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Abstract
The recent financial crisis caused dramatic widening and elevated volatili-
ties among basis spreads in cross-currency as well as domestic interest rate 
markets. Furthermore, the widespread use of cash collateral, especially in 
fixed-income contracts, has made the effective funding cost of financial 
institutions for the trades significantly different from the Libor of the cor-
responding payment currency. Because of these market developments, 
the textbook-style application of a market model of interest rates has now 
become inappropriate for financial firms; it cannot even reflect the expo-
sures to these basis spreads in pricing, to say nothing of proper delta and 
vega (or kappa) hedges against their movements. This paper presents a new 
framework of the market model to address all these issues.

Keywords
market model, HJM model, Libor, tenor, swap, curve, OIS, cross-currency, 
basis spread, interest rate model, derivatives, multi-currency

1 Introduction
The recent financial crisis and the following liquidity and credit squeeze 
have caused significant widening and elevated volatilities among various 
types of basis spread.1 In particular, we have witnessed dramatic moves in 
cross-currency swap (CCS), Libor-OIS, and tenor swap2 (TS) basis spreads. On 
some occasions, the size of spreads has exceeded several tens of basis points, 
which is far wider than the general size of bid/offer spreads. Furthermore, 
there has been a dramatic increase of collateralization in financial contracts 
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in recent years, and it has become almost a market standard at least in the 
fixed-income world [11]. As will be seen later, the existence of collateral 
 agreement reduces the discounting rate significantly relative to the Libor of 
a given currency through frequent mark-to-market and collateral postings 
that follow. Although the Libor market model has been widely used among 
market participants since its invention, its textbook-style application does 
not provide an appropriate tool to handle these new realities; it can only treat 
one type of Libor, and is unable to reflect the movement of spreads among 
Libors with different tenors. The discounting of a future cash flow is done 
by the same Libor, which does not reflect the existence of collaterals and the 
funding cost differentials among multiple currencies in CCS markets.3

As a response to these market developments, the invention of a more 
sophisticated financial model which is able to reflect all the relevant swap 
prices and their behavior has risen as an urgent task among academics and 
market participants. Surprisingly, it is not at all a trivial task even construct-
ing a set of yield curves explaining the various swap prices in the market 
consistently while keeping no-arbitrage conditions intact. Ametrano and 
Bianchetti (2009) proposed a simple scheme that is able to recover the level 
of each swap rate in the market, but gives rise to arbitrage possibilities due 
to the existence of multiple discounting rates within a single currency. 
The model proposed by Bianchetti (2008) using a multi-currency analogy 
does not seem to be a practical solution, although it is at least free from 
arbitrage. The main problem of the model is that the curve calibration can-
not be separated from the option calibration due to the entanglement of 
volatility specifications, since it treats the usual Libor payment as a quanto 
of different currencies with a pegged FX rate. It also makes the daily hedge 
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against the move of basis spreads quite complicated. In addition, neither 
Bianchetti (2008) nor Ametrano and Bianchetti (2009) have discussed how 
to make the model consistent with the collateralization and cross-currency 
swap markets.

Our recent work, “A note on construction of multiple swap curves with 
and without collateral” (Fujii, Shimada, and Takahashi, 2009) has developed 
a method of swap-curve construction which allows us to treat overnight 
index swaps (OIS), interest rate swaps (IRS), tenor swaps (TS), and cross-
currency swaps (CCS) consistently with explicit considerations of the effects 
from collateralization. The current paper presents a framework of stochas-
tic interest rate models with dynamic basis spreads addressing all the above-
mentioned issues, whereas the output of curve calibrations in our recent 
work (Fujii et al.) can be used directly as a starting point of simulation. In 
the most generic setup, there remained a difficulty in calibrating all the 
parameters due to the lack of separate quotes of foreign currency collateral-
ized swaps in the current market. This new work presents a simplified but 
practical way of implementation which allows exact fits to the domestic cur-
rency collateralized OIS, IRS, and TS, together with FX forward and mark-to-
market CCS (MtMCCS) without referring to the quotes of foreign collateral-
ized products. Also, this paper adopts an HJM (Heath–Jarrow–Morton)-type 
framework just for clarity of presentation: of course, it is quite straightfor-
ward to write the model using discretized interest rates, which becomes 
an extension of the Libor and swap market models; see Brace, Gataek, and 
Musiela, (1997) and Jamshidian (1997). Since our motivation is to explain 
the generic modeling framework, the details of volatility processes are not 
specified. Analytic expressions of vanilla options and implications for the 
risk management of various types of exotics will be presented elsewhere in 
the future, adopting a fully specified model.

The organization of the paper is as follows: the next section firstly 
reminds readers of the pricing formula under the collateral agreement. 
Then, after reviewing the fundamental interest rate products, it presents 
the modeling framework with stochastic basis spreads in a single-currency 
environment, which enables us to explain these instruments consist-
ently. Section 3 extends the model into the multi-currency environment 
and explains how to make the model consistent with the FX forward and 
MtMCCS. Finally, after Section 4 briefly comments on inflation modeling, 
Section 5 concludes.

2 Single-Currency Market
This section develops a HJM-type framework of an interest rate model in 
a single-currency market. Our goal is to construct a framework which is 
able to explain all the OIS, IRS, and TS markets consistently in a unified 
way. Here, it is assumed that every trade has a collateral agreement using 
a domestic currency as collateral.4 

2.1 Collateralization
Firstly, let us briefly explain the effects of collateralization. Under the collat-
eral agreement, the firm receives the collateral from the counterparty when 
the present value of the net position is positive and needs to pay the margin 
called “collateral rate” on the outstanding collateral in exchange. On the 
other hand, if the present value of the net position is negative, the firm is 
asked to post the collateral to the counterparty and receives the  collateral 

rate in return. Although the details can possibly differ trade by trade due to 
the OTC nature of the fixed-income market, the most commonly used col-
lateral is a currency of developed countries, such as USD, EUR, or JPY [11]. 
In this case, the collateral rate is usually fixed by the overnight rate of the 
collateral currency: for example, Fed-Fund rate, EONIA, Mutan for USD, EUR, 
JPY, respectively.

In the general setup, pricing of collateralized products is very hard due 
to the non-linearity arising from the residual credit risk. Due to the netting 
procedures, the pricing of each product becomes dependent on the whole 
contracts with the counterparty, which makes the use of a model impracti-
cal for daily pricing and hedging. In order to make the problem tractable, we 
will assume perfect and continuous collateralization with zero threshold by 
cash, which means that the mark-to-market and collateral posting is to be 
made continuously, and the posted amount of cash is 100 percent of the con-
tract’s present value. Actually, the daily mark-to-market and adjustment of 
collateral amount is the market best practice, and the approximation should 
not be too far from the reality. Under the above simplification, we can think 
that there remains no counterparty default risk and recover the linearity 
among different payments. This means that a generic derivative is treated as 
a portfolio of the independently collateralized strips of payments.

We would like to ask readers to consult section 3 of Fujii et al. (2009) for 
details, but the present value of a collateralized derivative with payment h(T) 
at time T is given by:5 

 

h(t) = EQ
t

⎡
⎣e

−
T∫
t

c(s)ds
h(T)

⎤
⎦ ,  (2.1)

where E
t

Q [·] denotes the expectation under the money market (MM) measure 
Q conditioned on the time-t filtration, and c(s) is the time-s value of the col-
lateral rate. Note that c(s) is not necessarily equal to the risk-free interest rate 
r(s) of a given currency.

For our later purpose, let us define the collateralized zero-coupon 
bond D as 

 

D(t, T) = EQ
t

⎡
⎣e

−
T∫
t

c(s)ds

⎤
⎦ ,  (2.2)

which is the present value of the unit amount of payment under the con-
tract of continuous collateralization with the same currency. In later sec-
tions, we will frequently use the expectation Et  

c
[ · ] under the collateralized 

forward measure t  c defined as 

 
EQ

t

[
e− ∫ T

t c(s)dsh(T)
]

= D(t, T)E
T c

t [h(T)] ,  (2.3)

where the collateralized zero-coupon bond D(·,T) is used as numeraire.

2.2 Market Instruments
Before going on to discuss the modeling framework, this subsection briefly 
summarizes the important swaps in a domestic market as well as the condi-
tions that par swap rates have to satisfy. They are the most important calibra-
tion instruments to fix the starting points of simulation.
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2.2.1 Overnight Index Swap 

An OIS is a fixed vs f loating swap whose floating rate is given by the 
daily compounded overnight rate. Since the overnight rate is the same as 
the collateral rate of the corresponding currency, the following relation 
holds:6 

 

OISN(t)
N∑

n=1

�nEQ
t

[
e− ∫ Tn

t c(s)ds
]

=
N∑

n=1

EQ
t

⎡
⎢⎣e− ∫ Tn

t c(s)ds

(
e
∫ Tn

Tn−1
c(s)ds − 1

)⎤
⎥⎦ ,  (2.4)

or equivalently, 

 
OISN(t)

N∑
n=1

�nD(t, Tn) = D(t, T0) − D(t, TN),  (2.5)

where OIS
N
 (t) = OIS (t,T

0
,T

N
) is the market quote at time t of the T

0
-start 

T
N
-maturing OIS rate, and T

0
 is the effective date in the case of spot-start OIS. 

Also, Δ
n
 denotes the fixed-leg day count fraction for the period (T

n–1
,T

n
). 

2.2.2 Interest Rate Swap 

In an IRS, two parties exchange a fixed coupon and Libor for a certain period 
with a given frequency. The tenor t  of Libor is determined by the frequency 
of floating payments (6m tenor for semi-annual payments, for example). For 
a T

0
-start T

M
-maturing IRS with Libor of tenor t, we have 

 
IRSM(t)

M∑
m=1

�mD(t, Tm) =
M∑

m=1

δmD(t, Tm)E
T c
m

t [L(Tm−1, Tm; τ )]  (2.6)

as consistency condition. Here, IRS
M
 (t) = IRS(t, T

0
,T

M
; t ) is the time-t value of 

the corresponding IRS quote, L(T
m–1

,T
m

;t ) is the Libor rate with tenor t  for 
a period (T

m–1
, T

m
), and d

m
 is its day count fraction. In the remainder of this 

paper, we distinguish the difference in day count conventions between the 
fixed and floating legs by Δ and d, respectively.

Here, it is assumed that the frequencies of both legs are equal just for 
simplicity, and it does not affect our later arguments even if this is not 
the case. Usually, IRS with a specific choice of t  has dominant liquidity 
in a given currency market, such as 6m for JPY IRS and 3m for USD IRS. 
Information on forward Libors with other tenors is provided by tenor swaps, 
which will be explained next.

2.2.3 Tenor Swap

A tenor swap is a floating vs floating swap where the parties exchange 
Libors with different tenors with a fixed spread on one side, which we call 
the TS basis spread in this paper. Usually, the spread is added on top of the 
Libor with shorter tenor. For example, in a 3m/6m tenor swap, quarterly pay-
ments with 3m Libor plus spread are exchanged by semi-annual payments of 
6m Libor flat. The condition that the tenor spread should satisfy is given by 

N∑
n=1

δnD(t, Tn)
(
E

τ c
n

t [L(Tn−1, Tn; τS)] + TS(t)
)

=
M∑

m=1

δmD(t, Tm)E
τ c
m

t [L(Tm−1, Tm; τL)],  (2.7)

where T
N
 = T

M
, m, and n distinguish the difference in payment frequency. 

TS(t) = TS(t, T
0
, T

N
;t

S
, t

L
) denotes the time-t value of the TS basis spread for the 

T
0
-start T

N
-maturing tenor swap. The spread is added on to the Libor with 

shorter tenor t
s
 in exchange for the Libor with longer tenor t

L
.

Here, we have explained the use of slightly simplified terms of the con-
tract. In the actual market, terms of the contract in which coupons of the leg 
with the shorter tenor are compounded by Libor flat and paid with the same 
frequency as the other leg are more popular. However, the size of correction 
from the above simplified result can be shown to be negligibly small. See 
Appendix A for details.

2.2.4 Underlying Factors in the Model

Using the above instruments and the method explained in Fujii et al. (2009), 
we can extract 

 {D(t, T)}, {Eτ c

t [L(T − τ , T; τ )]}  (2.8)

for continuous time T [ [0, T
H
], where T

H
 is the time horizon of relevant pric-

ing,7 with each relevant tenor t  (1m, 3m, 6m, 12m, for example).8 The next 
section will explain how to make these underlying factors consistent with 
no-arbitrage conditions in an HJM-type framework.

2.3 Model with Dynamic Basis Spreads in a Single Currency
As seen in Section 2.1, the collateral rate plays a critical role as the effective 
discounting rate, which leads us to consider its dynamics first. Let us define 
the continuous forward collateral rate as 

 
c(t, T) = − ∂

∂T
lnD(t, T)  (2.9)

or, equivalently, 

 D(t, T) = e
−

T∫
t

c(t,s)ds
,
 (2.10)

where it is related to the spot rate as c(t,t) = c(t). Then, assume that the dynam-
ics of the forward collateral rate under the MM measure Q is given by 

 dc(t, s) = α(t, s)dt + σc(t, s) · dWQ (t),  (2.11)

where a (t,s) is a scalar function for its drift, and WQ(t) is a d-dimensional 
Brownian motion under the Q-measure. s

c
(t,s) is a d-dimensional vector and 

the following abbreviation has been used: 

 

σc(t, s) · dWQ (t) =
d∑

j=1

[σc(t, s)]j dWQ
j (t).  (2.12)

As mentioned in the Introduction, the details of the volatility process 
will not be specified; it can depend on the collateral rate itself, or any other 
state variables.

Applying Itô’s formula to (2.10), we have 

 

dD(t, T)

D(t, T)
=

{
c(t) −

∫ T

t
α(t, s)ds + 1

2

∥∥∥∥
∫ T

t
σc (t, s)ds

∥∥∥∥
2
}

dt

−
(∫ T

t
σc(t, s)ds

)
· dWQ

t .  (2.13)

On the other hand, from the definition of (2.2), the drift rate of D(t,T) 
should be c(t). Therefore, it is necessary that 
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The list of what we need only consists of these two types of underlying. As 
one can see, there is no explicit need to simulate the risk-free interest rate in 
a single-currency environment if all the interested trades are collateralized 
with the same domestic currency. Let us summarize the relevant equations: 

 

dc(t, s) = σc(t, s) ·
⎛
⎝ s∫

t

σc(t, u)du

⎞
⎠ dt + σc(t, s) · dWQ (t), (2.24)

 

dB(t, T; τ )

B(t, T; τ )
= σB(t, T; τ ) ·

⎛
⎝ T∫

t

σc(t, s)ds

⎞
⎠ dt + σB(t, T; τ ) · dWQ (t).  (2.25)

Since we already have {c(t,s)}
s ≥ t

, and {B(t,T;t)}
T ≥ t

 teach for the relevant 
tenor, after curve construction as explained in Fujii et al. (2009), we can use 
them directly as starting points for simulation. If one needs an equity proc-
ess S(t) with an effective dividend yield given by q(t) with the same collateral 
agreement, we can model it as 

 dS(t)/S(t) = (c(t) − q(t)) dt + σS(t) · dWQ (t), (2.26)

and s
S
 and q can be state dependent. Note that the effective dividend yield q 

is not equal to the dividend yield in the non-collateralized trade, but should 
be adjusted by the difference between the collateral rate and the risk-free 
rate.10 In practice, it is likely not a big problem to use the same value or 
process as the usual definition of dividend yield. Here, we are not trying to 
reflect the details of repo cost for an individual stock, but rather trying to 
model a stock index, such as S&P500, for IR–equity hybrid trades.

2.4 Simple Options in a Single Currency
This subsection explains the procedures for simple option pricing in a 
single-currency environment. In the following, suppose that all the forward 
and option contracts themselves are collateralized with the same domestic 
currency.

2.4.1 Collateralized Overnight Index Swaption

As was seen in Section 2.2.1, a T
0
-start T

N
-maturing forward OIS rate at time t 

is given by 

 

OIS(t, T0, TN) = D(t, T0) − D(t, TN)
N∑

n=1
�nD(t, Tn)

.  (2.27)

When the length of OIS is very short and there is only one final payment, 
we can get the correct expression by simply replacing the annuity in the 
denominator by Δ

N 
D (t,T

N
), a collateralized zero-coupon bond times a day 

count fraction for the fixed payment.
Under the annuity measure A, where the annuity A (t,T

0
,T

N
) = ΣN

n=1
 Δ

n
 

D(t,T
n
) is being used as numeraire, the above OIS rate becomes a martingale. 

Therefore, the present value of a collateralized payer option on the OIS with 
strike K is given by 

 PV(t) = A(t, T0, TN)EAt
[
(OIS(T0, T0, TN) − K)+

]
,  (2.28)

 

α(t, s) =
d∑

j=1

[σc(t, s)]j

⎛
⎝ s∫

t

σc(t, u)du

⎞
⎠

j

 (2.14)

 

= σc(t, s) ·
⎛
⎝ s∫

t

σc(t, u)du

⎞
⎠ ,  (2.15)

and as a result, the process of c(t,s) under the Q-measure is obtained by 

 

dc(t, s) = σc(t, s) ·
⎛
⎝ s∫

t

σc(t, u)du

⎞
⎠ dt + σc(t, s) · dWQ (t).  (2.16)

Now, let us consider the dynamics of Libors with various tenors. 
Mercurio [14] has proposed an interesting simulation scheme.9 He follows 
the original idea of the Libor market model, and has modeled the market 
observables or forward expectations of Libors directly, instead of consider-
ing the corresponding spot process as in Bianchetti (2008). We will adopt 
Mercurio’s scheme, but separating the spread processes explicitly.

Firstly, define the collateralized forward Libor, and the OIS forward as 

 
Lc(t, Tk−1, Tk; τ ) = E

τ c
k

t [L(Tk−1, Tk; τ )] ,  (2.17)

 
LOIS(t, Tk−1, Tk) = E

τ c
k

t

[
1

δk

(
1

D(Tk−1, Tk)
− 1

)]
 (2.18)

 
= 1

δk

(
D(t, Tk−1)

D(t, Tk)
− 1

)
,  (2.19)

and also define the Libor–OIS spread process: 

 
B(t, Tk; τ ) = Lc(t, Tk−1, Tk; τ ) − LOIS(t, Tk−1, Tk).  (2.20)

By construction, B(t,T;t ) is a martingale under the collateralized forward 
measure t c, and its stochastic differential equation can be written 

 dB(t, T; τ ) = B(t, T; τ )σB(t, T; τ ) · dW
Tc

(t), (2.21)

where the d-dimensional volatility function s
B
 can depend on B or other 

state variables as before. Using Maruyama–Girsanov’s theorem, one can see 
that the Brownian motion under the t c-measure, Wt c

 (t), is related to WQ(t) by 
the  following relation: 

 

dW
Tc

(t) =
⎛
⎝ T∫

t

σc(t, s)ds

⎞
⎠ dt + dWQ (t).  (2.22)

As a result, the process of B(t,T;t ) under the Q-measure is obtained by 

 

dB(t, T; τ )

B(t, T; τ )
= σB(t, T; τ ) ·

⎛
⎝ T∫

t

σc(t, s)ds

⎞
⎠ dt + σB(t, T; τ ) · dWQ (t).  (2.23)

We need to specify the B-processes for all the relevant tenors in the market 
(1m, 3m, 6m, and 12m, for example). If one wants to guarantee the positivity 
for B(·, T;t

S
) where t

L
 > t

S
, it is possible to model this spread as (2.23) directly.
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dSpOIS(t, T0, TN; τ ) = SpOIS(t)

⎧⎪⎨
⎪⎩

1

A(t, T0, TN)

N∑
j=1

�jD(t, Tj)

⎛
⎜⎝

Tj∫
T0

σc(t, s)ds

⎞
⎟⎠

+ 1

Asp(t, T0, TN; τ )

N∑
n=1

δnD(t, Tn)B(t, Tn; τ )

×

⎛
⎜⎝σB(t, Tn; τ ) −

Tn∫
T0

σc(t, s)ds

⎞
⎟⎠

⎫⎪⎬
⎪⎭ · dW (t),  (2.35)

where we have defined 

 
Asp(t, T0, TN; τ ) =

N∑
n=1

δnD(t, Tn)B(t, Tn; τ )  (2.36)

Since the IRS forward rate is a martingale under the annuity measure A, 
the present value of a T

0
 into T

N
 collateralized payer swaption is expressed as 

 
PV(t) = A(t, T0, TN)EAt

[(
OIS(T0, T0, TN) + SpOIS(T0, T0, TN; τ ) − K

)+]
.  (2.37)

As in the previous OIS case, we can use the asymptotic expansion tech-
nique or other methods to derive an analytic approximation for this option.

2.4.3 Collateralized Tenor Swaption

Finally, consider an option on a tenor swap. From Section 2.2.3, the for-
ward TS spread for a collateralized T

0
-start T

N
(= T

M
)-maturing swap which 

 exchanges Libors with tenors t
S
 and t

L
 is given by 

 

TS(t, T0, TN; τS, τL)

=

M∑
m=1

δmD(t, Tm)Lc(t, Tm−1, Tm; τL) −
N∑

n=1
δnD(t, Tn)Lc(t, Tn−1, Tn; τS)

N∑
n=1

δnD(t, Tn)

=

M∑
m=1

δmD(t, Tm)B(t, Tm; τL)

N∑
n=1

δnD(t, Tn)

−

N∑
n=1

δnD(t, Tn)B(t, Tn; τL)

N∑
n=1

δnD(t, Tn)

 (2.38)

where we have distinguished the different payment frequencies by n and m. 
In the case of a 3m/6m tenor swap, for example, N = 2M, t

S
 = 3m, and t

L
 = 6m. 

Since the two terms in (2.38) are equal to SpOIS except for the difference in day 
count conventions, the tenor swaption is basically equivalent to a spread 
option between two different SpOISs. The present value of a collateralized 
payer tenor swaption with strike K can be expressed as 

 

PV(t) =
(

N∑
n=1

δnD(t, Tn)

)
EÂt

[
(TS(T0, T0, TN; τS, τL) − K)+

]
.  (2.39)

Here, E
t

A~[·] denotes the expectation under the annuity measure with day 
count fraction specified by that of the floating leg, δ.

where one can show that the stochastic differential equation for the 
 forward OIS is given as follows under the A-measure: 

dOIS(t, T0, TN) = OIS(t, T0, TN)

⎧⎪⎨
⎪⎩

D(t, TN)

D(t, T0) − D(t, TN)

⎛
⎜⎝

TN∫
T0

σc(t, s)ds

⎞
⎟⎠

+ 1

A(t, T0, TN)

N∑
n=1

�nD(t, Tn)

⎛
⎜⎝

Tn∫
T0

σc(t, s)ds

⎞
⎟⎠

⎫⎪⎬
⎪⎭ · dWA(t),  (2.29)

where WA(t) is the Brownian motion under the A-measure, and is related to 
WQ(t) as 

 

dWA(t) = dWQ (t) + 1

A(t, T0, TN)

N∑
n=1

�nD(t, Tn)

⎛
⎝ Tn∫

t

σc(t, s)ds

⎞
⎠ dt. (2.30)

We can derive an accurate approximation of (2.28) by applying an 
asymptotic expansion technique (e.g., Takashashi, 1995; Takashashi, 1999; 
Takashashi, Takehara, and Toda, 2009), or ad hoc but simpler methods 
given, for example, by Brigo and Mercurio (2006).

2.4.2 Collateralized Interest Rate Swaption

Next, let us consider the usual swaption with the collateral agreement. As 
we have seen in Section 2.2.2, a T

0
-start T

N
-maturing collateralized forward 

swap rate is given by 

 

IRS(t, T0, TN; τ ) =

N∑
n=1

δnD(t, Tn)Lc(t, Tn−1, Tn; τ )

N∑
n=1

�nD(t, Tn)
 (2.31)

 

= D(t, T0) − D(t, TN)
N∑

n=1
�nD(t, Tn)

+

N∑
n=1

δnD(t, Tn)B(t, Tn; τ )

N∑
n=1

�nD(t, Tn)

 (2.32)

 
= OIS(t, T0, TN) + SpOIS(t, T0, TN; t),  (2.33)

where we have defined the IRS–OIS spread SpOIS as 

 

SpOIS(t, T0, TN; τ ) =

N∑
n=1

δnD(t, Tn)B(t, Tn; τ )

N∑
n=1

�nD(t, Tn)

. (2.34)

Note that we have slightly abused the notation of OIS(t). In reality, there 
is no guarantee that the day count conventions and frequencies are the 
same between IRS and OIS, which may require appropriate adjustments.

SpOIS is a martingale under the A-measure, and one can show that its 
 stochastic differential equation is given by 
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These options, explained in Sections 2.4.1, 2.4.2, and 2.4.3, can allow us 
to extract volatility information for our model. Considering the current 
situation where there is no liquid market of options on the relevant basis 
spreads, we probably need to combine some historical estimation for the 
volatility calibration.

3 Multiple-Currency Market
This section extends the framework developed in the previous section into 
a multi-currency environment. For our later purpose, let us define several 
variables first. The T-maturing risk-free zero-coupon bond of currency k is 
denoted by P(k) (·, T), and is calculated from the equation 

 

P(k)(t, T) = EQk
t

⎡
⎣e

−
T∫
t

r(k)(s)ds

⎤
⎦ , (3.1)

where Q
k
 and r(k) denote the MM measure and the risk-free interest rate for 

the k-currency. Also, define the instantaneous risk-free forward rate by 

 
f (k)(t, T) = − ∂

∂T
lnP(k)(t, T)  (3.2)

as usual, and r(k) (t) = f(k) (t,t).
As is well known, its stochastic differential equation under the domestic 

MM measure Q
k
 is given by 

 

df (k)(t, s) = σ (k)(t, s) ·
⎛
⎝ s∫

t

σ (k)(t, u)du

⎞
⎠ dt + σ (k)(t, s) · dWQk (t), (3.3)

where WQk (t) is the d-dimensional Brownian motion under the Q
k
-measure. 

The volatility term s (k) is a d-dimensional vector and possibly depends on f(k) 
or any other state variables. Here, we have shown that the risk-free interest 
rate to make the structure of the model easy to understand through our 
scheme does not simulate it directly, as will be seen later.

Let us also define the spot foreign exchange rate between currency i and j: 

 f (i,j)
x (t). (3.4)

It denotes the time-t value of a unit amount of currency j in terms of 
 currency i. Then, define its dynamics under the Q

i
-measure as 

 
df (i,j)

x (t)/f (i,j)
x (t) = (r(i)(t) − r(j)(t))dt + σ

(i,j)
X (t) · dWQi (t).

∼  (3.5)

The volatility term can depend on fx(i,j) or any other state variables. The 
Brownian motions of two different MM measures are connected to each 
other by the relation 

 dWQi (t) = σ
(i,j)
x (t)dt + dWQj (t),  (3.6)

as indicated by Maruyama–Girsanov’s theorem.

3.1 Collateralization with Foreign Currencies 
Until this point, the collateral currency has been assumed to be the same as 
the payment currency of the contract. However, this assumption cannot be 

maintained in a multi-currency environment, since multi-currency trades 
contain different currencies in their payments in general. In fact, this cur-
rency mismatch is inevitable in a CCS trade whose payments contain two 
different currencies, but only one collateral currency.

Our previous work (Fujii et al., 2009) has provided a pricing formula for 
a generic financial product whose collateral currency j is different from its 
payment currency k: 

 

h(k)(t) = EQk
t

⎡
⎣e

−
T∫
t

r(k)(s)ds

⎛
⎝e

T∫
t
(r(j) (s)−c(j) (s))ds

⎞
⎠ h(k)(T)

⎤
⎦ (3.7)

 

= P(k)(t, T)E(k)
t

⎡
⎣
⎛
⎝e

T∫
t
(r(j) (s)−c(j) (s))ds

⎞
⎠ h(k)(T)

⎤
⎦ .  (3.8)

Here, h(k)(t) is the present value of a financial derivative whose payment h(k)

(T) is to be made at time T in the k-currency. The collateralization is assumed 
to be made continuously by cash of the j-currency with zero threshold, and 
c(j) is the corresponding collateral rate. E

t
t (k) [·] denotes the expectation under 

the risk-free forward measure of currency k, t
(k)

, where the risk-free zero-
coupon bond P(k) (·,T) is used as numeraire. 

As is clear from these arguments, the price of a financial product 
depends on the choice of collateral currency. Let us check this impact for 
the most fundamental instruments (i.e., FX forward contracts and Libor pay-
ments) in the next sections.

3.1.1 FX Forward and Currency Triangle 

As is well known, the currency triangle relation should be satisfied among 
arbitrary combinations of currencies (j,k,l): 

 
f (j,k)
x (t) = f (j,l)

x (t) × f (l,k)
x (t), (3.9)

otherwise the difference will soon be arbitraged away in the current liq-
uid foreign exchange market. In the default-free market without collat-
eral agreement, this relation should also hold in the FX forward market. 
However, it is not a trivial issue in the presence of collateral, as will be seen 
below.11

Let us consider a k-currency collateralized FX forward contract between 
the currencies (i,j). The FX forward rate f

x
(i,j) (t,T) is given by the amount of 

i-currency to be exchanged by the unit amount of j-currency at time T with 
zero present value: 

f (i,j)
x (t, T)P(i)(t, T)E

τ(i)
t

[
e
∫ T
t (r(k)(s)−c(k) (s))ds

]
= f (i,j)

x (t)P(j)(t, T)E
τ(j)
t

[
e
∫ T
t (r(k) (s)−c(k)(s))ds

]
,  (3.10)

and hence 

 

f (i,j)
x (t, T) = f (i,j)

x (t)
P(j)(t, T)

P(i)(t, T)

⎛
⎝E

τ(j)
t

[
e
∫ T
t (r(k)(s)−c(k) (s))ds

]
E

τ(i)
t

[
e
∫ T
t (r(k)(s)−c(k) (s))ds

]
⎞
⎠ .  (3.11)
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 y(k)(t) = r(k)(t) − c(k)(t)  (3.18)

as a deterministic function of time.
Under this assumption, one can see that the FX forward rate in (3.11) 

becomes

 
f (i,j)
x (t, T) = f (i,j)

x (t)
P(j)(t, T)

P(i)(t, T)
,  (3.19)

and it is independent of the choice of collateral currency. Therefore, the 
cross-currency triangle relation holds among FX forwards even when they 
contain multiple collateral currencies.

In addition, the collateralized forward expectation and the risk-free for-
ward expectation are equal for each currency k:

 
E
T c

(k)
t [·] = E

T(k)
t [·],  (3.20)

since the corresponding Radon–Nikodym derivative becomes constant: 

 
e− ∫ ·

0(r(k)(s)−c(k)(s))ds P(k)(·, T)

D(k)(·, T)

D(k)(0, T)

P(k)(0, T)
≡ 1.  (3.21)

Now, (3.12) turns out to be 

 
PV(t) = δnP(k)(t, Tn)e

∫ Tn
t y(j) (s)dsE

τn,(k)
t

[
L(k)(Tn−1, Tn; τ )

]
 (3.22)

 
= δnD(k)(t, Tn)e

∫ Tn
t (y(j) (s)−y(k)(s))dsE

τn,(k)
t

[
L(k)(Tn−1, Tn; τ )

]
.  (3.23)

Since it holds that E
t

t c
(k) [·] = E

t

t
(k) [·] under the current assumption, even if 

the Libor payment is collateralized by a foreign j-currency, it is straightfor-
ward to calculate the exposure in terms of the standard IRS collateralized by 
the domestic currency.

One can see that all the corrections from our simplifying assumption 
arise from either the convexity correction in E[e ∫

t

t
 y(k) (s)ds] or from the covari-

ance between e ∫
t

t
 y(k) (s)ds and another stochastic variable such as Libor or 

FX rates. Considering the absolute size of the spread y and its volatility, one 
can reasonably expect that the corrections are quite small. Actually, the fact 
that separate quotes of these instruments for each collateral currency are 
unobservable indicates that the corrections induced from the assumptions 
are well within the current market bid/offer spreads. As will be seen in the 
following sections, the above assumption will allow a flexible enough frame-
work to address the issues described in the Introduction without causing 
unnecessary complications.

3.2 Model with Dynamic Basis Spreads in Multiple Currencies
Now, let us finally preset the modeling framework in the multi-currency 
environment under the simplified assumption given in Section 3.1.3. We 
have already set up the dynamics for the forward collateral rate Libor–OIS 
spread for each tenor, and an equity with effective dividend yield q for each 
currency as in Section 2.3: 

From the above equation, it is clear that the currency triangle relation only 
holds among the trades with common collateral currency, in general.

3.1.2 Libor Payment Collateralized with Foreign Currency

Next, let us consider the implications for a foreign currency collateral-
ized Libor payment. Using the result of Section 3.1, the present value of a 
k- currency Libor payment with cash collateral of j-currency is given by 

 
PV(t) = δnP(k)(t, Tn)E

τn,(k)
t

[
e
∫ Tn
t (r(j) (s)−c(j) (s))dsL(k)(Tn−1, Tn; τ )

]
. (3.12)

Remember that if the Libor is collateralized by the same domestic cur-
rency k, the present value of the same payment is given by 

 
PV(t) = δnD(k)(t, Tn)E

τ c
n,(k)

t

[
L(k)(Tn−1, Tn; τ )

]
 (3.13)

 
= δnP(k)(t, Tn)E

τn,(k)
t

[
e
∫ Tn
t (r(k)(s)−c(k)(s))dsL(k)(Tn−1, Tn; τ )

]
.  (3.14)

Here, the superscript c in t
n
c,(k) of E

t

t
n
c, (k) [·] denotes that the expectation 

is taken under the collateralized forward measure instead of the risk-free 
forward measure. The above results suggest that the price of an interest rate 
product, such as IRS, does depend on the choice of its collateral currency.

3.1.3 Simplifi cation for Practical Implementation

The findings of Sections 3.1.1 and 3.1.2 give rise to a big difficulty for prac-
tical implementation. If all the relevant vanilla products have separate 
quotes as well as sufficient liquidity for each collateral currency, it is pos-
sible to set up a separate multi-currency model for each choice of collateral 
currency. However, separate quotes for different collateral currencies are 
unobservable in the actual market. Furthermore, closing the hedges within 
each collateral currency is unrealistic. This is because one would like to 
use JPY domestic IR swaps to hedge the JPY Libor exposure in a complicated 
multi-currency derivative collateralized by EUR, for example. The setup of 
a separate model for each collateral currency will make these hedges too 
complicated. 

In order to avoid these difficulties, let us adopt a very simple assumption 
that 

 
σ (k)(t, s) = σ

(k)
c (t, s).  (3.15)

or 

 
y(k)(t, s) = f (k)(t, s) − c(k)(t, s).  (3.16)

is a deterministic function of t for each s and for every currency k. Here, s
c
(k) 

is the volatility term defined for the forward collateral rate of the k-currency 
as in (2.16). Under this assumption, one can show that 

 r(k)(t) − c(k)(t) = f (k)(s, t) − c(k)(s, t)  (3.17)

for any s ≤ t. Hence, it follows that 
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dc(i)(t, s) = σ
(i)
c (t, s) ·

⎛
⎝ s∫

t

σ
(i)
c (t, u)du

⎞
⎠ dt + σ

(i)
c (t, s) · dWQi (t),  (3.24)

 

dB(i)(t, T; τ )

B(i)(t, T; τ )
= σ

(i)
B (t, T; τ ) ·

⎛
⎝ T∫

t

σ
(i)
c (t, s)ds

⎞
⎠ dt + σ

(i)
B (t, T; τ ) · dWQi (t),  (3.25)

 
dS(i)(t)/S(i)(t) = (c(i)(t) − q(i)(t))dt + σ

(i)
S (t) · dWQi (t). (3.26)

We have the above set of stochastic differential equations for each currency 
i. The foreign exchange dynamics between currency i and j is given by 

 
df (i,j)

x (t)/f (i,j)
x (t) =

(
c(i)(t) − c(j)(t) + y(i,j)(t)

)
dt + σ

(i,j)
X (t) · dWQi (t),  (3.27)

where y(i,j)(t) is defined as 

 y(i,j)(t) = y(i)(t) − y(j)(t)  (3.28)

 
= (r(i)(t) − r(j)(t)) − (c(i)(t) − c(j)(t)),  (3.29)

which is a deterministic function of time.
If a specific currency i is chosen to be a home currency for simulation, 

the stochastic differential equations for other currencies j ≠ i are given by 

dc(j)(t, s) = σ
(j)
c (t, s) ·

⎡
⎣
⎛
⎝ s∫

t

σ
(j)
c (t, u)du

⎞
⎠ − σ

(i,j)
X (t)

⎤
⎦ dt + σ

(j)
c (t, s) · dWQi (t),  (3.30)

dB(j)(t, T; τ )

B(j)(t, T; τ )
= σ

(j)
B (t, T; τ ) ·

[(∫ T

t
σ

(j)
c (t, s)ds

)
− σ

(i,j)
X (t)

]
dt + σ

(j)
B (t, T; τ ) · dWQi (t),

 (3.31)

dS(j)(t)/S(j)(t) =
[(

c(j)(t) − q(j)(t)
)

− σ
(j)
S (t) · σ

(i,j)
X (t)

]
dt + σ

(j)
S (t) · dWQi (t),  (3.32)

where the relation (3.6) has been used. These are the relevant underlying fac-
tors for a multi-currency environment.

3.3 Curve Calibration
This section explains how to set up the initial conditions for the modeling 
framework explained in the previous section. As we will see, the spread 
curves {y(t) (i,j)} for the relevant currency pairs can be bootstrapped by fitting 
to the term structure of the CCS basis spread, or equivalently to the FX for-
wards. 

3.3.1 Single-Currency Instruments

Let us first remember the setup of the single-currency sector of the model. 
As explained in Section 2.3, the collateralized zero-coupon bonds D(t,T) and 

Libor expectations E
t

t c
k  [L(T

k–1
,T

k
;t )] can be extracted from the following set of 

equations: 

 
OIS(i)

N (t)
N∑

n=1

�
(i)
n D(i)(t, Tn) = D(i)(t, T0) − D(i)(t, TN)  (3.33)

 
IRS(i)

M(t)
M∑

m=1

�
(i)
mD(i)(t, Tm) =

M∑
m=1

δ
(i)
mD(i)(t, Tm)E

τ c
m,(i)

t [L(i)(Tm−1, Tm; τ )]  (3.34)

 

N∑
n=1

δ
(i)
n D(i)(t, Tn)

(
E

τ c
n,(i)

t

[
L(i)(Tn−1, Tn; τS)

]
+ TS(i)(t)

)

=
M∑

m=1

δ
(i)
mD(i)(t, Tm)E

T c
m,(i)

t

[
L(i)(Tm−1, Tm; τL)

]
,  (3.35)

for OIS, IRS, and TS contracts, respectively. Using the relations 

 
c(i)(t, s) = − ∂

∂s
ln D(i)(t, s)  (3.36)

and 

 
B(i)(t, Tn; τ ) = E

τ c
n,(i)

t

[
L(i)(Tn−1, Tn; τ )

] − 1

δ
(i)
n

(
D(i) (t,Tn−1)
D(i) (t,Tn)

− 1
)

,  (3.37)

one can get the initial conditions for the collateral rate c(t,s), and the  
Libor–OIS spreads B(t,T;t ) for each currency.

3.3.2 FX Forward

Next, let us consider FX forward contracts. In the current setup, a FX for-
ward contract maturing at time T between currencies (i,j) becomes 

 

f (i,j)
x (t, T) = f (i,j)

x (t)
P(j)(t, T)

P(i)(t, T)
 (3.38)

 
= f (i,j)

x (t)
D(j)(t, T)

D(i)(t, T)
e

T∫
t

y(i,j) (s)ds
.  (3.39)

By the quotes of spot and forward FX rates, and the {D(t,T)} derived in the 
previous section, the value of ∫

t

Ty(i,j) (s)ds can be found. Based on the quotes for 
various maturities T and the proper spline technique, y(i,j) (s) will be obtained 
as a continuous function of time s. This can be done for all the relevant pairs 
of currencies. This will give another important input of the model required 
in (3.27). If one needs to assume that the collateral rate of a given currency i 
is actually the risk-free rate, the set of functions {y(j) (s)}j ≠ i can be obtained 
by combination of the information of FX forwards with y(j) (s) ≡ 0 . Note that 
one cannot assume the several collateral rates are equal to the risk-free rates 
simultaneously, since the model should be made consistent with FX for-
wards (and CCS).

As mentioned before, the current setup does not recognize the differ-
ences among FX forwards from their choice of collateral currencies. It arises 
from our simplified assumption that the spread between the risk-free and 
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PVi(t) =
N∑

n=1

δ
(i)
n D(i)(t, Tn)E

τ c
n,(i)

t

[
L(i)(Tn−1, Tn; τ )

]
− D(i)(t, T0) + D(i)(t, TN)

=
N∑

n=1

δ
(i)
n D(i)(t, Tn)B(i)(t, Tn; τ ),  (3.44)

where T
0
 is the effective date of the contract. On the other hand, the present 

value of the j-leg with a spread B
N
CCS (t) = B

N
CCS (t,T

0
,T

N
;t ) for unit notional is 

 

PVj(t) = −E
Qj
t

[
e
− ∫ T0

t

(
r(j) (s)−y(i) (s)

)
ds
]

+ E
Qj
t

[
e
− ∫ TN

t

(
r(j)(s)−y(i) (s)

)
ds
]

= +
N∑

n=1

δ
(j)
n E

Qj
t

[
e
− ∫ Tn

t

(
r(j) (s)−y(i) (s)

)
ds

(
L(j)(Tn−1, Tn; τ ) + BCCS

N (t)
)]

,  (3.45)

and using the assumption of the deterministic spread y leads to 

 

PVj(t) =
N∑

n=1

δ
(j)
n D(j)(t, Tn)e

Tn∫
t

y(i,j) (s)ds (
B(j)(t, Tn; τ ) + BCCS

N (t)
)

+
N∑

n=1

D(j)(t, Tn−1)e

Tn−1∫
t

y(i,j) (s)ds

⎛
⎜⎝e

Tn∫
Tn−1

y(i,j) (s)ds

− 1

⎞
⎟⎠ .  (3.46)

Let us denote the notional of the i-leg per unit amount of j-notional as N(i). 
Usually, it is fixed by the forward FX at the time of inception of the contract 
as N(i) = f

x
(i,j) (t, T

0
), and then the total present value of the i-leg in terms of cur-

rency j is given by 

 

N(i)

f (i,j)
x (t)

PVi(t) =
N∑

n=1

δ
(i)
n

N(i)

f (i,j)
x (t)

D(i)(t, Tn)B(i)(t, Tn; τ )  (3.47)

 

=
N∑

n=1

δ
(i)
n

N(i)

f (i,j)
x (t, Tn)

D(j)(t, Tn)e

Tn∫
t

y(i,j) (s)ds
B(i)(t, Tn; τ ).  (3.48)

Hence, the following expression of the T
0
-start T

N
-maturing CNCCS basis 

spread is obtained: 

 

BCCS
N (t, T0, TN; τ )

=
[

N∑
n=1

δ
(j)
n D(j)(t, Tn)e

∫ Tn
t y(i,j) (s)ds

{
δ

(i)
n N(i)

δ
(j)
n f (i,j)

x (t, Tn)
B(i)(t, Tn; τ ) − B(j)(t, Tn; τ )

}

−
N∑

n=1

D(j) (t, Tn−1) e
∫ Tn−1
t y(i,j) (s)ds

(
e
∫ Tn
Tn−1

y(i,j) (s)ds − 1

)]/

N∑
n=1

δ
(j)
n D(j)(t, Tn)e

∫ Tn
t y(i,j) (s)ds (3 (3.49)

One can also get a formula for a different collateral currency by repeat-
ing a similar calculation.

Note that the B
N
CCS (t, T

0
,T

N
;t ) in (3.49) is a martingale under the annuity 

measure Â  where the i-collateralized j-annuity ΣN

n=1
 d

n

(j) D(j)(t,T
n
)
e 
∫
t

Tn y(i,j) (s)ds is 

the collateral rates of a given currency is a deterministic function of time. 
This seems consistent with the reality, at least in the current market.12

3.4 Other Vanilla Instruments
The instruments explained in Sections 3.3.1 and 3.3.2 are sufficient 
to fix the initial conditions of the curves used in the model. Next, let 
us check other fundamental instruments and the implications of the 
model.

3.4.1 European FX Option

Calculation of a European FX option is quite simple. Let us consider the 
T-maturing FX call option for f

x
(i,j) collateralized by the k-currency. The 

present value can be written as 

 

PV(t) = EQi
t

⎡
⎣e

−
T∫
t

r(i) (s)ds
e

T∫
t

y(k)(s)ds (
f (i,j)
x (T) − K

)+
⎤
⎦  (3.40)

 

= D(i)(t, T)e

T∫
t

y(k,i)(s)ds
E
Tc

(i)
t

[(
f (i,j)
x (T, T) − K

)+]
.  (3.41)

The FX forward f
x
(i,j) (·, T) is a martingale under the forward measure t

(i)
 (or 

equivalently t
(i)
c in our assumption), and its stochastic differential equation 

is given by 

 

df (i,j)
x (t, T)

f (i,j)
x (t, T)

= σ
(i,j)
FX (t, T) · dWτ c

(i) (t)  (3.42)

 

=
⎧⎨
⎩σ

(i,j)
X (t) +

T∫
t

σ
(i)
c (t, s)ds −

T∫
t

σ
(j)
c (t, s)ds

⎫⎬
⎭ · dWτ c

(i) (t),  (3.43)

under the same forward measure. It is straightforward to obtain an analyti-
cal approximation of (3.41).

3.4.2 Constant Notional Cross-Currency Swap

A constant notional CCS (CNCCS) of a currency pair (i,j) is a floating vs float-
ing swap where the two parties exchange the i-Libor flat vs j-Libor plus fixed 
spread periodically for a certain period. There are both initial and final 
notional exchanges, and the notional for each leg is kept constant through-
out the contract. The currency i, in which Libor is paid in flat, is dominated 
by USD in the market. CNCCS has been used to convert a loan denominated 
in a given currency to that of another currency to reduce its funding cost. 
Owing to its significant FX exposure, mark-to-market CCS (MtMCCS), which 
will be explained in the next section, has now become quite popular. The 
information in CNCCS is equivalent to that extracted from FX forwards, 
since CNCCS combined with IRS and TS with the same collateral currency 
can replicate an FX forward contract.

Here, we will provide the formula for the CNCCS of a currency pair (i,j), 
just for completeness. Assume that the collateral is posted in the i-currency. 
Then, the present value of the i-leg for unit notional is given by 
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used as numeraire. Therefore, the present value of a T
0
-start T

N
-maturing con-

stant notional cross-currency payer swaption with strike spread K is given as 

 

PV(t) =
N∑

n=1

δ
(j)
n D(j)(t, Tn)e

∫ Tn
n y(i,j) (s)dsEÂ

t

[(
BCCS

N (T0, T0, TN; τ ) − K
)+]

, (3.50)

where the notional of the j-leg is assumed to be the unit amount of a cor-
responding currency. Once every volatility process is specified, it will be 
tedious but possible to derive an analytic approximation by, for example, 
applying an asymptotic expansion technique.

3.4.3 Mark-to-Market Cross-Currency Swap

A mark-to-market cross-currency swap (MtMCCS) is a similar contract to the 
aforementioned CNCCS except that the notional of the leg which pays Libor 
flat is refreshed at the start of every Libor calculation period based on the 
spot FX at that time. The notional for the other leg is kept constant through-
out the contract. More specifically, let us consider a MtMCCS for the (i,j) 
currency pair where a j-Libor plus spread is exchanged for i-Libor flat. In this 
case, the notional of the i-leg is going to be set at f

x
(i,j) (t) times the notional 

of the j-leg at the beginning of every period and the amount of notional 
change is exchanged at the same time. Owing to the notional refreshment, 
an (i,j)-MtMCCS can be considered as a portfolio of one-period (i,j)-CNCCS, 
where the notional of the j-leg of every contract is the same. Here, the net 
effect from the final notional exchange of the nth CNCCS and the initial 
exchange of the (n + 1)th CNCCS is equivalent to the notional adjustment at 
the start of the (n + 1)th period of the MtMCCS.

Let us assume the collateral currency is i as before. The present value 
of the j-leg can be calculated in exactly the same way as the CNCCS, and is 
given by 

PVj(t) =
N∑

n=1

δ
(j)
n D(j)(t, Tn)e

∫ Tn
t y(i,j) (s)ds

(
B(j)(t, Tn; τ ) + BMtM

N (t)
)

+
N∑

n=1

D(j)(t, Tn−1)e

Tn−1∫
t

y(i,j) (s)ds

⎛
⎜⎝e

Tn∫
Tn−1

y(i,j) (s)ds

− 1

⎞
⎟⎠ ,  (3.51)

where B
N
MTM (t, T

0
, T

N
; t ) is the time-t value of the MtMCCS basis spread for this 

contract. On the other hand, the present value of the i-leg can be calculated 
as 

 

PVi(t) = −
N∑

n=1

EQi
t

⎡
⎢⎣e

−
Tn−1∫

t
c(i) (s)ds

f (i,j)
x (Tn−1)

⎤
⎥⎦

+
N∑

n=1

EQi
t

⎡
⎣e

−
Tn∫
t

c(i)(s)ds
f (i,j)
x (Tn−1)

(
1 + δ

(i)
n L(i)(Tn−1, Tn; τ )

)⎤⎦

=
N∑

n=1

δ
(i)
n D(i)(t, Tn)E

τ c
n,(i)

t

[
f (i,j)
x (Tn−1)B(i)(Tn−1, Tn; τ )

]
.  (3.52)

As a result, the MtMCCS basis spread is given by 

BMtM
N (t, T0, TN; τ ) =⎡
⎣ N∑

n=1

δ
(j)
n D(j)(t, Tn)e

Tn∫
t

y(i,j) (s)ds
{

δ
(i)
n

δ
(j)
n

Et
Tc
n,(i)

t

[
f (i,j)
x (Tn−1)

f (i,j)
x (t, Tn)

B(i)(Tn−1, Tn; τ )

]
− B(j)(t, Tn; τ )

⎫⎬
⎭

−
N∑

n=1

D(j)(t, Tn−1)e
∫ Tn−1
t y(i,j)

(s)ds
(
e
∫ Tn
Tn−1 y(i,j)(s)ds − 1

)]/
N∑

n=1

δ
(j)
n D(j)(t, Tn)e

∫ Tn
t y(i,j)(s)ds ,

 (3.53)

and, after some calculation, we get 

BMtM
N (t, T0, TN; τ ) =⎡
⎣ N∑

n=1

δ
(j)
n D(j)(t, Tn)e

Tn∫
t

y(i,j) (s)ds
{

δ
(i)
n f (i,j)

x (t, Tn−1)

δ
(j)
n f (i,j)

x (t, Tn)
B(i)(t, Tn; τ )Y (i,j)

n (t) − B(j)(t, Tn; τ )

⎫⎬
⎭

−
N∑

n=1

D(j)(t, Tn−1)e

Tn−1∫
t

y(i,j) (s)ds

⎛
⎜⎝e

Tn∫
Tn−1

y(i,j) (s)ds

− 1

⎞
⎟⎠

⎤
⎥⎦
/

N∑
n=1

δ
(j)
n D(j)(t, Tn)e

∫ Tn
t y(i,j) (s)ds,

 (3.54)

Here, Y
n
(i,j) (t) is defined by 

Y (i,j)
n (t) = E

τ c
n,(i)

t

⎡
⎢⎣exp

⎧⎪⎨
⎪⎩

Tn−1∫
t

σ
(i,j)
FX (s, Tn−1) ·

⎛
⎜⎝σ

(i)
B (s, Tn; τ ) −

Tn∫
Tn−1

σ
(i)
c (s, u)du

⎞
⎟⎠ ds

+
Tn−1∫
t

(
σXn (s) · dW

c
n,(i) (s) − 1

2
σXn (s)2ds

)⎫⎬
⎭
⎤
⎦ , (3  (3.55)

where 

 
σXn (t) = σ

(i,j)
FX (t, Tn−1) + σ

(i)
B (t, Tn; τ ).  (3.56)

If we have liquid markets for FX forwards and the CNCCS, volatility and 
correlation parameters involved in the expression of  Y

n
(i,j) need to be adjusted 

to make the model consistent with the MtMCCS. However, considering the 
popularity of the MtMCCS and the limited liquidity of FX forwards with 
long maturities, it may be more practical to calibrate {y(i,j) (t)} using the 
MtMCCS directly. One can see easily that approximating Y

n
(i,j) ∼− 1 allows us 

straightforward bootstrapping of {y (i,j) (t)}.
As is the case in CNCCS, the forward MtMCCS basis spread given in (3) 

is a martingale under the annuity measure Â , where the i-collateralized 
j-annuity, ΣN

n=1
 d

n

(j) D(j) (t,T
n
)e 

∫
t

Tn y(i,j) (s)ds, is used as numeraire. Therefore, a T
0
 -start 

T
N
-maturing mark-to-market cross-currency payer swaption with strike 

spread K is calculated as 

PV(t) =
N∑

n 1

δ
(j)
n D(j)(t, Tn)e

∫ Tn
t y(i,j) (s)dsEÂt

[
(BMtM

N (T0, T0, TN; τ ) − K)+
]  (3.57)

where we have used the unit amount of the  j-leg notional. A similar formula 
for a different collateral currency case can also be derived. One can see that 
the forward MtMCCS basis spread has a much smaller volatility than that 
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market. The break-even rate K
N
 of the N-year zero coupon inflation swap 

satisfies 

 

[
(1 + KN)N − 1

]
D(t, TN) =

(
Eτ c

t [I(TN)]

I(t)
− 1

)
D(t, TN), (4.4)

and hence 

 
I(t, TN) = I(t)(1 + KN(t))N. (4.5)

Here, the collateral currency is assumed to be the same as the payment cur-
rency. It is straightforward to construct a smooth forward CPI curve using 
the appropriate spline technique. Although we do not go into details, it is 
also quite important to estimate month-on-month (MoM) seasonality factors 
using historical data. As is clear from its properties, it should not be treated 
as a diffusion process and hence it should be added on top of the simulated 
forward CPI based on the smooth YoY trend process.

Since I(t,T) is a martingale under the t  c measure, its stochastic differen-
tial equation under the MM measure Q can be specified as follows: 

 

dI(t, T) = σI(t, T) ·
⎛
⎝ T∫

t

σc(t, s)ds

⎞
⎠ dt + σI(t, T) · dWQ (t).  (4.6)

This should be understood as the trend forward CPI process, and needs to 
be adjusted properly by the use of seasonality factors to derive a forward CPI 
with odd period. As a summary, necessary stochastic differential equations 
for IR–inflation hybrids are given by 

 

dc(t, s) = σc(t, s) ·
⎛
⎝ s∫

t

σc(t, u)du

⎞
⎠ dt + σc(t, s) · dWQ (t),  (4.7)

 

dB(t, T; τ )

B(t, T; τ )
= σB(t, T; τ ) ·

⎛
⎝ T∫

t

σc(t, s)ds

⎞
⎠ dt + σB(t, T; τ ) · dWQ (t),  (4.8)

 

dI(t, T) = σI(t, T) ·
⎛
⎝ T∫

t

σc(t, s)ds

⎞
⎠ dt + σI(t, T) · dWQ (t).  (4.9)

5 Conclusions
This paper has presented a new framework of interest rate models which 
reflects the existence as well as the dynamics of various basis spreads in the 
market. It has also explicitly taken the impacts from the collateralization 
into account, and provided an extension for a multi-currency environment 
consistent with FX forwards and MtMCCS. It has also commented on infla-
tion modeling in the presence of collateral. Finally, let us provide a possible 
order of calibration in this framework:

1.  Calibrate domestic swap curves and extract {D(t,T)} and {B(t,T;t )} 
 following the method in Fujii et al. (2009) for each currency.

of the CNCCS, due to the cancellation of FX exposure thanks to its notional 
refreshments.

By comparing the expression in (3.49), we can also derive the difference 
between the i-collateralized CNCCS and the MtMCCS basis spread as follows: 

BMtM
N (t, T0, Tn; τ ) − BCCS

N (t, T0, Tn; τ )

=
∑N

n=1 δ
(i)
n D(j)(t, Tn)e

Tn∫
t

y(i,j) (s)ds
{

f (i,j)
x (t,Tn−1)

f (i,j)
x (t,Tn )

B(i)(t, Tn; τ )Y (i,j)
n (t) − N(i)

f (i,j)
x (t,Tn )

B(i)(t, Tn; τ )

}

∑N
n=1 δ

(i)
n D(j)(t, Tn)e

Tn∫
t

y(i,j) (s)ds

 (3.58)

One can check that the difference between the FX exposure and the correc-
tion term Y

n
(i,j) gives rise to the gap between the two CCSs.

4 Comments on Inflation Modeling
Before closing this paper, let us briefly comment on the inflation modeling 
in the presence of collateral. Although it is straightforward to use the multi-
currency framework as proposed in the work of Jarrow and Yildirim [13], 
it requires the simulation of unobservable real interest rates. It is quite 
difficult to estimate the real rate volatility and its correlations to the other 
underlying factors. Here, let us present the method by which the collateral-
ized forward CPI is directly simulated in the same way as for the Libor–OIS 
spreads. This is a simple extension of the model proposed by Belgrade and 
Benhamou (2004) for collateralized contracts.

First, define the forward CPI as the fixed amount of payment which is 
exchanged for I(T) units of the corresponding currency at time T. Here, I(T) is 
the time-T CPI index. Let us consider a CPI of the i-currency continuously col-
lateralized by the j-currency. Then, the forward CPI I(i) (t,T) should satisfy 

 

I(i)(t, T)EQi
t

⎡
⎣e

−
T∫
t

r(i) (s)ds
e

T∫
t

y(j) (s)ds

⎤
⎦ = EQi

t

⎡
⎣e

−
T∫
t

r(i) (s)ds
e

T∫
t

y(j) (s)ds
I(T)

⎤
⎦ .  (4.1)

Under the assumption of deterministic spread y(j), this becomes 

 
I(i)(t, T) = E

τ(i)
t [I(T)] = E

T c
(i)

t [I(T)],  (4.2)

and is independent of the collateralized currency as for the multi-currency 
example in the previous section. The present value of a future CPI payment 
of the currency i collateralized by the foreign currency j is expressed using 
the forward CPI as 

 
PVi(t) = D(i)(t, T)e

T∫
t

y(j,i) (s)ds
I(i)(t, T),  (4.3)

where y(j,i) (s) is available after the multi-currency curve calibration.
The forward CPI can easily be extracted from a set of zero coupon infla-

tion swap (ZCIS), which is the most liquid inflation product in the current 
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2.  Calibrate domestic interest rate options, such as swaptions and caps/
floors, and determine the volatility curves (or surface) of the IR sector 
for each currency. For the correlation structure setup, option implied 
information or historical data can be used. If one has a set of cali-
brated swap curves for a certain period of history, it is straightforward 
to carry out the principal component analysis and extract the several 
dominant factors. See the explanation given, for example, in the work 
of Rebonato [15].

3.  Calibrate FX forwards (or CNCCS) and extract the set of {y(i,j) (s)} for all 
the relevant currency pairs.

4.  Calibrate the vanilla FX options and determine the spot FX volatility 
for all the relevant currency pairs. The resultant spot FX volatility 
does depend on the correlation structure between the spot FX and 
collateral rates of the two currencies. It should be estimated using 
quanto products and/or historical data.

5.  Calibrate MtMCCS and determine the correlation curve between spot 
FX and Libor–OIS spread. Considering the size of correction, one will 
have quite a good fit after the calibration of FX forwards, though. 

There remain various interesting topics for the practical implementa-
tion of this new framework; analytic approximation for vanilla options will 
be necessary for fast calibration and for use as regressors for Bermudan/
American-type exotics. Because of the separation of the discounting curve 
and the Libor–OIS spread, there will be some important implications for the 
price of convexity products, such as constant maturity swaps (CMS). It is also 
an important problem to consider the method of obtaining stable attribu-
tion of vega (kappa) exposure to each vanilla option for generic exotics.13

Appendix A: Compounding a Tenor Swap
As mentioned in Section 2.2.3, there is a slight complication in TS due to 
compounding in the leg with the short tenor. For example, in a USD 3m/6m 
tenor swap, coupon payments from the 3m leg occur semi-annually where 
the previous coupon (3m Libor plus tenor spread) is compounded by 3m 
Libor flat. As a result, the present value of the 3m leg is calculated as 

PVτS (t) =
M∑

m=1

EQ
t

⎡
⎣e

−
T2m∫
t

c(s)ds
{δ2m−1 (L(T2m−2, T2m−1; τS)

+ TS(t)) (1 + δ2mL(T2m−1, T2m); τS))

+ δ2m (L(T2m−1, T2m; τS) + TS(t))}]

=
2M∑
n=1

D(t, Tn)δn

(
E

τ c
n

t [L(Tn−1, Tn; τS)] + TS(t)
)

+
M∑

m=1

δ2m−1δ2mD(t, T2m)TS(t)B(t, T2m; τS)  (A.1)

where t  
S
=3m. Note that the second and third terms are a correction to the 

left-hand side of (2.7). Since the Libor–OIS and tenor spreads have similar 
sizes, the correction term cannot affect the calibration meaningfully. 

Considering the bid/offer spread, one can safely neglect the compounding 
effects in most situations.
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FOOTNOTES

1. A basis spread generally means the interest rate differentials between two different 
floating rates.
2. It is a floating-vs-floating swap that exchanges Libors with two different tenors with 
a fixed spread in one side.
3. As for the cross currency basis spread, it has been an important issue for global 
 financial institutions for many years. However, there exists no literature that directly 
takes its dynamics into account consistently in a multi-currency setup of an interest 
rate model.
4. It is easy to apply a similar methodology to the unsecured (or uncollateralized) trade 
by approximately taking into account the credit risk by using Libor as the effective dis-
counting rate.
5. In this section, the collateral currency is the same as the payment currency.
6. Typically, there is only one payment at the very end for the very end for the swap 
with short maturity (<1 yr) case, and otherwise there are periodical payments, quarterly 
for  example.
7. Basically, OIS quotes allow us to fix the collateralized zero-coupon bond values, and 
then the combinations of IRS and TS will give us the Libor forward expectations.
8. We need to use a proper spline technique to get smooth, continuous result. See 
Hagan and West (2006), for example.
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9. Exactly the same idea has also been adopted in inflation modeling [2], as will be seen 
later.
10. The effective dividend yield is given by q(t) = q

org
(t) – (r(t) – c(t)) with the original 

dividend yield q
org

. In later sections, we will use a simplified assumption that (r(t) − c(t)) 
is a deterministic function of time.
11. An FX forward contract is usually included in the list of trades for which netting and 
collateral postings are to be made.
12. Note, however, that the choice of collateral currency does affect the present value 
of a trade. As can be seen from (3.23), the present value of a payment at time T in the 
j-currency collateralized with the i-currency is proportional to D(j) (t,T  ) e∫Tt y(i,j ) (s)ds, and 
hence the payer of collateral may want to choose the collateral currency i for each 
period in such a way that it minimizes  ( ∫T

t
 y(i,j ) (s)ds ) .

13. After completion of the original version of this paper, we published several new 
works (Fujii and Takahashi, 2010a, 2011, 2010b), which include improvements and 
further extensions as well as some numerical examples.
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