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Abstract

Interpolating yield curves between observable points can be done in various ways. In
this paper, we show that market making in tradeable instruments with static hedging
can be considered as a consistent basis for such interpolation. This approach leads to
solutions where parameters match the historical rates while currently quoted prices are
also perfectly reconstructed. We also show that the interpolation solution derived from
the minimum variance optimization for the static hedge ratios is equivalent to statistical
inference with Gaussian Processes Regression (GPR). We offer closed-form solutions
for affine interest-rate models for market making as well as for profit-seeking scenarios.
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1 Introduction

The task of inferring the non-observable continuous parts of a yield curve from
alimited number of point observations, i.e. a finite set of tradeable securities, has
attracted considerable interest due to high practical demand. Complete continuous
yield curves are needed for valuing almost all derivative securities as well as some
primary instruments.

Considering a single curve, it seems desirable to base value calculations on prices
that can actually be obtained on the market. There are, however, situations when we
can only use a proxy for the price of a target instrument because it is not traded. It is
tempting, in such scenarios, to impute missing values using a model that has desir-
able properties or calibrate yield curves to some implied characteristics of quoted
instruments or, simply, interpolate between closest observable points.

A compendium of interpolation methods was presented by Hagan and West
[6] with a summary of desirable properties from a practical point of view. The main
proposed criteria for an interpolation method were numerical stability, preserva-
tion of continuity (for yicld curves and bond prices, not forward rates), positivity,
monotonicity, locality of changes, and locality of hedges. These properties are as
much about mathematical niceness as about financial reality. An apparent winner
turned out to be a modification of a cubic spline-based interpolation scheme built
on an idea borrowed from non-financial engineering work. While properties such
as curve smoothness, absence of spurious oscillations, and numerical stability can
potentially be explicitly translated into plausibility in a financial sense, the paper,

“I'he opinions and ideas expressed in this article are those of the author alone, and do not neces-
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however, presents formulas that are independent of the underlying financial model.
Nevertheless, empirical tests very often favor numerically stable and smooth solu-
tions.

In the present paper, we are trying to retain the most important (but not all)
numerical properties advocated by [6] and at the same time take interest-rate evolu-
tion dynamics into account. We fully subscribe to the view that tradeable prices used
as inputs should be reconstructed precisely on a smooth curve without spurious
oscillations. But these and other desirable features can emerge naturally (where pos-
sible) as statistical propertics of a statically hedged portfolio within a chosen stochas-
tic process framework.

We argue that it is possible to base interpolation of non-observable curve parts
on realistic hedging considerations and, as a result, compute values that can be realis-
tically achieved via trading available instruments.

Lastly, when pricing instruments, not only should we take the bid—ask spread
of tradeable instruments into account but aim to produce uncertainty bounds that
can be translated into a spread given one’s own risk preferences. This resonates with
carlier work of Epstein and Wilmott on interest modeling, where the “yicld envelope”
obtained via static hedging is suggested (see [4], [5]). In the current paper we present
closed-form formulae of a similar yield envelope as well as the mean yield curve
for affine interest-rate models. We also show that obtaining the “yield envelope”
in our current settings is based on calculations identical to those used in Gaussian
Processes Regression when analytical functional forms of covariances and means of
traded bonds are available.

2 Curveinterpolation via statichedging

The main idea is fairly simple to explain. Suppose, we are asked (by a client) to quote
azero-coupon bond with non-standard maturity, say, 4 months. In order to do that,
we consult the list of available bonds and discover that only bonds with maturitics
3,6,9,and 12 months are traded. We cannot predict interest-rate behavior or find a
perfect hedge, but it should be possible, in principle, to find an optimal static hedge
as a linear combination of traded instruments. If our client agrees to buy a 4-month
bond from us, we enter into our static hedge position and then keep all bonds until
maturity. At the end of a 12-month period we will close our bond positions com-
pletely and calculate PnL of the whole transaction. There may be several conflicting
notions of static hedge “optimality” for such a scenario, and we will consider some
of them later on. Onc optimality criterion can be minimal variance of the transac-
tion outcome. If that is our purpose then we can find the expected bond yield and
its standard deviation, and for all affine interest-rate models there are closed-form
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solutions for these. Other optimization tasks, especially those involving inequal-
ity constraints, do not necessarily lead to closed-form formulas but can be solved
numerically with a quadratic programming solver or with a nonlinear convex opti-
mization software. Our method can be easily generalized to other types of bonds
provided that all cashflows are defined ahead of trading.

2.1 The Partial Differential Equation for the Mean

For the purposcs of our analysis, we will be dealing mostly with zero-coupon bonds.
We denote, in a rather loose but obvious notation, by V(¢ T) (0 < t < T) the present
value of the bond at time 7. Then, for simplicity, we also specify V(T,T) = 1, i.e.all
bonds pay 1 at maturity. In general, V(t,T) is a random variable since the bond
present value depends on instantaneous spot rate at all times between tand T. We
assume that the real spot rate (not risk-neutral) r evolves according to the stochastic
differential equation

dr = a(r,Hdt + p(r, )dX(t), (1)

where dX(t) denotes the Wiener process term. Note, that since present value V will
depend on initial state r(£) of the dynamic system (1) we should make it explicit from
now on via notation V(r(¢), t, T).

We are going to be working with real random walks, and the present values of the
real moments of random variables. We use “real” to distinguish from “risk neutral’
Indeed, in this paper there is no mention of risk neutrality, other than to say we aren’t
mentioning it. For example, the real first moment, the expectation, of the real present
value at time t of one dollar received at time T'is

my (et T) = E[V(r(t), £. T)|r(t) = x] = E T-s )

r(t) = x_ .

Note that the expectation is conditioned on current spot rate being equal to x.
Consider for some twice differentiable function ¢(x,s) a quantity

z(x, 5) = P(x, s)exp AI \h Aixﬁv

Using multi-dimensional Ito’s lemma we can write

detx. ) = bd Amuxm ;;:v ol gy ;s&AW\m x%qv )
The third term is zero. The remaining ones are

dz(x, s) = o=/ s Alx@@&m + ¢ ds+ ¢ dr +

AE&W &m s: &v

— i o :s,,. Yag, + M.sﬁ - ;%v ds+ m&%; .

where o = a(r(s),s), = 8(r(s),5), & = d(#(x),s) for some x > 0, and similarly for the
partial derivatives of ¢.
Now we define the function ¢ (x,s) to be a solution of PDE

<))2
pot e, + L5 =0
with final condition ¢ (x, T) = 1. Then

s
Elz(x, )] = z(x, 1) +E — \ dz(x, ML = z(x, 1)
t

T ) . ﬂ M
+F —\ Asv. +ad,+ mﬂsa« = x@v e %?i +E ﬁ\ Bx, e 1@ x|
n t
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The last integral is zero according to Fubini’s theorem, subject to technical conditions
on (3 (x, s) (see [13]), while the former is zero by construction of ¢ (x, s). It is easy to
see also that m (x, t, T) = E[z(x, T)] using definition of z(x, s) and the final condition
on ¢ (x, s). Then itis true thatm, (x, t, T) = ¢ (x, t) which concludes the derivation of
the PDE for mean of V.

To state it explicitly, we are looking for a solution m (1; £) (with slight abuse of
notation, in order to avoid clutter) of

om, om, p*d*m,
— +ta—+—= —rm; =0
ot or 2 or !
subject to final condition
my(r,T)=1,

where ris the current spot rate. From now on we are going to use simple r and x inter-
changeably for the currently observed spot rate value and r(f) for the stochastically
evolving spot rate.

2.2 General mixed moments PDE
Tt will be convenient to derive PDEs for a more general case of the mixed moments of
two bonds’ discounted values

mi(x, t, T, T)) =E —<Op t TV, t, HNV,._ r(t) = k_

for some nonnegative integers i and j such that i + j > 0. Unless explicitly mentioned,
we always assume that T, <T, if both 1, j are positive. To avoid clutter, we will also use
single subscript notation m,(x, t, T):

myx, 6. T) = mo(x,t, T,) = my, (x, t,-, T).

We have already introduced this notation for m (x, t, T) implicitly in the previous
scction.

Itis easy to see that all the quantities we are interested in can be expressed via
mixed moments of two bonds. Namely, mean, variance and co-variance are the
examples:

E[V(r,t, )] = m(r,t,T), )
Var [V(r,t, T = my(r, £, T) = (m,(r, 1, DY, @
Cov [V(r,t. T, V(. t. Ty)| = my, (r.t. Ty, Ty) —my (r,t, T (r, £, T). @
We are going to show that m,(r, 1, T,, T,) can be found as a solution of PDE
=0 5)
fort€[0,T)) subject to final condition
mg (r, HT H.T N.Nu = \:.\.Aﬁ 0, u;.._ - u;_v Amv
ifboth i, j >0, or either
E\.Aﬁ T,T)=1, m(r, T, T)=1 @)
otherwise.
Tn order to derive this, we introduce quantities
[ i+t 0<t<Ty,
Ryt = A i) T <t<T,
and
2(x,5) = ¢, )™/ B
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for some twice piecewise-differentiable function ¢ (x; s). Then the change dz equals

2

o= 000 | (4, bt B Ry ) i paxc)].

Andif ¢ (x, s) satisfies

2

9.+ ad + 5.~ R =0 ®

with final condition ¢ (x, T,) then E:? T, T,) =0 (1 t). Now (8) doesn’t look
exactly like (5) with (6). But it is quite straightforward to notice that one can solve a
simplified PDE

Q_Cp,frﬁ:N .
2

B+ aCes+ T, + s —jp =0

ons€ [0, T,-T)) with final condition d(x, T,— T;)=1 first, then another PDE

—_— —_— \' NI —_—
T at9f.+ LELG 4 =0

ons € [0, T,) with final condition M@, T,) = ¢(x, 0) and obtain thus a continuous
solution of the original (8) on the whole time interval [0, T,] as a combination of the

two
NS se[0. 1,1,
)= A $s+T) se(T,.T).

3 Analytic solutions for affine models

Problem (5),(6),(7) can be solved analytically for some popular spot-rate models,
namely, models of the affinc class. The spot rate process for this class is modeled by
the following SDE with constants k > 0,6 > 0,0 > 0and 7 > 0.

dr = k(0 — r)dt + \/o?r + ydX(¢). )

The affine model family can also be characterized (see [3], [14]) by the bond
present value taking the functional form

\:HAP tT)= eM(T=0+B, :.I.:.V (10)

where A (7) and B, (r) arc functions to be defined. As it turns out, the representa-

tion (10) can be generalized to all other moments of the distribution:
i (r £ T) = e T=t+B (T=r

6 T) = : o

A Ti= T =T )+ (T~ T, =Ty

t< T,
my(r,t, Ty, Ty) = A AT T8, (Ty=T, D)7

T, <t<T, (12)

We present a simplified solution for the Vasicek model first, then derive a general
formulae for the affine class. Solutions for the mean and variance of a zero-coupon
bond for affine models have been already known for a while (see, for example, [14]).
Souzaetal. in [11] have also obtained similar formulae for Vasicek model. We choose
to present here derivations for all the moments for completeness.

3.1 Vasicekmodel
Setting a(r,1) = k(6 — r) and f(r, t) = 6 we obtain a traditionally written SDE of
Vasicek model [12].

dr =k —r)dt + cdX(t).

For illustrative purposes, we will only pursue first and second moments here,
although a general mixed-moment formula can also be easily obtained.
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3.1.1 Bond presentvalue

‘We will be looking for a solution in the form (10) satisfying initial conditions
A,(0)=0,B,(0)=0.
Taking partial derivatives, we have

om,

_ 7 '
ﬂ = IA.} + w_E::,

om, o*m,
— = Bym,,
or 0r2

= Am_vu ny.

Substituting these into the PDE (5) we obtain

2 2
— (A} +B{r) +k0 =B + &= (B,) ~r=0.
Since functions A,(z) and B,(r) do not depend on rwe collect terms with and with-

out r separately and obtain 2 ODEs in the variable ¢:
B\ + kB, =1,
2

Al = kOB, + 2 (8,

both with initial conditions A, (0)=0, B, (0)= 0. Itis easy to see that

1 (ke
B(7)= m? k_1)

and

A(r) = W Aml —

witht=T-t.

3.1.2 Bond variance

As it was suggested in the derivations above, we do not directly solve PDEs for the
variance but calculate second moments instead and then combine it with the already
obtained solution for the bond mean using (3). The derivations are very similar to
the bond mean and we are going to jump straight to the solution in closed form. We
arc looking again for an affine solution in the form

Suqv ﬁﬂvabN:jrmZC_v A_wu
and it turns out that
B = (V= 1)
and
1 30 1 (402 e 0% o 20
iinm??»*q”v +MA»LM|$VQ & |Wn 2% +Am|$v ..

With this the variance can be expressed as
<AP t, Hv = m~>21+~m:1,. A\{DI.E:D _ ; ,
where, asbefore, 7 =T~ 1.

3.1.3 Bonds’co-variance

Here we will also rely on a mixed moment’s solution using (4) instead of modeling
co-variance directly.
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Asbefore, we assume that the two maturitics of the bonds are 0 < T, < T,. We
denote AT =T, - T, for convenience.

Asdemonstrated in Section 2.2, mixed moment m (ntT,T) equals to mean
value m, (r,t,— T,, AT) for T, < t < T,. However, for t < T, our mixed moment satis-
fies

omy omy  g2d’my
~ +k@O —r o ——
oar ( ) ot 2 o

—2rmy; =0

with final condition
my, (r, T, Ty, T,) = m(r,0, AT).

Again we are looking for a solution in the form (12). Let’s introduce the quantity
¢, (AT)= ¢T 4 | Then, skipping similar derivations, we obtain

1 )
B, (s.AT) = T (g1 (AT)ER —2),

2 AT
A, (5 AT) =25 Awlef Aml N»LMNV (1)

Qm

4k3

+ (b (AT))" 2= (1= ) + ALAT),

where the function A  is the function introduced earlier and s =T, - .

3.2 CIRmodel
In this section we present solutions for the spot rate model of Cox, Ingersoll and Ross
(CIR) [2].

dr = k@ —r)dt + o/rdX. (14)

The mean value is still found to be in the form (10) but the system of individual

ODEs for functions A, and B, is nonlinear now:

N
\IQN
B = B — kB, — 1.

(15)
T
Al = k6B, (16)
Equation (15) can be written as
dB, ¢’
% (B —w)(B -y,
7 NA_ w') (Bi—vy) a7

where W = (k+x)/0%, yi = (k—x)/0% k1= VR + 202,

Solving
\F nqlu\&
Bi—wl) (Bi—wy) 2

with initial condition B (0) = 0, we obtain

2 1—er"
Bi(r) = ﬂ

W e =y
If we divide (16) by (17) then another ODE is obtained
dA, 2kO B,

B, o (Bi—y)) (Bi-wy)
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for A beinga function of B , with initial condition A (0) = 0. The solution is

A=K Tw In AH - Pm:v —y[ln AH - m;.lv_ .
K 1) LA

wherez =T-t.
Analogously, the second moment is of the form (13) with
4 1—ent

ERp— —>
o7y e — y]

k6 B,(7) _ B,(1)
wir= 2o 1-42) e (--2)]

By(v)=

with v = (k +x)/0%, w7 =(k —x,)/0°, ky = VI + do?.

Derivation of the mixed moment for the bonds’ co-variance is not
dramatically different but looks a bit more complex duc to the non-trivial final
condition at t = T,. We omit the derivations and present the final result here for
te(0,T)].

‘We define an additional quantity (where, as before, AT=T,-T,)

B (AT) -y

e En Y

and express through it the solution (where, as before, s = T, - f)

vy — ¢y (AT e
1— ¢ (AT)ess

ko B~y _ B () —yy
AL AT = = [y In | ———"2) — 2 )
u@ D= 1v: ;Ap@jliv v gfsjls.v_i_aj

mi? AT) =

3.3 Generalformula
Now we are ina position to give components A, ; and B, of the most general formula
(11),(12) for mixed moments in the affine models (9).

‘We will need the following quantities to be defined

k+ k;
K=V +2i0%, y = T =

ky + 0’0" + iy k(y + o0y + iy

N |
BaT-v,
&y (AT) = e
\.A )= .3¢.
Then , .
i —eNiT
B.(r)= = i
:(7) gt —u-

B
A =¢ n(1- swi |s_.._=A

v — Sy AT e

Bi;(s, AT) = %,
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B, (5. AT) -y,
Ay AT) = ¢ In [ — Z) 471

mg? AT) — 7%
i+ B@D -, )~ gl | 5

B/(AT) —wj

i+

+L (B, AT)= B(AT)) + A(AT),
o

s:ﬂ:uﬂuwmuﬁuwbﬂuﬁuﬁ.

4 Construction of hedging portfolios

4.1 Minimum variance portfolio
Getting back to the interpolation task, we will try to price a zero-coupon bond with
a given maturity then extract the effective yield for that maturity from the obtained
price.

There are three key principles:

we hedge the bond with other tradeable bonds and plan to hold the assets until
maturity;

hedge ratios in our portfolio are chosen so that variance of the discounted
value of the portfolio is minimal;

price of the original bond should depend on present values of all portfolio
constituents.

4.1.1 Simple case:Single-bond hedge

There follows a step-by-step example using only one other zero-coupon bond as a
static hedge. Suppose someone is willing to buy a bond with maturity T, from us.
We quote a price p, for a bond with present value V. Note that the present value is a
random variable and depends on the realized yield. We scll one bond but at the same
time we buy some quantity & of another bond with present value Vfor the quoted
price p. This bond has maturity T different from our T,. Both V and V are random
variables while p is not. One way of setting the price p, is to equate it with the expec-
tation of our total portfolio present value:

po=u=E[Vy+h(V-p) =E[V,| +h (ELV]-p)
and the expected yield curve value for that maturity will be

In [my(r. . T) + h (m, (r,t. T)— p)]
- Ty—1t

_dnp
To—t

y=

Minimizing the variance of the portfolio
Var [V + 2hCov [Vy, V] + B2 Var V)
yields the hedge ratio
Cov [V, V] _omy (it Ty, T)— m,(r,t, To)m, (r, £, T)

N\— = > .
Var[V] my(r.t, T)— (my(r. 1. T))"

The portfolio variance then becomes

2
vi="Var T\o_ — E.
Var[V]
Note thatit is not necessary that T, < Tbut if this is not the case we will need to
swap T, and T when computing the moments above.
Finally, we often want to incorporate the obtained quantities into utility-function
considerations. A very simple way of augmenting the quoted price with one’s risk
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Figure 1:Yield curve for Vasicek model with one standard deviation upper/
lower bounds obtained 7=T -t <[0.01, 10] with single bond hedge with
fixed maturity T=10.0 and quoted yield 0.05. Used parameters:r=0.03,
k=0.2,0=0.06,c5 =0.05.

yield
0.07
0.06
0.05
0.04
0.03
0.02

7=(T-t)

preferences is to add standard deviation bands +& ,\—H with some selected level €
([41, [5]). If we now vary maturity T, we obtain a mean yield curve as well as a yield
curve envelope as illustrated in Figure 1. There, for convenience, mean value and
standard deviation bands are plotted as functions of time to maturity = = T, — t while
Tiskept fixed.

4.1.2 Multi-bond portfolios

Extending it to the case where we have access to bonds of more than one maturity
for hedging is relatively easy. The bond we need to price has present value which
we denote m = E[V|] and variance cm = Var[V,] . We denote the present values of
available bonds as m = (1, 11,, ... ,1m, )%, their co-variance matrix as K, and the vector
of their co-variances with the bond being priced as k. We also have a vector of avail-
able bond prices p. What we need to find is the optimal hedge ratios vector h and cor-
responding price bands.

Solving an unconstrained optimization task

w _ (2 T T
h* = arg min (v;+2k'h+h Kh)
we obtain h* = -K~'k that gives us mean and variance
= n, Ir:ALA-: —-p). vi= Sm — k'K k. (18)

Figure 2 shows what the price bands would look like if we use multiple instru-
ments with which to hedge.

Note that without additional constraints the hedge ratios are not necessarily one
sided (all negative or all positive). For example, for the inputs used in Figure 2 along
bond position with maturity = 4.5 will have to be hedged optimally with ratios:

h* = (=0.0076, 0.0143, —0.0382, 0.137, — 0.6178, —0.5799, 0.1072, —0.0168)" .

The good news is that hedge ratios are independent of quoted prices (i.e., yields).
Asisusually the case, there is non-zero bid—ask spread in tradeable instruments. But
we are able to plug in the right price of a particular bond into (18) depending on its
hedge ratio sign afterwards. Note that this is because our optimization is based solely
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Figure 2:Yield curve for general affine model with one standard deviation
upper/lower bounds for 7=T -t €[0,8] obtained with multiple bond hedges
with maturities (0.5,1,2,3,4,5,6,7) and corresponding yields (0.029,0.03,
0.035,0.05,0.055,0.056,0.06,0.061). Used parameters: r=0.025, xk=0.2,
6=0.03, o =0.04, y=0.01.

yield

0.05
0.04
0.03
0.02
0.01

f 7=(T-t)

1 2 3 4 5 6

on variance. Had we chosen a static-hedge optimization procedure that involved
price, then this would no longer be the case.

4.1.3 Pricing multiple bonds atonce

A slightly more elaborate solution is obtained for the case where we are pricing a
portfolio of bonds V with a pre-specified vector of weights w. Although this task
may seem to be a bit contrived at first, it allows us to establish a connection to GPR
as will be described later. Another reason is that it allows us to price coupon-based
bonds (consider coupons as separate bonds with pre-defined weights).

We denote m =E[V ], and V as the vector of bonds used for hedging. The co-
variance matrix of composite bond vector (V,, V) can be written in a block form as

K,
NMA W o v
N& N:

When trying to minimize Var ?mi + <ﬂ£ we obtain mean portfolio price
_ T
u = (mq - Ky Kl —p)) " w (19)
and variance

v =wh (Ky — KL KKy ) W 20)

4.2 Fixed variance portfolio
‘What would be the worst/best price for a bond when hedged portfolio variance is
constrained? Suppose, the portfolio variance should be equal to v

7=+ + 2h"k +h"Kh.

We solve the constrained optimization problem

)+ h"(m —p) —» :r_:\:__wx

with the Lagrange multipliers method and obtain

po=my =KK™ m = p) 1 /(K=K +72 = 2)m — p)TK-(m —p).
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4.3 Pricing and using coupon-paying bonds for hedging
As noted above, pricing a single coupon-paying bond is equivalent to pricing a port-
folio of bonds with pre-specified weights.

Hedging with coupon-paying bonds is also possible to consider within the
proposed framework. It all the cash-flows are specified in advance, we can easily
incorporate it into the optimization task in the form of equality constraints on hedge
ratios. Although a closed-form solution is possible in this situation too (using the
Lagrange multipliers method again), we do not pursue this here to avoid clutter—
most realistic scenarios are likely to incorporate inequality constraints as well and
that would often render a closed-form solution impossible. Sce below the examples
of inequality constraints.

4.4 Limited hedging with inequality constraints
Various inequality constraints can be easily incorporated into the portfolio con-
struction task although closed-form solutions are rarely possible. Nevertheless,
one can utilize widely available convex optimization software to find numerical
solutions.

As an example, we can impose a maximum position size limit on every constitu-
cnt. That will be equivalent to having a constraint

[Ihf] <h.

Alternatively, we may demand that hedging notional does not exceed certain value,
ie.
[n"p| <h.

The goal function can be portfolio variance as before or min/max price (given an
additional, perhaps, incquality constraint on variance).

Asmentioned previously, hedge ratios might need to be one-sided in practical
situations, which gives us yet another type of optimization task.

An even more practical task may be to incorporate lot-sizes for hedging instru-
ments. This will turn the task into mixed-integer programming problem.

‘We can anticipate that in all these scenarios the price bands will remain a smooth
“sausage” shape, although the widths will vary.

5 Gaussian Process Regression

One cannot help noticing that the expression inside the brackets in (20) is called
Schur complement of matrix ¥, while the expression in (19) is the mean of condi-
tional multivariate Gaussian distribution. Going onc step further we can also point at
connections with Gaussian Processes (GPs) (see [8] for a comprehensive reference).
Equations (18, 19, 20) coincide with those for Gaussian Processes Regression (GPR)
with kernel (co-variance) function defined by (4).

This coincidence may give us additional insights into the interpolation task and,
so, we will give here a very short and targeted introduction into GPR theory. We will
follow [8] in our introduction and consider only the “noise-free” case.

Formal definition states that a Gaussian Process is a collection of random vari-
ables any finite number of which have a joint Gaussian distribution. Such a collection
can be thought of as a particular realization of GP and be represented as a function
flx) where x can be, for example, a multidimensional continuous variable (x € RP).
Thus, for any finite set {x,, x,, ..., x,} corresponding function values are drawn from a
multivariate Gaussian distribution which can be completely described by its first two
moments. This fact is usually denoted as

) ~ GP (m(x), k (x,2')) . (21)
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meaning that

(Fe 100, o f ) T ~ N (m, K,
wherem = (m(x,), m(x,), ...,m(x))", K = A»Cﬂr x\:“ , the co-variance matrix with
individual entries expressed through some function of two variables k(x, x ) which is
sometimes called the kernel function.

It remains to define functions m(x) and k(x, x') in order to fully specify the
Gaussian distributionin (21).

So far so good, but this might seem not especially useful yet. GPs acquire practical
value when we consider inference problems. In particular, given some observations
of a particular realization of GP, called training set and denoted as {(x, f)|i = 1, ..., n}
we want to pinpoint locations of other (unobserved) points of the same realization.
In particular, we are given test inputs X. = {x*|i=1,2, ..., p}. We do not normally
know exactly where the unobserved test outputs are. The question is then asked:
‘What can we say about the distribution of test outputs?

Using the definition of GP, we conclude that vectors of training outputs fand
testing outputs f, are jointly distributed as
ANENE=
f m, K(X,,X)

£

Ex,xﬁ.v
KX, X,). '

Conditional on observable training outputs, the distribution of test outputs only can
be expressed using Schur’s complement:

f.~N(uv),

where
u=m, —KX,, OKX, X)™ (m — f)

and
v=K(X,,X,) — KX.,X)K(X, X)™ KX, X,).

The last two formulas constitute Gaussian Process Regression algorithm in the noise-
free case. In practice, the kernel function k(x, x) is usually unknown and needs to be
learned from data. Some parametric form of the function is usually assumed and the
parameters of the kernel function (called hyperparameters) are fitted/calibrated to
available training data.

As noted previously, coincidentally, GPR produces formulae for the minimum
variance portfolio case.

Are we stating here that bond prices are Gaussian Processes? Obviously not.
One can easily see this if we remember that a single bond value cannot be negative
while any Gaussian random variable is able to take values in the range (-00, 00).
What seems apparent is that equivalence of our curve interpolation task and GPR
algorithm is merely the consequence of us using only the first two moments to sum-
marize a distribution of non-traded bond prices as random variables.

Itis interesting to note that with a particular choice of kernel function GPR algo-
rithm is equivalent to spline smoothing (see references within [8]).

6 Model calibration/fitting
Can GPs be used in order to fit parameters of interest-rate models? Indeed, in [11]
Sousa et al. suggest using GPs for fitting parameters in Vasicek model. We will con-
sider the calibration process in detail.

Here we come to an interesting junction. There are two disjoint sets of data: his-
torical quotes and current prices. Practitioners have long faced the dilemma of which
dataset to use for calibration. On one hand, historical prices are abundant and fitting

52

with Maximum Likelihood approach is a well-posed problem. Parameter estimations
usually have tight confidence intervals. On the other hand, when these parameters are
plugged into the model a poor match to the current prices is often observed. This might
lead to development of a more complex model, the one that gives a better current price
match, although still not ideal. More complex models are usually harder to fit and more
computationally demanding. Another approach would be to discard the historical data
completely and use only the current prices. This gives wild parameter estimates, esti-
mates that inconsistently change from day to day, but the price match is perfect!

A nice feature of our approach is a perfect match to current prices regardless
of the fitting process. This property is borrowed from GPR, as already noted. The
parameter estimates, however, matter. And the question of a suitable fitting proce-
dure remains.

The authors of [11] note that using only one GP realization path as a training
set for parameters fitting is unsatisfactory. They experiment with currently quoted
prices and conclude that the confidence intervals resulting from parameter uncer-
tainties are large.

We would add that the GP framework is imposed on bond pricing rather super-
ficially in our view. There is no guarantee that even a sample from a simulated bond
price path has multivariate Gaussian distribution with the desired kernel function.
Therefore, having more data points might not necessarily give better estimates. This
is especially true for models other than Vasicek (CIR and more general attine mod-
els). One might end up imposing additional constraints in the form of inequalities
or Bayesian prior probabilitics on hyperparameters in order to achieve numerically
convergent optimization.

Another problem with GPR-based parameter estimation is the necessity of intro-
ducing noise into the model even for Vasicek model. Liven a brief encounter with some
available implementations ([7], [9]) of GPR reveals that it is very often difficult to
switch off fitting of the noise variance parameter. The reason is, again, reliable optimi-
zation convergence to finite values. But adding noise into our framework is equivalent
to destroying the “sausage” shape and the perfect price match for traded instruments.

While parameter fitting in GPR models may be a fruitful arca of further rescarch,
we can also suggest alternative approaches for parameter fitting. Approaches that
derive the probability distributions from the actual model dynamics (as described by
SDECs) and then use these distributions to fit parameters. Lxamples include Kalman
filter ([1]) for the Vasicek model, while for general affine models particle filtering
(PF) might be a more natural algorithm (see [10]).

7 Conclusion

‘We have presented a framework for constructing individual yield curves with
uncertainty bands for spot rate models that can be described by a single-factor SDE.
The only assumption made is ability to statically hedge with available instruments.
Closed-form formulae are derived for affine models and portfolios with minimal
variance. Using the framework and regardless of parameter fitting procedure, one
can always obtain a perfect price match with tradeable instruments without a need
for statistically inconsistent calibration to current prices.
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