. Further, the results of FDM and PFD are both fully acceptable
although the methods are biased. Only the results of LRM differ a lot from
the remaining ones and exhibit a sawtooth structure. This is due to the fact
that in addition to the model bias, LRM also tends to amplify the variance of
the simulated input.

To judge the efficiency of the algorithms we look at the second exam-
ple, the (2 x M)-receiver-Bermudan swaptions for M =4, 8, 12, 16, 20, 24. We
again apply all six methods with the same 65,536 simulated paths. Figure 3
compares the relative computing times' of the algorithms to determine the
Delta vectors of the (2 X M)-receiver-Bermudan swaptions with M =4, 8, 12,
16, 20, 24. Clearly, FDM is the slowest method with a near linearly increas-
ing time line. Further, FM is more efficient than FDM, but needs more time
than the remaining four methods. To explore the differences in efficiency
of these methods, we consider Figure 4, which is a part of Figure 3 but on
a different scale. Figure 4 admits that the time lines of all four methods
also have a nearly linear form. However, we can see that the two adjoint
methods perform best, with NAM slightly outperforming AM. Although
slightly slower, the relative time consumptions of LRM and PFD are of the
same order as those of NAM and AM. We further note that FDM sometimes
causes overflow and thus lacks stability, which is not the case for the other
five methods.

We summarize our (subjective) ranking of the six methods with regard
to different characteristics in Table 3.

Thus, the NAM is the method of choice for computing the Delta vector of
a Bermudan swaption. Due to its simplicity, efficiency, and acceptable accu-
racy, PFD is also a good choice although biased. LRM performs worst overall.
However, in the case of a non-smooth payoffit might be the only applicable
method. Then, one should take great care in enhancing it with a good vari-
ance reduction method.

Also, our methods can be applied for the calculation of the Delta vec-
tors of other callable LIBOR exotics such as callable capped floaters and callable
inverse floaters. They only differ from the Bermudan swaptions by the cou-
pons X.. In the case of non-Lipschitz continuous coupons X, there remains
LRM as an admissible method.

There are further modern approaches of research in this area. One is the
use of the predictor-corrector method of Denson & Joshi (2011) who derive
the AM for the predictor-corrector drift approximation in the displaced-
diffusion LMM to improve its accuracy. Another aspect is the development of
the algorithmic differentiation of Capriotti & Giles (2011). It can be used as a
design paradigm to implement the AM for Greeks in full generality and with
minimal analytical effort.
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ENDNOTE , i

1. Relative computing fime = Time to compute the Delta vector of the Bermudan swaption
. puting ~ Time to compute the price of the Bermudan swaption
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Appendix A. Numerical results: Graphs and tables

Figure 1: Delta vectors of a (2 x 20)-receiver-Bermudan swaption.
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Figure 2: Delta vectors of a (2 x 20)-payer-Bermudan swaption.
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Figure 3: Relative computing time of the six different algorithms.
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Figure 4: Relative computing time of the four efficient algorithms.
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Table 3: Summary of different characteristics of the six methods.

Accuracy
high « —low
FM = AM = NAM FDM = PFD LRM
Speed
fast « — slow
AM = NAM = PFD = LRM FM FDM
Stability
stable « — unstable
FM = AM = NAM = PFD = LRM FDM
Implementation
easy ¢ — difficult
FDM PFD FM NAM AM = LRM
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