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Modelling the implied volatility smile using 
local and stochastic volatility has 

been the subject of much research over the past 20 years (see, for 
example, Dupire, 1996, Hagan et al, 2002, Heston, 1993, Jex, 
Henderson & Wang, 1999, Lewis, 2000, and Lipton, 2002). 
Interest rate option desks typically need to maintain very large 
amounts of interlinked volatility data. For each currency, there 
might be 20 expiries and 20 tenors, that is, 400 volatility smiles. 
Furthermore, the smiles might be linked across different curren-
cies. Interpolation of observed discrete quotes to a continuous 
curve is needed for the pricing of general caps and swaptions. At 
the same time, extrapolation of option quotes are needed for con-
stant maturity swap (CMS) pricing. For these purposes, the 
industry standard has been the SABR model using expansions as 
in Hagan et al (2002). The implied volatility expansions have the 
advantages that they are fast and simple to code.

But the expansions are not very accurate, particularly not for 
long maturities or low strikes. Numerical examples of this can 
be found in Paulot (2009). This is, however, largely irrelevant as 
the SABR expansions are generally only used for the pricing of 
European options, and not, for example, for calibration of full 
dynamic models.

The main practical problem with the expansions is that they 
imply negative densities for low strikes and occasionally also for 
high strikes. With the low rates we have today, this problem is 
more acute than ever. Furthermore, the SABR model only has 
four parameters to handle the above-mentioned tasks, which is 
not enough flexibility to exactly fit all option quotes.

As in Balland (2006) and Lewis (2007), we extend the stochas-
tic volatility process to include a constant elasticity of variance 
(CEV) skew on the volatility of volatility. The CEV volatility 
process allows us to have more explicit control of the extrapolated 
high-strike volatilities, which in turn allows better control of 
CMS prices. Further, we will use a non-parametric volatility 
function for the spot process, which enables us to have an exact fit 
to all the observed quotes and gives us the ability to model nega-
tive option strikes.

Rather than going through heat kernel expansions as in Hagan 

et al (2002), we follow Balland (2006) and use a short-maturity 
expansion for the implied volatility of the option. The short-
maturity expansion also yields results for the short-maturity limit 
of the Dupire (1996) forward volatility, that is, the short-maturity 
limit of the conditional expected local variance:

ϑ k( )2 = lim
t↓0

E ds t( )2 / dt s t( ) = k⎡
⎣

⎤
⎦

The forward volatility is used in a single time step implicit 
finite difference discretisation of the Dupire (1994) forward par-
tial differential equation (PDE). This precludes arbitrage and so 
avoids negative densities. We also derive an adjustment of the for-
ward volatility function to compensate for the pricing in one, 
rather than multiple, time steps. The single-step finite difference 
grid generates all prices in one go and this can in turn be used for 
calibrating the model directly to observed CMS prices.

We provide two calibration procedures: an implicit method 
that works by iteration of the connection from parameters to 
prices in a non-linear solver, and a direct method that given an 
arbitrage-free continuous curve of option prices directly infers the 
parameters of the model. We show that the implicit calibration 
method can be used to fit the model to 10 discrete strikes in 
approximately one millisecond of CPU time.

Finally, we show how we are able to control the wings of the 
smile by varying the functional form of the diffusion of the spot 
and volatility processes, and the impact this has on CMS pricing.

Short maturity expansion
First, we will outline the short-maturity expansion. Our approach 
is similar to that used in Balland (2006). We consider the model:

	

ds = zσ s( )dW
dz = ε z( )dZ 	

(1)

where W and Z are Brownian motions with correlation r.
The non-parametric form of the volatility function s(s) allows 

us to have a perfect fit to any discrete or continuous set of observed 
arbitrage-free option quotes.

We can write the price of a European call option on a fixing 
s(T) as:

c t( ) = Et s T( ) − k( )+⎡
⎣⎢

⎤
⎦⎥ = g t,s t( ),ν t( )( )

where n(t) is the implied normal volatility and g is the normal 
(Bachelier) option pricing formula:

	
g τ,s,ν( ) = s − k( )Φ s − k

ν τ
⎛
⎝⎜

⎞
⎠⎟
+ ν τφ s − k

ν τ
⎛
⎝⎜

⎞
⎠⎟
, τ = T − t

	
(2)

Applying Itô’s lemma to (2) yields:

dc = −gτdt + gsds +
1
2
gssds

2 + gνdν +
1
2
gννdν

2 + gsνds ⋅dν
	

(3)

Expanded forward volatility
Using a one time-step finite difference 
implementation, Jesper Andreasen and 
Brian Huge eliminate the arbitrages in 
the wings of the volatility smile that result 
from most expansion techniques for local 
stochastic volatility models, including the 
widely used SABR model
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where subscripts denote partial derivatives. In the following, we 
assume n > 0.

Define x = (s – k)/n. Using Itô’s lemma yields:

	

dx = 1
ν
ds − s − k

ν2
dν − 1

ν2
ds ⋅dν + s − k

ν3
dν2

= 1
ν
ds − xdν( ) +O dt( )

dx2 = 1
ν2

ds2 + x2dν2 − 2xds ⋅dν( )
	

(4)

The normal option pricing function, g, has the following 
properties:

	

gν = ντgss

gνν =
s − k
ν

⎛
⎝⎜

⎞
⎠⎟
2

gss

gsν = − s − k
ν

gss

0 = −gτ +
1
2
ν2gss

	

(5)

Using the properties in (5) we can transform (3) to:

	
dc − gsds =

1
2
gss ν2 dx2 − dt( ) + 2τνdν⎡

⎣
⎤
⎦ 	

(6)

The left hand side of (6) is the change in value of a hedged portfo-
lio. Taking conditional expectations yields:

	
0 = 1

2
gssν

2Et dx2 − dt⎡⎣ ⎤⎦ + gssτνEt dν[ ]
	

(7)

As gss > 0 for n > 0, and for any diffusion, Et[dx2 – dt] = 0 is 
equivalent to dx2 = dt, we obtain the condition:

	
0 = dx2 − dt( ) + 2 τν Et dν[ ]

	
(8)

For small maturities, t → 0, we arrive at the arbitrage condition:

	
σx
2 ≡ dx2

dt
= 1

	
(9)

Note that this is a diffusion condition rather than the drift condi-
tions that we normally see in financial mathematics.

As x must be a function of the state variables (s, z), the diffusion 
condition (9) leads to the differential equation:

	

1= σx
2 = xsds + xzdz( )2 / dt
= z2σ s( )2 xs2 + ε z( )2 xz2 + 2ρzσ s( )ε z( )xsxz 	

(10)

Given the functions s, e, we need to solve this non-linear first-
order differential equation subject to the boundary condition x(s 
= k, z) = 0. Once we have the solution x(s, z), we can find the 
implied normal volatility as:

	
ν = s − k

x s, z( ) 	
(11)

We note that the error of the implied volatility is O(t).
The result implies that for any choice of s(s), e(z) any function 

x = x(s, z) that satisfies dx2 = dt leads to an implied volatility given 
by n = (s – k)/x.

We could have chosen to derive the short-maturity expansion 
in implied Black-Scholes (lognormal) volatility n

_
 instead of 

implied normal volatility. Instead of x we should then have cho-
sen the transformation x

_
 = ln(s/k)/n

_
. The diffusion condition 

would be the same so x
_
 = x. This relates short-maturity implied 

lognormal and normal volatilities by the simple relationship:

	

ν
ν
= ln s / k
s − k 	

(12)

The expansion results that we present in the following can easily 
be switched between use in implied normal and implied lognor-
mal volatility form by use of the relation (12).

Deterministic volatility
First, we will consider the case with e(z) = 0. In this case, z ≡ 1, 
and the differential equation (10) reduces to the ordinary differ-
ential equation (ODE):

	 xs
2σ s( )2 = 1	 (13)

Using the boundary condition x(s = k) = 0, we find the solution:

	
x = 1

σ u( ) duk
s
∫

	
(14)

with corresponding implied normal and Black volatilities 
given by:

	

ν = s − k
σ u( )−1duk
s
∫

ν =
ln s / k( )
σ u( )−1duk
s
∫ 	

(15)

These results appears in many places, for example in Andersen & 
Ratcliffe (2002).

We note that (14) implies the following relationship between x 
and the forward volatility:

	

∂x
∂k

= − 1
σ k( ) 	

(16)

Suppose we have x from a stochastic volatility model like (1), that 
is, given as the solution to (10) for some volatility functions s(s), 
e(z) and correlation r. Define the function ϑ by:

	
ϑ k( ) = − ∂x

∂k
⎛
⎝⎜

⎞
⎠⎟
−1

	
(17)

and consider the deterministic volatility model:

	 ds = ϑ s( )dW 	 (18)

It now follows that:

	
xLV ≡ ϑ u( )−1k

s
∫ du = x

	 (19)

So the stochastic volatility model (1) and the local volatility 
model (18) will produce the same short-maturity expansion 
option prices.

The above is a short-maturity limit version of the general result 
by Gyongy (1986) and Dupire (1996) that the model:

	 ds = a t, s( )dW , s 0( ) = s 0( ) 	 (20)
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produces the same option prices as the model (1) if a(⋅) is chosen 
to be:

	
a t,k( )2 = E ds t( )2 / dt s t( ) = k⎡

⎣
⎤
⎦ 	 (21)

We conclude that in the short-maturity limit, the conditional 
expected variance of the underlying is related to the transformed 
variable x by:

	
ϑ k( )2 = lim

t↓0
E ds t( )2 / dt s t( ) = k⎡
⎣

⎤
⎦ =

∂x
∂k

⎛
⎝⎜

⎞
⎠⎟
−2

	
(22)

This constitutes a way of relating the two dimensional pricing 
problem (1) to the simpler one-dimensional pricing problem (18). 
We will make use of this relationship to generate arbitrage-free 
prices later in this article.

The SABR model
Here, we will rederive the main result of Hagan et al (2002) by 
solving the diffusion condition for the lognormal volatility proc-
ess case, e(z) = e ⋅ z.

First, we use the transformation:

	
y = 1

z
1

σ u( ) duk
s
∫

	
(23)

to get:

	

dy = dW − εydZ +O dt( )
= 1+ ε2y2 − 2ρεy⎡⎣ ⎤⎦

1/2
dB +O dt( )

≡ J y( )dB +O dt( ) 	

(24)

where B is a new Brownian motion. As y(s = k) = 0, we can now 
get x by normalising the volatility of y, hence:

	

x = J u( )−10
y
∫ du = 1

ε
ln J y( ) − ρ+ εy

1− ρ

ν = s − k
x

ν =
ln s / k( )

x 	

(25)

For the CEV case s(s) = s0 ⋅ s
b, we have:

	
y = 1

zσ0
s1−β − k1−β

1− β 	
(26)

These formulas are basically the result of Hagan et al (2002). 
This is extended to include maturity and various refinements for 
the CEV case. The Hagan result does, however, produce implied 
volatility smiles that are virtually identical to those produced 
with formula (25). In figure 1, we compare the Hagan expansion 
with (25). To be precise, the Hagan expansion used here and in 
the following is (2.17) in Hagan et al (2002).

We can use (25) to retrieve the forward volatility function of 
SABR from:

	

∂x
∂k

= ∂x
∂y

∂y
∂k

= 1
J y( ) − 1

z
1

σ k( )
⎛
⎝⎜

⎞
⎠⎟ 	

(27)

Hence:

	 ϑ k( ) = J y( )zσ k( ) 	 (28)

This result can also be deduced from results in Doust (2010).
Figure 2 compares the function s(s) to the forward volatility 

function ϑ(k).

The ZABR model
Next, we consider the extended SABR model where the volatility 
process is of the CEV type e(z) = e ⋅ zg.

Again, we will introduce an intermediate variable:

	
y = zγ−2 1

σ u( ) duk
s
∫

	
(29)

For which Itô expansion yields:

	 dy = zγ−1 dW + γ − 2( )εydZ( ) +O dt( ) 	 (30)

Define x = z1–gf(y), for some function f(y), and we get:

dx = z1−γ ′f y( )dy + 1− γ( )εf y( )dZ +O dt( )
= ′f y( )dW + γ − 2( )εy ′f y( ) + 1− γ( )εf y( )⎡⎣ ⎤⎦dZ +O dt( )

	(31)

We conclude that the diffusion condition (8) is satisfied if f 
solves the ODE:
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1= A y( ) ′f y( )2 + B y( ) f y( ) ′f y( ) +Cf y( )2

A y( ) = 1+ γ − 2( )2 ε2y2 + 2ρ γ − 2( )εy
B y( ) = 2ρ 1− γ( )ε + 2 1− γ( ) γ − 2( )ε2y
C = 1− γ( )2 ε2

f 0( ) = 0 	

(32)

The ODE (32) can be rearranged as:

′f y( ) =
−B y( ) f + B y( )2 f 2 − 4A y( ) Cf 2 −1( )

2A y( ) ≡ F y, f( )
	

(33)

which can be solved by standard techniques for the integration 
of ODEs. We can evaluate the solution for all strikes in one 
sweep by:

∂y
∂k

= −zγ−2σ k( )−1

∂x
∂k

= z1−γ ∂f
∂k

= z1−γ ′f y( ) ∂y
∂k

= −z−1F y,zγ−1x( )σ k( )−1

x k = s( ) = y k = s( ) = 0 	

(34)

Again, we can find the forward volatility function as:

	
ϑ k( ) = − ∂x

∂k
⎛
⎝⎜

⎞
⎠⎟
−1

= zσ k( ) ′f y( )−1 = zσ k( )F y,zγ−1x( )−1
	
(35)

Equations (34) and (35) will typically be evaluated at z = z(0) = 1. 
Rather than numerically solving the two ODEs in (34) separately, 
we favour solving (32) as a joint system.

Increasing g lifts the wings of the implied volatility smile 
whereas the implied volatility smile for strikes close to at-the-
money are virtually unaffected. This is illustrated in figure 3. 
This can in turn be used to give us better control over the 
CMS prices.

It should here be noted that the ODE representation (32) has 
previously been obtained by Balland (2006) for the lognormal 

case s(s) = s ⋅ s. Further, it should be noted that Henry-Labor-
dère (2008) has a treatment of the general non-CEV case e = e(z).

For quick identification of the model parameters, the following 
second-order Taylor expansion is convenient:

ν k( ) = ν s( ) + ′ν s( ) k − s( ) + 1
2

′′ν s( ) k − s( )2 +O k − s( )3( )
ν s( ) = zσ s( )

′ν s( ) = 1
2
zγ−1ρε + z ′σ s( )⎡⎣ ⎤⎦

′′ν s( ) = 1
6zσ s( ) z2γ−2 −5 + 2γ( )ρ2 + 2( )ε2⎡

⎣

+z2 2σ s( ) ′′σ s( ) − ′σ s( )2( )⎤⎦ 	

(36)

For the CEV case s(k) = w ⋅ (k – s)b/(s – s)b and z = 1 we have:

ν s( ) = ω

′ν s( ) = 1
2

ρε + ω s − s( )−1β⎡
⎣

⎤
⎦

′′ν s( ) = 1
6ω

−5 + 2γ( )ρ2 + 2( )ε2 +ω2 s − s( )−2β β − 2( )⎡
⎣

⎤
⎦ 	

(37)

For a given set of discrete quotes n^(k1), ... , n
^(kn), the Taylor expan-

sion (37) can be used for regressing the triple n(s), nʹ(s), nʹʹ(s). 
One can in turn solve (37) to get parameter estimates for b, r, e.

Finite difference volatility
Using the implied volatility coming from the short-maturity 
expansions, (15), (25) and (34), directly for pricing using (2) 
will not give arbitrage-free option prices. Our short-maturity 
expansions suffer from the same problem of potential negative 
implied densities for low strikes as the original Hagan expan-
sion. In figure 4, we have plotted an example of the implied 
volatilities and the implied density coming from the Hagan 
expansion.

To avoid this problem, we will instead use the forward volatili-
ties derived in (28) and (35) as the basis for our pricing.

The forward volatility ϑ(k) can be used to generate option 
prices as the solution to the Dupire (1994) forward PDE:
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ct t,k( ) = 1
2
ϑ k( )2 ckk t,k( )

c 0,k( ) = s − k( )+ 	

(38)

The usual way of solving this numerically is to set up a time 
discretisation with multiple time steps and then use a finite differ-
ence solver. However, to gain speed we will instead use the single 
time step implicit finite difference approach introduced in 
Andreasen & Huge (2011). Here we need to solve the ODE:

	
c t,k( ) − 1

2
tθ k( )2 ckk t,k( ) = s − k( )+

	
(39)

In Andreasen & Huge (2011) it is shown that this approach gen-
erates a set of arbitrage-free call prices for any choice of q. It is also 
shown that the one-step finite difference price is the Laplace 
transform of the solution to (38). The Laplace transform of the 
Gaussian distribution is the Laplace distribution:

	
e−t /T0

∞
∫

1
ν t

φ s − k
ν t

⎛
⎝⎜

⎞
⎠⎟
dt = T

2ν2
e
− s−k T

2ν2

	
(40)

which is peaked at k = s. Therefore if we choose q = ϑ we will also 
get a peak in the densities.

Instead, we will find an adjustment for the forward volatility 
function based on our expansion results. As option prices gener-
ated by (38) and (39) should be the same, we can substitute ckk = 
2ct/ϑ

2 from (38) into (39) and rearrange to find:

	

θ k( )2 = ϑ k( )2 c t,k( ) − s − k( )+
tct t,k( )

≈ ϑ k( )2
g t,s,ν( ) − s − k( )+( ) / t

∂g t,s,ν( ) / ∂t

= ϑ k( )2 ⋅2 1− ξ
Φ −ξ( )
φ ξ( )

⎛
⎝⎜

⎞
⎠⎟
, ξ = x t−1/2

≡ ϑ k( )2 ⋅P x( )2 	

(41)

where the second (approximate) equality involves approximating 
the option prices by our expansion result.

The function P(x)2 can conveniently be approximated with a 
third- or fifth-order polynomial. Specifically:

	
Φ x( ) / φ x( ) ≈ anu

n

n
∑ , u = 1 / 1+ px( )

	
(42)

where the constants p, a1, a2, ... can be found in (26.2.16) and 
(26.2.17) of Abramowitz & Stegun (1972), .

The finite difference discretisation of (39) is:

	
1− 1

2
tθ k( )2 δkk⎡

⎣⎢
⎤
⎦⎥
c t,k( ) = s − k( )+

	
(43)

where dkk is the second-order difference operator. This equation 
can be represented as a tridiagonal matrix equation on the grid 
{k0, k1, ... , kn}, which in turn can be solved for {c(t, ki)} in linear 
CPU time using the tridag() algorithm in Press et al (1992).

As an alternative to the finite difference solution (43), one could 
use the exact solution methodology for the ODEs of the type (39) 
described in Lipton & Sepp (2011). However, for this methodol-
ogy to be computationally effective the forward volatility func-
tion q(k) needs to be well approximated by a piecewise linear 
function with few knot points over the full domain of the solu-
tion. This is generally not the case here, as can be seen in figure 2. 
We have therefore chosen to base our solution on (43).

In figure 5, we have plotted the density both with and without 
the forward volatility adjustment. For reference, we have also 
plotted the implied density from the Hagan expansion. We see 
that the finite difference generated option prices have correspond-
ing implied densities that are positive, that is, arbitrage is pre-
cluded. We also see that using our forward volatility result, ϑ(k), 
directly in the single time step finite difference solver produces a 
density that is peaked around at-the-money. This, however, is 
eliminated when using the adjusted forward volatility q(k).

Calibrating the volatility function
First consider the case where we have a continuous curve of arbi-
trage-free option prices. This could for example be produced by 
the Andreasen & Huge (2011) interpolation scheme or come from 
another ZABR model. Calculate the forward volatility function 
by the discrete Dupire equation:

	
θ k( )2 = 2 c t,k( ) − s − k( )+

tδkkc t,k( ) 	
(44)

Using (35) we can calibrate the volatility function:

	
σ k( ) =

F y,zγ−1x( )θ k( )
zP x( ) 	

(45)

where x, y are found from (34) as the solution to the ODE system:

	

∂y
∂k

= −
zγ−1P x( )

θ k( )F y,zγ−1x( )
∂x
∂k

= −
P x( )
θ k( )

y k = s( ) = x k = s( ) = 0 	

(46)

The ODE system (46) can be solved for all strikes in one sweep.
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However, typically, we prefer to calibrate directly to the 
observed discrete quotes. This is done by solving the ODEs in 
(34) and (35) and including the one-step finite difference adjust-
ment (41):

	

∂y
∂k

= − zγ−2

σ k( )
∂x
∂k

= −
F y,zγ−1x( )
zσ k( )

θ k( ) = P x( )zσ k( )
F y,zγ−1x( )

x k = s( ) = y k = s( ) = 0 	

(47)

After numerical solution of (47), we find the option prices using 
the one-step finite difference algorithm in (43). On top of this, we 
use a non-linear solver to calibrate the volatility function s(k) to 
observed discrete option quotes. As we get all option prices in one 
sweep, we can include CMS forwards and option quotes in the 
calibration without additional computational costs.

Even though non-linear iteration is involved, this procedure 
is very fast. Typically, we can calibrate a non-parametric vola-

tility function with 10 knot points to a given smile in roughly 
50 iterations, which takes approximately one millisecond of 
CPU time.

When it comes to outright pricing speed, the ZABR model is 
capable of generating 100,000 smiles each consisting of 256 
strikes in approximately seven seconds. It should be stressed 
that this includes both numerical ODE and finite difference 
solutions. This is actually faster than direct use of Hagan’s 
SABR expansion, which takes 10 seconds for the same task. The 
reason for this difference is mainly that one time-step finite dif-
ference is faster at producing prices than the Black formula. An 
alternative to the ZABR model for producing arbitrage-free 
option prices is the Fourier-based models found in, for example, 
Lipton (2002). For a displaced Heston (1993) model, numerical 
solution for 100,000 smiles consisting of 256 strikes via the fast 
Fourier transform with the Black-Scholes formula used as a con-
trol variate takes around 18 seconds (see Andreasen & Andersen, 
2002). It should be noted that this type of model is considerably 
less flexible with respect to fitting discrete quotes and more dif-
ficult to implement.

Though we generally use (47) in conjunction with a non-lin-
ear solver for the calibration, the direct calibration methodology 
(46) is relevant as it admits direct calibration of one ZABR 
model to another.
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6 Low-strike behaviour
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7 Positive probability of negative rates
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8 Variation with g
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9 Convexity adjustment dependence on g
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The stochastic process x has unit diffusion and thus, in the 
sense of the short-maturity limit, is normally distributed. So it is 
natural to use a uniform spacing in x and a non-uniform spacing 
in k. For this, the ODE system (47) can conveniently be trans-
formed to:

	

∂y
∂x

= zγ−1

F y,zγ−1x( )
∂k
∂x

= −
zσ k( )

F y,zγ−1x( )
θ k( ) = P x( )zσ k( )

F y,zγ−1x( )
y x = 0( ) = 0, k x = 0( ) = s 	

(48)

In our implementation, we solve (48) on a uniform x grid to gen-
erate and fix a non-uniform strike grid {k0, k1, ... , kn} that is used 
in the numerical solution of (47) during calibration and pricing. 
As a final remark, we note that ODEs in this section typically will 
be solved at z = z(0) = 1.

Controlling the wings
Here, we will give a few examples to illustrate how we are able to 
control the behaviour of the wings of the smile. Consider a 
model with:

	 σ s( ) = ω s( ) s − s( )β 	 (49)

where w is a non-parametric curve and s is the lower bound of the 
spot process. For b < 1, we have absorption at s and for b ≥ 1 the 
barrier is unattainable. Our finite difference solution imposes 
absorption for the cases where the barrier is attainable. In figure 
6, we fit this model to Hagan prices for b = 0.5 and b = 1 and s = 

–0.02 and we see that the fit is good for positive strikes.
In figure 7, we have plotted the resulting densities. As before, 

the Hagan expansion produces negative densities for low positive 
strikes. For b = 0.5, we have absorption at the barrier and for b = 
1 we see that the density below zero is spread out.

We now use the model with b = 1 to illustrate the effect of g. 
For different levels of g, we have calibrated the model to the 
Hagan expansion prices for strikes between 0.02 and 0.06. In fig-
ure 8, we see that all models are well calibrated in the sense that 
the models all produce the same smiles for strikes between 2% 
and 6%. We can also see the biggest impact of varying g is for 
high strikes.

One way of fixing g is to choose it to match CMS forwards or 
option quotes. In figure 9, we have shown the impact on a CMS 
convexity adjustment.

Conclusion
We have used a simple method to derive short-maturity expan-
sions for forward volatilities from stochastic volatility models. 
The solution is an ODE that can be solved numerically for all 
strikes in one sweep including adjustment of the forward volatil-
ity function to compensate for the one-step finite difference 
option pricing. Finally, we use the one-step finite difference 
scheme to generate option prices. The approach is very fast and it 
generates arbitrage-free option prices. We have added flexibility 
to the original SABR model to get an exact fit of all quoted option 
prices and better control of the wings of the smile for improved 
CMS pricing. Also we can add CMS prices to the calibration 
without additional computational costs. n
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