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Efficient Techniques for Simulation of Interest Rate Models involving

Non-Linear Stochastic Differential Equations

Abstract

This paper examines methods to reduce systematic and random errors in simulations of

interest rate models based on non-solvable, non-linear stochastic differential equations

(SDEs). The paper illustrates how application of high-order Ito-Taylor discretization

schemes in combination with appropriate variance reduction techniques can yield very

significant improvements in speed and accuracy. Besides discussing and testing several

traditional approaches to variance reduction, we consider the more recent techniques of

Girsanov measure transformation and quasi-random sequences. Using the Cox, Ingersoll,

and Ross square-root diffusion model as a specific example, we find that applying a second-

or third-order discretization scheme in combination with a probability measure

transformation and the antithetic variate method yields the best results overall. Although

quite effective in problems of low dimension, quasi-random sequences suffer from certain

fundamental problems that limit their usefulness in the applications considered here.



IV.3

Efficient Techniques for Simulation of Interest Rate Models involving

Non-Linear Stochastic Differential Equations

1. Introduction

Driven by the increasing sophistication and competitiveness of the financial markets, much

recent finance research emphasizes that theoretical models be "realistic", i.e. closely reflect

observable market behavior. Whereas the structure of most classical models has been

specified primarily with analytical tractability in mind, many new models deliberately

sacrifice such tractability for a closer fit to the market. The lack of tractability, however,

makes the practical usage of such models reliant upon the development of efficient

numerical schemes. Indeed, the finance literature has recently seen an abundance of

ingenious schemes designed either to support complicated, non-linear models or to provide

automatic calibration to observable prices. Most of these schemes are based on binomial or

trinomial discretizations of either the underlying stochastic processes or the fundamental

no-arbitrage PDE. Examples from the interest rate markets include Jamshidian (1991), Hull

and White (1990a, 1994a-b), Black, Derman and Toy (1990), Ho and Lee (1986), Jensen &

Nielsen (1991) just to name a few. In equity markets Wilmott, Dewynne and Howison

(1993), extending the work of Brennan and Schwartz (1978), have illustrated how many

types of exotic options can be priced efficiently in either finite difference or finite element

lattices. Recently, Dupire (1993, 1994), Derman and Kani (1994), Rubinstein (1994), and

Andersen and Brotherton-Ratcliffe (1995) have shown how to use forward induction

principles to extend lattice and finite difference models to incorporate the effects of the so-

called "volatility smile" in options markets.

A widespread alternative to lattice schemes is the method of Monte Carlo simulation.

Introduced to finance by Boyle (1977), the Monte Carlo method is typically applied to

problems too complex for the lattice techniques. Such problems include the pricing of

instruments that contain strongly path dependent options and/or depend on multiple
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stochastic factors1. As complexity of traded instruments has grown, Monte Carlo techniques

have become increasingly important, a trend that is likely to continue in the future. This is

particularly true in the fixed income markets, where multiple factors and path-dependency

are embedded in a wide variety of new structured or mortgage-based contracts. Despite its

increasing importance and wide applicability, the Monte Carlo method has received much

less attention in the literature than lattice models. One reason for this is, of course, the low

order of convergence ( O N( )/−1 2 ) which tends to make practical usage painfully slow.

Recent research, however, suggests that application of results from the field of high-

dimensional integration can, under certain circumstances, improve this convergence rate

significantly. As shown in Brotherton-Ratcliffe (1994a-b), Joy (1994), and Paskov (1994),

replacing the traditional pseudo-random number generators by low-discrepancy quasi-

random sequences can lead to significant improvements in the computational effort required

to value a wide array of path-dependent options and CMOs. Further, by applying a

martingale control variate technique to option pricing, Clewlow and Carverhill (1994)

report significant improvements over traditional variance reduction methods2. Another line

of research has focused on extending the Monte Carlo technique to pricing problems that

were previously considered beyond the capabilities of the method. Tilley (1993) and, more

recently, Broadie and Glasserman (1994) have shown how, in principle, Monte Carlo

simulation can be used to price American-style equity options. Andersen (1996), and

Andersen and Brotherton-Ratcliffe (1996) illustrate how the Monte Carlo method can

successfully be applied to the pricing of lookback and barrier options with continuous or

high-frequency sampling of the underlying asset process.

Almost all recent research on Monte Carlo methods share the common assumption that the

underlying asset process is simple deterministic geometric Brownian motion -- a process

class characterized by a linear stochastic differential equation (SDE) that permits a closed-

form solution. Given the price at time t, St , of an asset that follows geometric Brownian

motion, recall that the asset price at time s t≥  can be written explicitly in the familiar

expression
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where ~z  is a standard Gaussian variable, and the deterministic functions of time µ( )t  and

σ ( )t  are the drift and volatility of S, respectively. In the case of geometric Brownian

motion, simulation of asset-paths is thus essentially a matter of repeated application of (1).

In interest rate modeling, which will be the main focus of the present paper, it is, however,

highly questionable whether we can assume that market dynamics are governed by simple

linear SDEs. Many popular interest rate models thus involve highly non-linear SDEs,

including those of Pearson and Sun (1990), Cox (1975), Black, Derman and Toy (1990),

and Cox, Ingersoll and Ross (1985)3. Empirical studies by, among others, Das (1993), Chan

et al (1992), and Apabhai et al (1994) confirm the non-linearity of interest rate SDEs4.

Without an explicitly solvable SDE, design of an efficient Monte Carlo simulation scheme

involves two challenges: i) how to ensure rapid convergence; and ii) how to discretize the

process such that the convergence level is close to the continuous-time solution of the SDE.

Although Monte Carlo techniques, as discussed above, offer some help towards resolving

the former problem, they do not provide much insight into the latter. To handle this

problem, we instead need methods from the field of stochastic numerical methods.

Pioneered by Milstein (1974, 1978), numerical schemes for solution of SDEs have been

developed throughout the 1980s to levels of sophistication approaching those of numerical

schemes for PDEs and ODEs. A comprehensive reference to many of these developments is

Kloeden and Platen (1992). Despite their success in many physics and engineering

problems, application of numerical methods for SDEs to finance has been quite limited and

mostly confined to an equity setting, see Platen and Schweizer (1994), and Hofmann, Platen

and Schweizer (1992).
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In this paper, we will investigate the application of techniques from both Monte Carlo

theory and the field of stochastic numerical methods to an interest rate setting. In particular,

we will illustrate how careful application of high-order simulation schemes combined with

SDE- and Monte Carlo-based variance reduction techniques can lead to significant

improvements in convergence of interest rate models. For purposes of exposition, we will

limit our discussion to one-factor short rate models; most of the results and general

techniques can easily be extended to the case of multiple factors (as in Brennan and

Schwartz (1982)) and should also prove useful for forward rate models (as in Heath, Jarrow

and Morton (1992)). Further, we will focus most of our discussion to the fundamental

problem of determining bond prices from given values of the short rate. As in practice all

interest rate contingent claims depend on some, possibly path dependent, function of one or

more bond prices (rather than the instantaneous short rate), the capability of quickly

extracting accurate bond prices is a prerequisite for simulation of more complicated

contingent claims. Throughout the paper we will use the Cox, Ingersoll and Ross (1985)

square-root diffusion model to illustrate key results. This model is sufficiently complicated

to illustrate the fundamental problems of simulating non-linear SDEs, yet permits a closed-

form bond-pricing solution and hence allows for monitoring and testing of simulation

results.

The paper is organized as follows. In Section 2, we provide notation and present the

theoretical framework for the subsequent sections. Section 3 discusses general numerical

schemes for discretization of the short rate SDE and presents initial simulation results for

the Cox, Ingersoll, and Ross model. In Section 4, we present and test various techniques for

reducing the variance of the bond price estimator. Section 5 contains selected bond

simulation results to illustrate the effectiveness of the techniques discussed in previous

sections. In Section 6, we briefly discuss the issues involved in application of the developed

simulation techniques to more complex interest rate derivatives. Finally, Section 7

concludes the paper with a brief summary of the results and a discussion of potential

directions of future research.
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2. Setup and Model Assumptions
We consider a frictionless intertemporal economy with a bounded trading horizon [ , ]t0 τ ,

t0  being the present and τ  some arbitrary, fixed future time. As usual, we represent

uncertainty by a probability space ( , , )Ω F P  where Ω  is the set of possible states, F is a

σ -field of subsets of Ω , and P is a (real world) probability measure. We will limit our

discussions to models where the stochastic dynamics are driven by a single Brownian

motion { $ , [ , ]}W t tt ∈ 0 τ . Information flow in the economy is represented by the (augmented)

filtration { , [ , ]}ℑ ∈t t t0 τ  generated by $W  and satisfying ℑ =τ F . As always, we assume

that ℑt  meets the usual conditions, i.e. is right-continuous and contains the null-sets of P.

To characterize the term structure of risk-free interest rates, we let5 the strictly positive,

adapted process P t T t t T( , ), 0 ≤ ≤ ≤ τ  denote the time t price of a bond that matures at

time T with certain payout P T T( , ) $1= . As discussed in Harrison and Kreps (1979), under

technical conditions6 there are no arbitrage opportunities if and only if there exists a

probability measure Q, equivalent to P, under which the expected instantaneous rate of

return on any discount bond equals the risk-free rate. Q is frequently referred to as the

"risk-neutral" probability measure. Under Q, we will assume that the dynamics of the yield

curve can be described by a one-factor diffusion process in the instantaneous short rate r

taking values in a subset D of ℜ :

dr r t dt r t dWt r t r t t= +µ σ( , ) ( , ) (2)

where { , [ , ]}W t tt ∈ 0 τ  is a Brownian motion under Q and where µ σ τr r D t, : [ , ]× → ℜ0

have sufficient regularity to ensure the existence of a unique solution to (2) (see for

example Arnold (1992), chapter 6)7. In most cases D will be the set of all non-negative real

numbers ℜ+ , although some (Gaussian) models have D = ℜ .

As discussed in Duffie and Kan (1994) most models of the form (2) appearing in the

literature can be written as
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dr c t c t r c t r r dt k t k t r dWt t t t t t= + + + +[ ( ) ( ) ( ) ln ] [ ( ) ( ) ]1 2 3 1 2
γ (3)

for constant γ  and deterministic coefficients c1 , c2 , c3 , k1 , k2 : [ , ]t0 τ → ℜ . In this

paper, two special cases of (3) will be of special importance, namely the Cox, Ingersoll,

and Ross (CIR) (1985) model ( c3 0= , k1 0= , γ = 05. ):

dr a b r dt r dWt t t t= − +( ) σ (4)

and the Vasicek (1977) model ( c3 0= , k2 0= , γ = 10. ):

dr r dt dWt t t= − +α β κ( ) (5)

for positive constants8 a, b, σ , α , β , and κ . In the CIR model, the distribution of the

short rate can be shown to be non-central chi-square with mean and variance

CIR:

E r r r e b e s tQ
s t t

a s t a s t( | ) ( ),( ) ( )= + − ≥− − − −1 (6a)

V r r
r

a
e e

b

a
e s tQ

s t
t a s t a s t a s t[ | ] ( ) ( ) ,( ) ( ) ( )= − + − ≥− − − − − −σ σ2

2
2

2

2
1 (6b)

In the Vasicek model, the short rate is Gaussian with moments

Vasicek:

E r r r e e s tQ
s t t

s t s t( | ) ( ),( ) ( )= + − ≥− − − −α αβ 1 (7a)

V r r e s tQ
s t

s t[ | ] ( ),( )= − ≥− −κ
α

α
2

2

2
1 (7b)

The short rate under the CIR and Vasicek models takes values9 on D = ℜ+  and D = ℜ ,

respectively. The positive probability of the short rate being negative under the Vasicek
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model is clearly a problem; due to its analytical tractability, the Vasicek model is

nevertheless quite popular in the literature.

In most applications, we are interested in determining the value of discount bonds given the

process dynamics in (2). As shown in Harrison and Kreps (1979), discount bond prices are

given by the risk-neutral conditional expectation

P t T E r du E r duQ
u t

t

T

t
Q

u
t

T
( , ) exp( ) exp( )= − ℑ�

! 
"
$# = −�

! 
"
$#I I (8)

where we have introduced the notation E Et
Q Q

t[ ] [ | ]⋅ = ⋅ ℑ . For later uses, we note that (8)

alternatively can be written

P t T E It
Q

T( , ) [ ]= (9a)

where I is given by the SDE

dI r I ds I t t ss s s t= − = ≤ ≤ ≤, ,1 0 τ (9b)

In both the CIR and Vasicek models, (8) can be evaluated analytically. The results are

listed below for future reference.
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CIR:

P t T A t T e r B t Tt( , ) ( , ) ( , )= − (10)

A t T
e

a e

a T t

T t

ab

( , )
( )( )

( )( )/

( )

/

=
+ − +

�
! 

"
$#

+ −

−
2

1 2

2 2 2

η
η η

η

η

σ

B t T
e

a e

T t

T t( , )
( )

( )( )

( )

( )= −
+ − +

−

−
2 1

1 2

η

ηη η

η σ= +a2 22

Vasicek:

P t T C t T e r D t Tt( , ) ( , ) ( , )= − (11)

D t T
e T t

( , )
( )

= − − −1 α

α

C t T
D t T T t D t T

( , ) exp
( ( , ) )( / ) ( , )= − + − −

�
! 

"
$#

α β κ
α

κ
α

2 2

2

2 22

4

3. Discretization Schemes for Simulation of Discount Bond Prices

3.1. The General Case

To develop schemes for the evaluation of the bond pricing equation (8) or, equivalently,

(9a-b), we consider the vector SDE (under Q)

d
r

I

r t

r I
dt

r t
dW t t r const D It

t

r t

t t

r t
t t t

�
��

�
�� =

−
�
��

�
�� +

�
��

�
�� ≤ ≤ = ∈ =

µ σ
τ

( , ) ( , )
, , . ,

0
10 0 0

(12)

Assuming that σ r  and µ r  are sufficiently smooth, we can expand (12) in a first-order Ito-

Taylor series10
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where the remainder vector 
r
R1  consists of multiple stochastic integrals of second order.

The second-order Ito-Taylor expansion of (12) takes the form

r

I

r

I

r t

r I
s t

r t
W W

L r t

I r r t
s t L r t W W s t

L r t

I r t

s

s

t

t

r t

t t

r t
s t

r t

t t r t

r t
s t

r t

t r t

�
��

�
�� =

�
��

�
�� +

−
�
��

�
�� − +

�
��

�
�� − +

−

�

�
���

�

�
���

− +
�
�
��

�
�
�� − − − +

−

�
��

�
�

µ σ

µ

µ

σ

µ
σ

( , )
( )

( , )
( )

( , )

( , )
( ) ( , ) ( ) ( )

( , )

( , )

0

1

2
1

2

1

2
0

0

2

2
1

2

1

4 9
4 9

� − +
�
��

�
�� − − − − +( )

( , )
( )( ) ( )V V

L r t
W W s t V V Rs t

r t
s t s t

0

2
0

σ 1 6 r

(14)

where the remainder 
r
R2  involves third-order stochastic integrals. In (14), we have

introduced the operators

L
t r r

L
rr r r

0 2
2

2
11

2
= + ⋅ + ⋅ = ⋅∂

∂
µ ∂

∂
σ ∂

∂
σ ∂

∂
( ) ( ) ; ( ) (15)

and a new Gaussian process11 Vt  given by E V Vt
Q

s t[ ]− = 0 , E V V s tt
Q

s t[( ) ] ( ) /− = −2 3 3 ,

and E V V W W s tt
Q

s t s t[( )( )] ( ) /− − = − 2 2 .

To simulate a single path of r and I over the interval [ , ]t T0 , we discretize the time interval

into K equidistant time steps of length δ = −( ) /T t K0 . Let $I  and $r  be the discrete-time

approximations of the continuous-time variables r and I. By truncating off the remainder in

the above Taylor expansions, we arrive at the following iterative schemes:
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First-order Taylor (Euler):

$ $ ( $ ) ,I I ri i i+ = −1 1 δ (16a)

$ $ ( $ , ) ( $ , )~ ,

, ,..., , $ , $

r r r t i r t i z

i K r r I

i i r i r i i

t

+ += + + + +

= − = =
1 0 0 1

0 00 1 1 1
0

µ δ δ σ δ δ
(16b)

Second-order Taylor (Milstein):

$ $ $ $ ( $ , ) ( $ , )~ ,I I r r r t i r t i zi i i i r i r i i+ += − + − + − +�
��

�
��1

2
0

2
0 11

1

2

1

2
δ µ δ δ σ δ δ δ4 9 (17a)

$ $ ( $ , ) ( $ , ) ( $ , )~

( $ , ) ( $ , ) ~ ( $ , )

( $ , )~ , , ,..., , $ , $

r r r t i L r t i r t i z

L r t i L r t i z L r t i

L r t i z i K r r I

i i r i r i r i i

r i r i i r i

r i i t

+ +

+

+

= + + − +�
��

�
�� + + +

+ + + + + +

+ = − =

1 0
1

0 0 1

1
0

0
0 1

0
0

2

1
0 1

2
0

1

2

1

2

1

2
1

2
01 1

0

µ δ σ δ δ σ δ δ

µ δ σ δ δ δ µ δ δ

σ δ δ

4 9

0 1=

(17b)

In (16a-b) and (17a-b) we have set W W zi i i+ +− =1 1
~ δ , where ~ , ~ ,..., ~z z zK1 2  is an

independent sequence of standard Gaussian variables, ~ ( , )z Ni ∈ 01 . In (17a-b) we have

further set V V zi i i+ +− =1 1 2~ /δ δ ; this simplification can be shown to be valid for the

purpose of evaluation expectations of the joint vector processes (12) (which is what we are

interested in here); see Kloeden and Platen (1992), chapter 14 for a proof. In the literature,

the first-order Taylor approximation (16a-b) is known as the Euler scheme, whereas (17a-b)

is an extended version of the Milstein scheme.

If we apply (16a-b) or (17a-b) to generate N sample values of the process $I  at time T,

$ , $ ,..., $I I IK K K
N1 2 , we can estimate the expectation (9) as
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$( , ) $P t T
N

IK
j

j

N

0
1

1=
=

∑ (18)

To analyze the quality of the estimate $( , )P t T0 , it is convenient to decompose the total

mean error

$ $( , ) ( , )e P t T P t T= −0 0 (19)

into two components, a systematic error esys  and a statistical error $estat :

$ $e e esys stat= + (20)

where esys  is a constant

e E e E P t T P t T E I P t Tsys t
Q

t
Q

t
Q

K= = − = −
0 0 00 0 0[$] [ $( , )] ( , ) [ $ ] ( , ) (21)

and $estat  is a random variable with mean E et
Q

stat0
0[$ ] =  and variance

V e V e V P t T
N

V It
Q

stat t
Q

t
Q

t
Q

K0 0 0 00
1

[$ ] [$] [ $( , )] [ $ ]= = = (22)

Under certain smoothness and regularity conditions on µ r  and σ r , it can be shown that

both the Euler and Milstein schemes have the property that esys → 0  for δ → 0 ; however,

the speed at which esys  approaches zero depends on which scheme is used. More precisely,

one can show (Kloeden and Platen (1992), p. 473-74) that the following inequalities hold

Euler Scheme: e Csys ≤ 1δ (23a)

Milstein Scheme: e Csys ≤ 2
2δ (23b)
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where C1  and C2  are positive real constants independent of the step-size δ . Based on the

exponent of δ  in the above inequalities we say that the Euler and Milstein scheme

converge weakly with order 1 and 2, respectively .

Schemes with weak convergence orders greater than 2 can, in principle, be constructed

from high-order Ito-Taylor expansions of (12). Unfortunately, such expansions generally

lead to non-trivial multiple stochastic integrals which frequently require the usage of quite

complicated approximation techniques. An attractive alternative to the truncated Taylor

series is Richardson extrapolation which essentially allows us to construct high-order

schemes by combining results from low-order schemes. Suppose for example that we use

the Milstein scheme (17a-b) to construct two bond price estimates, $ ( , )P t Tδ 0  and

$ ( , )P t T2 0δ , for step-sizes δ  and 2δ , respectively. Under technical conditions on µ r  and

σ r , an error expansion result by Talay and Tubaro (1990) can be used to show that the

combination

$ ( , ) $ ( , ) $ ( , ),P t T P t T P t TR δ δ δ0 0 2 0
1

3
4= −4 9 (24)

converges with weak order 3. As in the deterministic case, Richardson extrapolation works

through cancellation of leading order error terms.

As a final remark on SDE discretizations, we note that Kloeden and Platen (1992) have

developed several derivative-free implicit and explicit discretization schemes (including

versions of the well-known Runge-Kutta scheme frequently applied in the numerical

solution of ODEs). Although we will not discuss such methods further here, they should

prove helpful in problems where drift and volatility functions are not explicitly given but

only known in a finite number of observed points.
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3.2 Discretization and Test of the CIR Model

Applying the general formulas (16a-b) and (17a-b) to the CIR process12 (4) yields the

following discretization schemes:

Euler Scheme:

$ $ ( $ ) ,I I ri i i+ = −1 1 δ (25a)

$ $ ( $ ) | $ |~ , , ,..., , $ , $r r a b r r z i K r r Ii i i i i t+ += + − + = − = =1 1 0 001 1 1
0

δ σ δ (25b)

Milstein Scheme:

$ $ $ $ ( $ ) | $ |~ ,I I r r a b r r zi i i i i i i+ += − + − − −�
��

�
��1

2 2
11

1

2

1

2
δ δ σ δ δ4 9 (26a)

$ $ ( $ ) | $ |~

| $ |
( $ ) | $ | ~ ( $ )

~ , , ,..., , $ , $

r r a b r r z

r
a b r r a z a b r

z i K r r I

i i i i i

i
i i i i

i t

+ +

+

+

= + − −
�
��

�
�� + +

− −
�
��

�
�� −

�
��

�
�� − − +

= − = =

1

2

1

2

1
2 2

2

1
2

0 0

4

4

1

4
2

1

2

4
0 1 1 1

0

σ δ σ δ

σ σ δ δ δ

σ δ

(26b)

As the discretized CIR process -- unlike its continuous-time equivalent -- has a non-zero

probability of generating negative short rates, notice that we have taken the precaution of

using absolute values of $ri  in all square-root operations in (25a-b) and (26a-b). Since the

CIR model permits a closed-form bond pricing equation (see (10)), we can, in principle,

test the convergence properties of (25a-b) and (26a-b). One complicating factor in

convergence tests using a finite number of simulation paths is the presence of the statistical

error term $estat  (see (22)) which necessitates construction of confidence intervals around

the error estimate $e . One way of generating such confidence intervals involves arranging
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the total number N of path simulations into B batches of S simulations each, N SB= .

Provided that S is sufficiently large (say, larger than 20), the Central Limit Theorem implies

that the batch errors will be approximately Gaussian. Using the standard Student T-test we

can then use the sample variance

$
( )

$ $V
B B

B P PB k k
k

B

k

B

=
−

−
�
��

�
��

�

�
��

�

�
��==

∑∑1

1
2

1

2

1

 of the B batch averages $ , $ ,..., $P P PB1 2  to construct the necessary confidence intervals around

the total mean error $e . For example, the 90% confidence interval for $e  has the form

$ .e c± 0 9 , c t V BB B0 9 0 9 1. . ,
$ /= −  where the multiplier t B0 9 1. , −  is the two-tailed 90th percentile

of a Student T-distribution with B-1 degrees of freedom. Some examples of t B0 9 1. , −  include:

t0 9 9 183. , .= , t0 9 99 166. , .= , and t0 9 999 165. , .= .

In Table 1 below, we have listed simulation results for a 2-year discount bond assuming

model parameters13 of a = 0 4. , b = 01. , σ = 01. , and an initial short rate of r0 0 06= . . The

table covers both the Euler scheme (25a-b), the Milstein scheme (26a-b), and the

extrapolated third-order scheme (24). In an attempt to minimize the effects of the statistical

error $estat  in (21), we have set N = 1,000,000  ( S B= = 1,000 ). The table contains the 90%

confidence intervals of the absolute error, $ .e c± 0 9 , as well as a "worst-case" absolute error,

defined by

$ $ , $. .e MAX e c e cwc = + −0 9 0 92 7 (27)

For comparisons of computational efficiency, the table lists calculation times Tcomp  (in

seconds) of all simulations. The computations were run on a DEC Alpha 7610 mainframe

using the standard pseudo-random generator ran1() (see Press et al (1992)) in

combination with the Box-Mueller transformation.
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Crude Monte Carlo Simulation Results for CIR Model
2-Year Discount Bond, Theoretical Value = 0.8655244

N S B= = =1 1 1,000,000; ,000; ,000

a b r= = = =0 4 01 01 0 060. , . , . , .σ

K 1 2 4 8 16 32 64 128 256

δ 2 1 0.5 0.25 0.125 0.0625 0.03125 0.01563 0.00781

log ( )2 δ 1.00 0.00 -1.00 -2.00 -3.00 -4.00 -5.00 -6.00 -7.00

Euler ê 1.45E-2 3.06E-3 9.93E-4 3.62E-4 1.79E-4 7.60E-5 4.15E-5 4.53E-5 5.15E-5

log | $|2 e -6.11 -8.35 -9.98 -11.43 -12.45 -13.68 -14.56 -14.43 -14.25

$VB

0 7.49E-4 7.97E-4 8.39E-4 8.63E-4 8.50E-4 8.43E-4 8.53E-4 8.46E-4

c0 9.
0 3.91E-5 4.16E-5 4.38E-5 4.50E-5 4.44E-5 4.40E-5 4.45E-5 4.42E-5

| $ |ewc
1.45E-2 3.10E-3 1.03E-3 4.05E-4 2.24E-4 1.20E-4 8.54E-5 8.98E-5 9.56E-5

log | $ |2 ewc
-6.11 -8.33 -9.92 -11.27 -12.12 -13.02 -13.51 -13.44 -13.35

Tcomp
10.90 19.33 35.42 68.87 137.11 274.12 537.30 1065.74 2130.95

log ( )2 Tcomp 3.45 4.27 5.15 6.11 7.10 8.10 9.07 10.06 11.06

Mil- ê -1.03E-2 -1.88E-3 -3.81E-4 -1.07E-4 -8.36E-6 -5.54E-6 2.88E-6 2.73E-5 4.28E-5

stein log | $|2 e -6.60 -9.05 -11.36 -13.19 -16.87 -17.46 -18.40 -15.16 -14.51

$VB

1.08E-3 9.08E-4 8.65E-4 8.69E-4 8.78E-4 8.56E-4 8.46E-4 8.55E-4 8.47E-4

c0 9.
5.62E-5 4.74E-5 4.51E-5 4.54E-5 4.58E-5 4.47E-5 4.41E-5 4.46E-5 4.42E-5

| $ |ewc
1.03E-2 1.93E-3 4.26E-4 1.53E-4 5.42E-5 5.02E-5 4.70E-5 7.19E-5 8.70E-5

log | $ |2 ewc
-6.60 -9.02 -11.20 -12.68 -14.17 -14.28 -14.38 -13.76 -13.49

Tcomp
14.15 27.62 56.10 103.90 206.21 404.36 822.91 1626.24 3260.38

log ( )2 Tcomp 3.82 4.79 5.81 6.70 7.69 8.66 9.68 10.67 11.67

3rd ê NA 9.28E-4 1.32E-4 -2.42E-6 2.15E-5 -1.71E-6 1.75E-6 2.72E-5 4.80E-5

Order log | $|2 e NA -10.07 -12.89 -18.66 -15.51 -19.16 -19.13 -15.17 -14.35

$VB

NA 1.12E-3 1.00E-3 9.88E-4 9.85E-4 9.65E-4 9.45E-4 9.49E-4 9.54E-4

c0 9.
NA 5.83E-5 5.23E-5 5.16E-5 5.14E-5 5.04E-5 4.93E-5 4.95E-5 4.98E-5

| $ |ewc
NA 9.86E-4 1.84E-4 5.40E-5 7.29E-5 5.21E-5 5.10E-5 7.67E-5 9.78E-5

log | $ |2 ewc
NA -9.99 -12.41 -14.18 -13.74 -14.23 -14.26 -13.67 -13.32

Tcomp
NA 34.11 64.13 123.22 243.48 478.95 951.60 1887.33 3842.11

log ( )2 Tcomp NA 5.09 6.00 6.94 7.93 8.90 9.89 10.88 11.91

Table 1
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Similar simulations have been run for 1-, 5-, and 10-year discount bonds; the results have

been placed in Appendix A. The behavior of the 1-, 5-, and 10-year simulated bond prices

closely resemble that of the 2-year bond prices.

For the 2-year discount bond, Figures 1 and 2 show logarithmic (base 2) graphs of the

absolute mean error and, more importantly, the absolute worst-case error against the size of

the time-step. Although the different convergence orders of the used schemes are apparent

for large values of the time-step ( )δ ≥ −2 2 , the Milstein and third-order schemes quickly

reach an error level of around | $ | .ewc ≈ =−2 0 6114  basis points (bp) beyond which increasing

the number of steps in the path simulation yields no additional improvements. The

existence of this bound on accuracy is caused by the variance (22) of the bond price

estimator. Despite the fact that we have simulated as many as 1,000,000 sample paths, the

convergence behavior of the higher-order schemes thus essentially "drowns" in random

noise. Indeed, as is apparent from Figure 3, when δ < −2 2  the third-order scheme has

converged to within the statistical error on $e  (as given by the 90% confidence interval).

The same effect occurs in the Milstein scheme when δ < −2 3 .
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Absolute Mean Error (|ê|) as a Function of Time-Step (δ)  
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Worst-Case Absolute Error (|êWC|) as a Function of Time-Step (δ)  
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3rd Order Scheme: Confidence Interval of ê vs. Time-Step (δ)  
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Figure 3

For practical pricing problems where we cannot rely on as many as 1,000,000 simulations,

the problems associated with the estimator variance are clearly going to be even more

severe. For a more realistic number of simulated paths, say N = 10,000 , the worst-case

error plateau can be expected to increase by around a factor 10 ( = 1 10,000,000 / ,000 ), as

confirmed by Figure 4 below. Notice in the figure that the third-order scheme is completely

overshadowed by the statistical error and exhibits no convergence behavior whatsoever.
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Worst-Case Absolute Error (|êWC|) as a Function of Time-Step (δ)  
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Figure 4

Despite the problems surrounding the high variance of the bond price estimator (which we

will discuss further in the next section), it is obvious from Figures 1 and 2 that the higher-

order schemes nevertheless exhibit promising convergence behavior. For example, to reach

a (worst-case) accuracy below 2 12− , the Euler scheme needs 32 time-steps per path,

whereas the Milstein and third-order schemes only require 8 and 4 steps, respectively. To

properly account for the additional computational burden of the higher-order schemes,

Figure 5 graphs the worst-case error of the different schemes against the required

computation time. It is clear from the figure that even after adjusting for the increased

computational overhead, the higher-order schemes are more efficient than the Euler

scheme. For our particular example, it also appears that the third-order scheme is slightly

more efficient than the Milstein scheme.
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Computing Time (Tcomp) vs. Worst-Case Absolute Error (|êWC|)  
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4. Variance Reduction Methods

4.1 Traditional Variance Reduction Methods

It is evident from the results so far, that for high-order discretization schemes to be of any

practical use, we need methods to reduce the variance of the bond price estimator (18).

Initially, we will focus on two widely used techniques from the classical Monte Carlo

theory, namely antithetic variates and control variates. To briefly introduce these methods,

let us restate the bond pricing problem in a slightly modified form. From (18), we know that

discount bond prices can be approximated from the random variables

$ (~ , ~ ,..., ~ ) , ,2,...,I f z z z j NK
j j j

K
j= =1 2 1 (28)
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where ~ , ~ ,..., ~z z zj j
K
j

1 2  is an independent sequence of standard Gaussian variables and

f K:ℜ → ℜ  is an (implicit) well-behaved function given by the discretization scheme

used. Instead of using (28) directly to evaluate (18), the antithetic variate method uses the

N variables

$ (~ , ~ ,..., ~ ) ( ~ , ~ ,..., ~ ) $ $ , ,2,...,,I f z z z f z z z I I j NK A
j j j

K
j j j

K
j

K
j

K
j= + − − − = + =−

1

2

1

2
11 2 1 24 9 4 9
(29)

where the "mirror" process $IK −  is obtained by changing the sign on all draws from the

standard Gaussian distribution. The mean of $
,IK A  is clearly identical to that of $IK ,

whereas the variance is

V I V I I It
Q

K A t
Q

K K K0 0

1

2
1[ $ ] [ $ ] ( $ , $ ), = +−ρ4 9 (30)

where ρ( $ , $ )I IK K −  denotes the correlation coefficient between $IK  and $IK − . If this

correlation coefficient is close to -1, the variance of $
,IK A  will be significantly smaller14

than the variance of $IK .

Whereas the antithetic variate method relies upon the existence of a process negatively

correlated to $IK , the control variate method is based upon sampling a process positively

correlated to $IK . One way15 to introduce a control variate is to consider an alternative short

rate model, say

d
r

I

r t

r I
dt

r t
dW t t r r const D It

t

r t

t t

r t
t t t t

*

*

* *

* *

* *
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, , . ,
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��
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�� =

−

�
��

�
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�
��

�
�� ≤ ≤ = = ∈ =

µ σ τ
0

10 0 0 0

(31)
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for which an analytical solution to discount bond prices is known (like the CIR model (4) or

the Vasicek model (5)). Now instead of (18), we write

$ ( , ) $ $ ( , ) ( $ $ ) ( , )* * * *P t T
N

I
N

I P t T
N

I I P t TC K
j

j

N

K
j

j

N

K
j

K
j

j

N

0
1 1

0
1

0
1 1 1= − + = − +

= = =
∑ ∑ ∑

(32)

where P t T*( , )0  is the known theoretical value of the control variate bond price. The mean

and variance of $ ( , )P t TC 0  are given by

E P t T P t T e et
Q

C sys sys0 0 0[ $ ( , )] ( , ) *= + − (33a)

V P t T
N

V I V I COV I I

V e V e
N

COV I I

t
Q

C t
Q

K t
Q

K t
Q

K K

t
Q

stat t
Q

stat t
Q

K K

0 0 0 0

0 0 0

0
1

2

2

[ $ ( , )] [ $ ] [ $ ] ( $ , $ )

[$ ] [$ ] ( $ , $ )

* *

* *

= + −

= + −

4 9
(33b)

It follows easily from the triangle inequality that

| | , | | | | | | | | ( )* * * * *e C e C e e e e C Csys
n

sys
n

sys sys sys sys
n≤ ≤ ⇒ − ≤ + ≤ +δ δ δ (34)

From (33a) we can therefore conclude that if both (12) and (31) are discretized by nth-order

weak schemes, the estimate $ ( , )P t TC 0  will converge with (at least) weak order n as well.

Further, from (33b) we see that the variance of $ ( , )P t TC 0  will be less than the variance of

estimate $( , )P t T0  (see (22)) if

COV I I V I I I
V I

V I
t
Q

K K t
Q

K K K
t
Q

K

t
Q

K
0 0

0

0

1

2

1

2
( $ , $ ) ( $ ) ( $ , $ )

( $ )

( $ )
* * *

*

> ⇒ >ρ (35)
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To ensure that (35) holds, it is important that the parameters of the control variate process

(31) are chosen to match the dynamics of the original process (12) as closely as possible.

4.2 Application of Traditional Variance Reduction to the CIR Model
Whereas implementation of the antithetic variate method on the CIR model is

straightforward, implementation of the control variate technique involves selecting an

appropriate alternative process (31). Here, we will use the Vasicek process (5) which is

structurally quite similar to the CIR process (4); Appendix B contains the Euler and

Milstein discretization schemes for the Vasicek model. The third-order Vasicek scheme can

be generated from (24). There are several ways to pick the parameters α , β , and κ  in (5);

we will choose the parameters to match the first and second moments of the CIR model16.

From (6) and (7) we thus get

α β= =a b, , κ
σ

2

2 2 2

2

2 1

1

0
0 0 0

0
=

− + −�
�

�
�

−

− − − − − −

− −

r e e b e

e

t
a T t a T t a T t

a T t

( ) ( ) ( )

( )

4 9 4 9
4 9

(36)

In Figure 6 we have shown some comparisons of CIR and Vasicek bond prices (see (10)

and (11)) using the parameter choice (36).
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PCIR - PVasicek for Different Bond Maturities
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  Figure 6

Although, as expected, the CIR and Vasicek bond prices diverge somewhat as the bond

volatility increases (that is, when the mean reversion rate a decreases, the short rate

volatility σ  increases, and/or the maturity of the bond increases), the quality of the Vasicek

control variate nevertheless appears to be quite satisfactory. Using the same CIR parameters

as in Section 3.2, Table 2 on the next page shows batch variance and confidence intervals

for 10,000 simulations of a 5-year discount bond. The data have been generated using i)

crude Monte Carlo; ii) antithetic variate method; iii) control variate method; and iv) control

variate method + antithetic variate method.
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Simulation Results for CIR Model
5-Year Discount Bond, Theoretical Value = 0.6642841

N S B= = =10 000 100 100, ; ;
a b r= = = =0 4 0 1 0 1 0 060. , . , . , .σ

K 4 8 16 32 64 128 256
δ 1.25 0.625 0.3125 0.1563 0.07813 0.03906 0.01953

Crude Monte Carlo

Euler $ /VB
1 2 0.00579 0.00541 0.00557 0.00510 0.00576 0.00610 0.00686

c0 9. 9.61E-4 8.98E-4 9.25E-4 8.46E-4 9.57E-4 1.01E-3 1.14E-3

Tcomp 0.34 0.68 1.35 2.75 5.34 10.78 21.3

Milstein $ /VB
1 2 0.00543 0.00519 0.00540 0.00506 0.00577 0.00611 0.00687

c0 9. 9.01E-4 8.62E-4 8.97E-4 8.40E-4 9.57E-4 1.01E-3 1.14E-3

Tcomp 0.55 1.03 2.05 4.02 8.23 16.28 32.65

3rd Order $ /VB
1 2 0.00632 0.00590 0.00633 0.00577 0.00665 0.00718 0.00789

c0 9. 1.05E-3 9.80E-4 1.05E-3 9.57E-4 1.10E-3 1.19E-3 1.31E-3

Tcomp 0.64 1.23 2.43 4.79 9.53 18.99 38.44

Antithetic Variate

Euler $ /VB
1 2 7.26E-4 7.30E-4 6.98E-4 6.33E-4 6.57E-4 6.10E-4 5.79E-4

c0 9. 1.21E-4 1.21E-4 1.16E-4 1.05E-4 1.09E-4 1.01E-4 9.61E-5

Tcomp 0.52 0.97 1.89 3.71 7.49 15.21 30.14

Milstein $ /VB
1 2 5.52E-4 5.90E-4 5.48E-4 6.02E-4 6.57E-4 6.11E-4 5.83E-4

c0 9. 9.17E-5 9.79E-5 9.09E-5 1.00E-4 1.09E-4 1.01E-4 9.68E-5

Tcomp 0.85 1.68 3.34 6.60 12.90 25.91 51.87

3rd Order $ /VB
1 2 7.08E-4 6.74E-4 6.41E-4 7.50E-4 7.96E-4 7.31E-4 6.96E-4

c0 9. 1.18E-4 1.12E-4 1.06E-4 1.24E-4 1.32E-4 1.21E-4 1.16E-4

Tcomp 1.07 2.05 4.00 8.18 15.68 31.82 63.64

Table 2 (Part 1)
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K 4 8 16 32 64 128 256
δ 1.25 0.625 0.3125 0.1563 0.07813 0.03906 0.01953

Control Variate

Euler $ /VB
1 2 0.00160 0.00136 0.00130 0.00124 0.00141 0.00153 0.00138

c0 9. 2.65E-4 2.25E-4 2.16E-4 2.06E-4 2.35E-4 2.54E-4 2.30E-4

Tcomp 0.42 0.78 1.54 3.10 5.83 11.76 23.80

Milstein $ /VB
1 2 0.00130 0.00126 0.00120 0.00123 0.00141 0.00151 0.00137

c0 9. 2.15E-4 2.08E-4 2.00E-4 2.05E-4 2.34E-4 2.51E-4 2.28E-4

Tcomp 0.65 1.24 2.37 4.64 9.11 18.03 36.21

3rd Order $ /VB
1 2 0.00165 0.00144 0.00142 0.00152 0.00164 0.00175 0.00160

c0 9. 2.73E-4 2.40E-4 2.36E-4 2.53E-4 2.72E-4 2.90E-4 2.65E-4

Tcomp 0.71 1.39 2.86 5.43 10.92 21.8 42.30

Antithetic + Control Variate

Euler $ /VB
1 2 0.00111 0.00112 0.00110 0.00105 0.00113 0.00114 0.00097

c0 9. 1.84E-4 1.86E-4 1.83E-4 1.74E-4 1.87E-4 1.90E-4 1.62E-4

Tcomp 0.59 1.22 2.31 4.49 7.87 16.99 32.91

Milstein $ /VB
1 2 0.00104 0.00103 0.00099 0.00104 0.00114 0.00114 0.00098

c0 9. 1.73E-4 1.71E-4 1.64E-4 1.73E-4 1.89E-4 1.90E-4 1.63E-4

Tcomp 0.99 1.93 3.59 7.01 13.98 28.61 54.88

3rd Order $ /VB
1 2 0.00131 0.00119 0.00118 0.00131 0.00135 0.00136 0.00119

c0 9. 2.17E-4 1.97E-4 1.96E-4 2.18E-4 2.24E-4 2.25E-4 1.97E-4

Tcomp 1.29 2.49 4.63 8.99 17.81 35.72 71.03

Table 2 (Part 2)
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To aggregate the results in Table 2 and to properly account for the differences in

computation time, we define an average efficiency ratio

E
const

V V V T T TB
Euler

B
Milstein

B
rd

comp
Euler

comp
Milstein

comp
rd

=
+ + + +

.
$ $ $ 3 34 94 9

(37)

where we pick the constant in the numerator to normalize E to 1 for crude Monte Carlo

simulation. The results of this calculation are shown in Table 3 and graphed in Figure 7.

Efficiency Ratios for Simulation of 5-Year Discount Bond in CIR Model

N S B= = =10 100 100,000; ;

a b r= = = =0 4 01 01 0 060. , . , . , .σ

K 4 8 16 32 64 128 256

δ 1.25 0.625 0.3125 0.1563 0.07813 0.03906 0.01953

Crude Monte Carlo 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Antithetic Variate 5.54 5.18 5.79 5.01 5.52 6.27 7.38
Control Variate 3.32 3.51 3.80 3.49 3.64 3.61 4.48
Antithetic +
Control Variate

2.71 2.58 2.93 2.64 2.93 3.01 4.00

Table 3
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Efficiency Ratios for Traditional Variance Reduction Methods
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It is obvious from Table 2-3 and Figure 7 that all three tested variance reduction methods

yield significant improvements over crude Monte Carlo. Somewhat surprisingly, however,

the basic antithetic method appears to outperform the methods that involve control variates,

even the combined control/antithetic variate approach. To explain this last result, we used

raw simulation data to calculate the following sample correlation coefficients (Euler

scheme, K = 32  steps):
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Sample Correlation Coefficients for CIR Model
Euler Simulation of 5-Year Discount Bond

N S B K= = = =10 100 100 32,000; ; ;

a b r= = = =0 4 01 01 0 060. , . , . , .σ

Table 4

The correlation coefficients for both the antithetic and the control variate methods are very

close to their optimal values of -1 and +1, respectively. Interestingly, however, the

correlation between the combined variates ( $ $ ) /I IK K+ − 2  and ( $ $ ) /* *I IK K+ − 2  is negative.

According to (35), adding the control variate method to the antithetic method will thus

cause an increase in variance, consistent with the experimental results in Table 2. Although

there are other applications (see for example Clewlow and Carverhill (1994)) where the

combination of the antithetic and control variate methods will outperform either method

alone, it is obvious from the above findings that an uncritical combination of variance

reduction techniques can lead to suboptimal results.

For completeness, Appendix C lists efficiency ratios for 1-, 2-, and 10-year discount bonds.

Except for the 1-year bond where the control variate method slightly outperforms the

antithetic variate method, the efficiency results are very similar to those of the 5-year bond.

Notice, that the efficiency of the control variate method falls with increasing bond

maturities, an effect that can easily be understood from Figure 6: the higher the bond

maturity, the poorer the quality of the Vasicek control variate.

Correlation Coefficient Value

$ ( $ , $ )ρ I IK K −
-0.978

$ ( $ , $ )*ρ I IK K
0.983

$ (( $ $ ),( $ $ ))* *ρ I I I IK K K K+ +− −
-0.758
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4.3 The Measure Transform Method

In the previous sections, we illustrated how knowledge about a simpler control variate

process can, in principle, be used to improve simulation results. For the specific example of

using the Vasicek model as a control variate process for the CIR model the results,

however, were somewhat disappointing. In this section we will discuss an alternative, SDE-

based method to incorporate results obtained from simpler processes into the simulation

procedure. The method was proposed by Milstein (1988) and is based on a (reverse)

application of the Girsanov Theorem for shift of probability measure (Karatzas and Shreve

(1991), p. 190-201).

To introduce this technique, we consider a process θ t  and an equivalent probability

measure Z under which

dW dW dtt t t
~ = +θ (38)

is a standard Brownian motion on ( , , )Ω F Z . Under technical conditions on θ t  (see

footnote 6), the Girsanov Theorem asserts that the measure Z is related to Q through the

Radon-Nikodym derivative

dQ

dZ
dW dss s s

tt
= −�

��
�
��IIexp

~θ θ
ττ 1

2
2

00

(39)

where as before [ , ]t0 τ  represents our bounded trading horizon. Corresponding to (39), we

introduce the likelihood ratio process

ξ θ θt t
Z

s s s
t

t

t

t
E

dQ

dZ
dW ds= �

��
�
�� = −�

��
�
��IIexp

~ 1

2
2

00

or
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d dWt t t t tξ θ ξ ξ= =~
,

0
1 (40)

which obviously is a martingale under Z. Expectations under Z and Q can now be shown to

be related through

E X E Xt
Q

t t
Z

t t0 0
[ ] [ ]= ξ (41)

for any absolutely integrable ℑt -measurable random variable X t tt , [ , ]∈ 0 τ . Notice that

(41) is independent of the actual choice of ξ t ; if we can chose ξ t  such that the variance of

the product Xt tξ  (under Z) is smaller than the variance of Xt  (under Q), (41) can be used

as a variance reduction scheme.

We now return to the joint process (12) which we amend to include the likelihood ratio

process (40). Under Z, we have

d

r

I

r t r t

r I dt

r t

dW r const D I
t

t

t

r t t r t

t t

r t

t t

t t t t

ξ

µ θ σ σ

θ ξ
ξ

�

�
��

�

�
�� =

−
−

�

�
��

�

�
�� +

�

�
��

�

�
�� = ∈ = =

( , ) ( , ) ( , )
~

, . ,

0

0 1
0 0 0

(42)

and the corresponding bond pricing equation

P t T E It
Z

T T( , ) [ ]0 = ξ (43)

The question now arises: how do we pick θ t  to minimize the variance of IT Tξ ? If we

introduce the function17 h D t TT : [ , ]× → ℜ+
0  such that P t T h r tT t( , ) ( , )= , Appendix D

(equation (D.8)) shows that choosing
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θ ∂
∂

σ
t

T t r t

T t
T t T

h r t

r

r t

h r t
g r t g D t T= − = × → ℜ( , ) ( , )

( , )
( , ) , : [ , ]0 (44)

will reduce the variance of IT Tξ  to zero (under Z). Unfortunately, we generally do not

know the explicit relation P t T h r tT t( , ) ( , )=  -- if we did, there would be no need to evaluate

(43) through simulation. However, in many circumstances we can come up with a good

guess for (44), for example by using known bond formulas for simpler interest rate models.

Suppose, say, we believe that our interest rate model yields bond prices which are

reasonably close to those of the Vasicek (5) model (with appropriately chosen parameters).

Applying the Vasicek bond formula (11) to (44) yields the simple result

g r t D t T r t D t T
e

T
Vasicek

t r t

T t

( , ) ( , ) ( , ) , ( , )
( )

= = − − −
σ

α

α1
(45)

Discretization schemes for the SDE (42) can be derived along the same lines as in Section

3.1. The Euler and Milstein schemes for rt  and It  will be identical to (16a-b) and (17a-b)

provided µ r tr t( , )  is replaced by µ µ σr MT t r t T t r tr t r t g r t r t, ( , ) ( , ) ( , ) ( , )= − . The schemes

for the likelihood ratio process ξ t  are as follows

Euler:

$ $ ( ( $ , )~ ) , , ,..., , $ , $ξ ξ δ δ ξi i T i i tg r t i z i K r r+ += + + = − = =1 0 1 0 01 01 1 1
0

(46)



IV.35

Milstein:

$

$
( $ , ) ( $ , ) ( $ , )~

( $ , ) ( $ , ) ( $ , ) ~

( $ , ) ( $ , ) ~ , , ,..., , $

ξ
ξ

δ δ δ δ δ

δ δ δ δ δ

δ δ δ

i

i
T i T i T i i

MT T i T i T i i

T i T i i

L g r t i g r t i g r t i z

L g r t i g r t i L g r t i z

L g r t i g r t i z i K

+
+

+

+

= − + + + + + +

+ + + + +

+ + + = −

1 1
0 0

2
0 1

0
0 0

1
0 1

1
0 0

2
1

2

1
1

2

1

2
1

2
01 1

4 9

4 9

4 9 r rt0 00
1= =, $ξ

(47)

where the differential operator LMT
0  is identical to L0  in (15), except that µ r tr t( , )  must be

replaced by µ µ σr MT t r t T t r tr t r t g r t r t, ( , ) ( , ) ( , ) ( , )= − .

4.4 Application of the Measure Transform Method to the CIR Model
We now turn to applying the measure transform method to the CIR process (4). We will use

the Vasicek model (with α = a , see (36)) to generate the function h r tT t( , ) ; consequently,

the volatility of the likelihood ratio process is given by (45). From (10), we note that the

(continuous-time) perfect choice of g r tT t( , )  is

g r t B t T r B t T
e

a a e a
T
CIR

t t

a T t

a T t
( , ) ( , ) , ( , )

( )

( )( )

( )

( )
= = −

+ + − + +

+ −

+ −
σ

σ σ

σ

σ

2 1

2 1 2 2

2 2

2 2

2

2 2 2 2 2

(48)

The graph below compares B t T( , )  to D t T( , )  for selected values of σ , a, and T-t; as for

the control variate technique (see Figure 6), the difference between B t T( , )  and D t T( , )

grows with increasing bond volatility. Nevertheless, the fit appears to be quite good,

particularly for short- to medium-term discount bonds.
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B(t,T) and D(t,T) for Different Bond Maturities
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Figure 8

Applying (16a-b), (17a-b), (46), and (47) to the CIR process now yields the following

schemes

Euler Scheme:

$ $ ( $ ) ,I I ri i i+ = −1 1 δ (48a)

$ $ ( ( , ) | $ |~ ) ,ξ ξ δ σ δi i i iD t i T r z+ += + +1 0 11 (48b)

$ $ $ ( ( , ))

| $ |~ , , ,..., , $ , $ $

r r ab r a D t i T

r z i K r r I

i i i

i i t

+

+

= + − + + +

= − = = =

1
2

0

1 0 0 001 1 1
0

σ δ δ

σ δ ξ

4 9
(48c)

Milstein Scheme:

$ $ $ $ ( $ ) | $ |~ ,I I r r r ab r zi i i i i i i i+ += − + + − −�
��

�
��1

2
11

1

2

1

2
δ ψ δ σ δ δ1 6 (49a)
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4 94 9

(49c)

where

ψ δ σi a D t i T≡ + +( , )0
2

We notice that, similar to the control variate technique, the measure transformation method

can be combined with the antithetic method. As the measure transformation method is not

based upon a correlation argument, we are less likely to experience the difficulties we

encountered in Section 4.2 when we attempted to combine antithetic and control variates.

Applying the above schemes to the example in Section 4.2 (5-year bond, N = 10,000 )

yields the following results:
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Simulation Results for CIR Model
5-Year Discount Bond, Theoretical Value = 0.6642841

N S B= = =10 100 100,000; ;

a b r= = = =0 4 01 01 0 060. , . , . , .σ

K 4 8 16 32 64 128 256
δ 1.25 0.625 0.3125 0.1563 0.07813 0.03906 0.01953

     Measure Transformation

Euler $ /VB
1 2 2.21E-3 1.08E-3 5.05E-4 2.67E-4 1.51E-4 8.80E-5 7.53E-5

c0 9. 3.68E-4 1.79E-4 8.38E-5 4.43E-5 2.51E-5 1.46E-5 1.25E-5

Tcomp 0.44 0.87 1.70 3.44 6.83 13.58 26.80

Milstein $ /VB
1 2 5.30E-4 1.84E-4 9.00E-5 6.04E-5 5.82E-5 6.75E-5 7.25E-5

c0 9. 8.80E-5 3.06E-5 1.49E-5 1.00E-5 9.66E-6 1.12E-5 1.20E-5

Tcomp 0.69 1.36 2.66 5.43 10.76 21.48 42.75

3rd Order $ /VB
1 2 1.08E-3 4.96E-4 2.50E-4 1.49E-4 9.20E-5 8.46E-5 8.68E-5

c0 9. 1.79E-4 8.23E-5 4.15E-5 2.48E-5 1.53E-5 1.40E-5 1.44E-5

Tcomp 0.88 1.70 3.37 6.83 13.25 26.40 53.03

Measure Transformation +
Antithetic Variate

Euler $ /VB
1 2 7.11E-4 3.02E-4 1.64E-4 8.71E-5 6.74E-5 4.97E-5 3.24E-5

c0 9. 1.18E-4 5.02E-5 2.72E-5 1.45E-5 1.12E-5 8.25E-6 5.37E-6

Tcomp 0.69 1.34 2.62 5.11 10.22 20.45 40.93

Milstein $ /VB
1 2 4.69E-4 1.67E-4 5.72E-5 2.14E-5 1.18E-5 9.51E-6 8.46E-6

c0 9. 7.79E-5 2.77E-5 9.49E-6 3.56E-6 1.96E-6 1.58E-6 1.41E-6

Tcomp 1.20 2.25 4.45 8.91 17.79 35.56 70.81

3rd Order $ /VB
1 2 4.79E-4 1.99E-4 7.06E-5 2.98E-5 1.70E-5 1.29E-5 1.02E-5

c0 9. 7.95E-5 3.31E-5 1.17E-5 4.95E-6 2.82E-6 2.15E-6 1.70E-6

Tcomp 1.48 2.92 5.78 11.45 22.80 45.49 90.69

Table 5
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Efficiency Ratios for Simulation of 5-Year Discount Bond in CIR Model

N S B= = =10 100 100,000; ;

a b r= = = =0 4 01 01 0 060. , . , . , .σ

K 4 8 16 32 64 128 256

δ 1.25 0.625 0.3125 0.1563 0.07813 0.03906 0.01953

Crude Monte Carlo 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Antithetic Variate 5.54 5.18 5.79 5.01 5.52 6.27 7.38
Measure Transformation 3.49 7.02 15.45 24.58 45.17 60.53 69.48
Measure Transformation +
Antithetic Variate

4.80 11.15 26.92 52.22 85.96 122.01 193.22

Table 6

The data in Table 6 is graphed in Figure 9. Except for very large time-steps (>1 year in our

example), the combined method of measure transformation and antithetic variates is far

superior to any of the traditional variance reduction methods tested in Section 4.2. Notice

that the quality of the measure transformation method improves significantly as the number

of time steps in each simulation path is increased. This behavior is not surprising given that

the method has been designed around the continuous-time limit of the discretized processes.

The tendency of the measure transform method to improve with increasing number of

discretization steps is attractive since it complements the behavior of the systematic error in

the SDE discretization scheme; increasing the number of discretization steps will improve

both esys  and $estat .

For completeness, efficiency results for 1-, 2-, and 10-year bonds are listed in Appendix C.

For all of these bonds, the measure transformation technique yields very significant

improvements over the results obtained by traditional methods. As was the case for the

control variate method, the efficiency of the measure transformation technique decreases

with increasing bond maturities.
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Efficiency Ratios for Measure Transformation Method
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4.5 Quasi-Random Sequences

As mentioned in the introduction, so-called quasi-random sequences have recently been

applied quite successfully to certain classes of finance problems involving explicitly

solvable SDEs. In this and the following section, we will investigate whether this promising

technique is equally useful for the simulation of non-solvable SDEs.

To introduce the method of quasi-random sequences, consider writing equation (28) as

$ (~ , ~ ,..., ~ ) (~ , ~ ,..., ~ ), ,2,...,I f z z z k u u u j NK
j j j

K
j j j

K
j= = =1 2 1 2 1 (50)

where ~ , ~ ,..., ~u u uj j
K
j

1 2  is an independent sequence of standard uniform U(0,1)-variables and

k K:ℜ → ℜ  is an (implicit) well-behaved function. The transformation from Gaussian to

uniform variates can be accomplished through inversion of the cumulative Gaussian
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distribution function or through the (inverse) Box-Mueller transformation. With (50), the

expectation of $IK  can now be written formally as an integral over the K-dimensional

hypercube

E I k x x x dx dx dx k x dxt
Q

K K KK K0 1 2 1 2
0 1 0 1

[ $ ] ( , ,..., ) ( )
[ ; ] [ ; ]

= ⋅⋅⋅ =I I r r
(51)

Given some deterministic or random scheme to sample N K-tuples 
r r r
x x xN1 2, ,..., , we

consider estimating (51) through

E I
N

k xt
Q

K j
j

N

0

1

1

[ $ ] ( )≈
=

∑ r
(52)

which is identical to (18), except that we have not in (52) specified which sampling scheme

is used. If the sampling scheme is Monte-Carlo simulation (i.e. based on pseudo-random

number generators), we know that the expected error on (52) is independent of the

dimension K and proportional to N −1 2/ . To improve the convergence properties of (52),

several deterministic sampling algorithms have been suggested instead of Monte Carlo

simulation. One class of such algorithms is based on the generation of quasi-random or low

discrepancy sequences, i.e. sequences which fill out the hypercube in a cluster-free, self-

avoiding way18. Specific algorithms for generating quasi-random numbers have been

suggested by Halton (1960), Sobol (1967), and Faure (1982), among others. For a very

readable introduction to Halton and Sobol sequences, see Press et al (1992), chapter 7.

Faure sequences are discussed in Bouleau and Lepingle (1994), chapter 2C, and Joy

(1994).

From the Koksma-Hlawka Inequality (see Niederreiter (1992), p. 20) one can show that

under technical conditions on the function k, the Halton, Sobol, and Faure sequences

generate errors which decrease with N at least as (ln ) /N NK :
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k x dx
N

k x Var k O
N

NK j

j

N K

( ) ( ) ( )
(ln )

[ ; ]

r r r

0 1
1

1I ∑− ≤
�
��

�
��=

(53)

where Var(k) is the (bounded) variation of k on [ ; ]0 1 K  in the sense of Hardy and Krause

(Niederreiter (1992), p. 19). Although the O N NK(ln ) /4 9  error bound is smaller19 than

O N( )/−1 2  as N → ∞ , it is not small for realistic N for problems of large dimension K:

Convergence Orders for Quasi-Random Sequences and Crude Monte Carlo

   N=10,000    N=1,000,000
K Quasi-Random Monte Carlo Quasi-Random Monte Carlo
1 9.21E-4 1.00E-2 1.38E-5 1.00E-3
5 6.63E+0 1.00E-2 5.03E-1 1.00E-3

10 4.39E+5 1.00E-2 2.53E+5 1.00E-3
50 1.64E+44 1.00E-2 1.04E+51 1.00E-3

Table 7

In practice, however, the upper bound provided by the Koksma-Hlawka inequality often

turns out to significantly understate the true convergence speed of quasi-random sequences;

in Brotherton-Ratcliffe (1994b), for example, Sobol sequences outperform crude Monte

Carlo for option pricing applications with K = 48  dimensions. For problems involving

numerical solution of SDEs, it is nevertheless worrying that the performance of quasi-

random sequences decreases when the dimension goes up. An attempt to improve the

accuracy of the systematic error esys  through an increase in the number of discretization

steps might thus be countered by decreased accuracy on the random error $estat .

As before, we can combine quasi-random sequences with other variance reduction

techniques, including the control variate method and the measure transform method. It is,
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however, not recommended to combine Sobol sequences with antithetic variates, as the

inclusion of "mirror paths" is likely to affect the discrepancy of the sequence adversely.

4.6 Application of Sobol Sequences to the CIR Model

As experimental results by Paskov (1994) and Brotherton-Ratcliffe (1994b) indicate that

Sobol sequences frequently outperform both Halton and Faure sequences, this paper will

only discuss the application of Sobol sequences. For the practical generation of Sobol

points, we have relied upon the highly efficient algorithm by Antonov and Saleev (1979)

which is described in detail in Press et al (1992). The generation of the primitive

polynomials needed in the Anotonov and Saleev’s algorithm has been based on Knuth

(1981), chapter 3.

Again using the example of a 5-year bond with N = 10,000  (results for other bonds are

listed in Appendix C), we get the results shown in Tables 8 and 9. As a reflection of the

deterministic nature of Sobol sequences, in Table 8 we have replaced standard deviation

$VB  with the root-mean-square error (relative to the sample mean) RMSB ; both quantities

are, however, calculated identically. Notice that we cannot generate any confidence

intervals when Sobol sequences are used.
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Simulation Results for CIR Model
5-Year Discount Bond, Theoretical Value = 0.6642841

N S B= = =10 100 100,000; ;

a b r= = = =0 4 01 01 0 060. , . , . , .σ

K 4 8 16 32 64 128 256
δ 1.25 0.625 0.3125 0.1563 0.07813 0.03906 0.01953

Sobol Sequence

Euler RMSB 1.42E-3 1.78E-3 1.85E-3 2.44E-3 3.55E-3 3.86E-3 3.87E-3

Tcomp 0.34 0.59 1.14 2.2 4.32 8.32 16.76

Milstein RMSB 1.28E-3 1.61E-3 1.81E-3 2.41E-3 3.53E-3 3.82E-3 3.87E-3

Tcomp 0.50 0.96 1.80 3.54 7.01 13.94 27.88

3rd Order RMSB 1.41E-3 1.78E-3 2.08E-3 2.88E-3 4.17E-3 4.39E-3 4.17E-3

Tcomp 0.63 1.13 2.19 4.27 8.47 16.81 33.09

Sobol Sequence +
Control Variate

Euler RMSB 6.76E-4 1.07E-3 1.20E-3 1.41E-3 1.31E-3 1.43E-3 1.67E-3

Tcomp 0.43 0.71 1.21 2.43 4.78 9.49 18.66

Milstein RMSB 5.78E-4 8.98E-4 1.08E-3 1.31E-3 1.25E-3 1.40E-3 1.65E-3

Tcomp 0.62 1.12 2.04 3.75 7.45 14.49 28.91

3rd Order RMSB 7.55E-4 9.65E-4 1.21E-3 1.52E-3 1.50E-3 1.70E-3 2.03E-3

Tcomp 0.69 1.24 2.54 4.63 9.36 18.47 37.08

Sobol Sequence +
Measure Transformation

Euler RMSB 6.87E-4 3.03E-4 2.83E-4 1.92E-4 1.10E-4 5.03E-5 4.31E-5

Tcomp 0.46 0.82 1.56 2.98 5.80 11.62 22.36

Milstein RMSB 2.46E-4 8.55E-5 2.84E-5 2.19E-5 2.75E-5 3.62E-5 3.83E-5

Tcomp 0.66 1.31 2.44 4.68 9.30 18.88 36.44

3rd Order RMSB 3.27E-4 1.81E-4 9.73E-5 8.67E-5 6.42E-5 4.78E-5 4.74E-5

Tcomp 0.85 1.64 3.32 5.99 11.87 24.52 46.63

Table 8
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Efficiency Ratios for Simulation of 5-Year Discount Bond in CIR Model

N S B= = =10 100 100,000; ;

a b r= = = =0 4 01 01 0 060. , . , . , .σ

K 4 8 16 32 64 128 256

δ 1.25 0.625 0.3125 0.1563 0.07813 0.03906 0.01953

Crude Monte Carlo 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Antithetic Variate 5.54 5.18 5.79 5.01 5.52 6.27 7.38
Sobol Sequence 4.44 3.50 3.42 2.38 1.89 1.89 2.16
Sobol Sequence +
Control Variate

7.68 5.39 4.99 4.02 4.78 4.64 4.42

Sobol Sequence +
Measure Transformation

10.81 22.57 33.68 44.93 77.23 120.81 147.07

Antitethetic Variate +
Measure Transformation

4.80 11.15 26.92 52.22 85.96 122.01 193.22

Note: The highest efficiency ratio for each step-size has been highlighted

Table 9

Although in our example the deterioration of the Sobol sequence technique certainly is not

as rapid as might be expected from the Koksma-Hlawka inequality, Table 9 show that

performance of the Sobol sequence still drops by roughly a factor 2 when the dimension of

the bond pricing problem is increased from 4 to 256. Further, despite being about twice

faster than the simple antithetic variate technique, the efficiency of the Sobol sequence is

generally lower than that of antithetic variates, even after combining the Sobol sequence

with a Vasicek control variate. Sobol sequences, however, appear to interact quite well with

the measure transformation method: for K ≤ 16 , the combined method of Sobol sequence

and measure transformation edges out the combined method of antithetic variate and

measure transformation. Unfortunately, the good properties of Sobol sequences for

problems with low values of K do not benefit us much in the applications considered in this

paper: when K is small, the systematic error in the discretization scheme will frequently

overshadow the random error associated with the variance of the bond price estimator (see

for example Figure 3). In general, we prefer to use the combined method of antithetic
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variates and measure transformation as this method produces the best results in problems

where low variance matters the most, namely for problems involving high values of K.

5. Combining High-Order Simulation Schemes with Variance

Reduction Methods: Experimental Results

In this section we will briefly show some further simulation results obtained by combining

the discretization schemes in Section 3 with the variance reduction techniques from Section

4. In particular, we wish to measure the effect of the joint variance reduction method of

antithetic variates and measure transformation on the convergence results for the 2-year

discount bond in Section 3.2. For the sake of brevity, we only show graphs of the

simulation results; the raw simulation results are tabulated in Appendix E.

In Figures 10 and 11 below, we show the convergence profiles for N = 1,000,000

simulations of the Euler, Milstein, and third order schemes in combination with antithetic

variates and measure transformation. Compared to Figures 1 and 2 in Section 3.2, it is

obvious that adding the variance reduction technique has increased the maximum attainable

accuracy considerably: whereas the lowest possible worst-case error in Section 3.2 was

around | $ | .ewc ≈ =−2 0 6114 bp , the third-order scheme now reaches an accuracy level of

| $ | .ewc ≈ = ⋅− −2 30 1025 4 bp . The effectiveness of the variance reduction method also allows

us to fully capitalize on the advantages of the high-order discretization schemes: to reach

the accuracy of the 256-step (variance reduced) Euler scheme, the third-order scheme and

Milstein schemes need only 8 and 16 steps, respectively. As Figure 12 shows, the

advantages of the higher-order methods hold even after accounting for their higher

computational overhead.
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Absolute Mean Error (|ê|) as a Function of Time-Step (δ)  
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Figure 10

Worst-Case Absolute Error (|êWC|) as a Function of Time-Step (δ)  
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Computing Time (Tcomp) vs. Worst-Case Absolute Error (|êWC|)  
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Figure 12

In the examples above, the large number of simulations ( N = 1,000,000 ) allowed us to

reach very high levels of accuracy on the bond price estimates. In many practical

applications, however, speed is more important than accuracy which dictates the usage of

significantly fewer simulation paths. In Figure 13 below, we have used results from

simulations of N = 1,000,000 , N = 10,000 , and N = 100  paths to draw pieces of the

(worst case) efficiency profiles of the third-order discretization method with antithetic

variate and measure transform variance reduction (the "advanced approach"). In the graph,

we have also included the efficiency profile ( N = 1,000,000 ) of the Euler scheme simulated

with crude Monte Carlo (the "naive approach").
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Computing Time (Tcomp) vs. Worst-Case Absolute Error (|êWC|)
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From the figure, we can for example conclude that the accuracy of 100 simulations of a 64-

step third-order scheme combined with antithetic variates and measure transformation

exceeds the highest attainable accuracy of 1,000,000 crude Monte Carlo simulations of the

Euler scheme. 1 bp (worst-case) accuracy is reached by the variance reduced third-order

scheme in 32 steps and 100 simulations, requiring as little computation time as 0.116

seconds. The naive Euler scheme, on the other hand, requires 64 steps and 1,000,000

simulations, for a computation time of 537.30 seconds -- more than 4,500 times slower than

the variance reduced third-order scheme.

6. Simulation of Options.
So far, the focus of this paper has been the simplest and most fundamental of all interest

rate contingent claims, namely the zero-coupon bond with a certain $1 payout at maturity.

The simulation techniques discussed, however, are sufficiently general to allow for the



IV.50

pricing of instruments with significantly more complicated dependence of the interest rate

path { , [ , ]}r t tt ∈ 0 τ . We will leave a systematic investigation of the simulation of general

interest rate contingent claims to future research and here merely consider a few selected

issues.

To focus on a simple example, consider a Tc -maturity European call c, struck at K, on a

zero-coupon bond maturing at T ( t T Tc0 ≤ ≤ ). Following Harrison and Kreps (1979) the

price of the call is

c t T T E r ds MAX P T T K

E I MAX E r ds K

E I MAX h r T K

E F r I T T

c t
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s c
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t
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(54)

where the payout function F( )⋅  is known explicitly only in cases where the bond pricing

function h r t P t TT t( , ) ( , )=  can be written in closed form (e.g. the Vasicek model). In most

cases, however, we need a local simulation from Tc  to T to estimate the bond P T Tc( , )  -- a

problem which has been extensively discussed in the previous 5 sections of this paper.

Although the expectation in (54) involves a function of r and I (and not just I itself), it can

be shown that the weak convergence orders for the simulation schemes in section 3 hold

unchanged, provided that the payout function F is sufficiently smooth and satisfies

polynomial growth conditions20. Similarly, the variance reduction techniques of section 4

can all be applied virtually unchanged, although some care must be taken in the choice of

probability measure in the measure transform technique. To expand on this latter point,

consider the call pricing equation under a transformed measure Z
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c t T T E F r I T T E I MAX P T T Kc t
Z

T T T c t
Z

T T cc c c c c
( , , ) ( , ; , ) ( , ) ,00 0 0

= = −ξ ξ ; @
(55)

In choosing a likelihood ratio process, we have several alternatives, including i) minimizing

the variance of ξT T T cc c c
F r I T T( , ; , ) ; ii) minimizing the variance of ξT Tc c

I ; iii) minimizing

the variance of ξT cc
P T T( , ) ; and iv) minimizing the variance of ξT T cc c

I P T T( , ) . Notice,

that one should not attempt to consider a term of the form ξT cc
P T T K[ ( , ) ]−  due to

potential singularities in (44). Since i) aims at reducing the variance of the total option

price, it is obviously theoretically preferable to ii), iii) and iv) which target the variance of

various combinations of the discount bond P t Tc( , )  and the payout bond P T Tc( , ) . Similar

to the case of the bond pricing problem, the necessary approximation (see (44)) of

E F r I T Tt
Q

T T cc c
[ ( , ; , )]  can be based on the known closed-form pricing formula for European

discount bond options in the Vasicek model (Vasicek (1977)). As the derivatives-based

high-order simulation schemes become quite complex, it is in general recommended to keep

the guess for E F r I T Tt
Q

T T cc c
[ ( , ; , )]  as simple as possible and use Richardson extrapolation

wherever feasible.

7. Conclusions

In this paper we have considered general methods to improve speed and accuracy of

simulation models based on one-factor SDEs in the instantaneous risk free interest rate. As

discussed, two types of simulation errors must be dealt with: i) systematic deviations from

the continuous-time limit introduced by the discretization of the SDE, and ii) random errors

introduced by the stochastic nature of the bond price estimator. We have shown how

second-order Ito-Taylor expansions, either directly or through extrapolation methods, can

form the basis of high-order schemes which significantly improve the convergence

properties of the systematic error. In particular, we have shown that the second-order

extended Milstein scheme and the Richardson extrapolated third-order scheme both
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outperform the "naive" Euler scheme, even after adjustments for increased computation

time. As we have seen in Section 3.2, the improvements obtained by using high-order

discretization schemes can, however, easily be overshadowed the random errors of the bond

price estimator. In practice, high-order discretization methods must thus generally be

supplemented by variance reduction techniques. In this paper, we have outlined and tested

four methods: i) antithetic variates, ii) control variates, iii) measure transformation, and iv)

Sobol quasi-random sequences. For the tested example of the Cox, Ingersoll, and Ross

(CIR) (1985) model, the combined method of antithetic variates and measure

transformation (based on closed-form bond prices in the Vasicek (1978) model) generates

the best results. We have shown that using a third-order scheme combined with antithetic

variates and the measure transformation method can, in some cases, improve the accuracy

and speed of bond price estimates by factors in excess of 103 . We should, of course, point

out that these results are unique to the CIR model and might not be as significant for other

models. In particular, when applying the measure transformation method, we have benefited

from the structural similarity of the Vasicek and the CIR models. Nevertheless, the results

obtained in this paper are very encouraging and hopefully will stimulate further empirical

research using alternative short rate models.

Besides investigating the application of the techniques discussed in this paper to alternative

models, several other interesting areas of research remain open. An obvious topic is the

extension of the results in this paper to more complicated interest rate derivatives,

particularly those involving path-dependency. Such problems might involve several "local"

bond price simulations along each interest rate path and raises some interesting questions of

how to combine "global" and "local" simulation schemes to achieve maximum speed and

accuracy. Another line of research involves testing the quality of the many traditional

Monte Carlo variance reduction methods we did not cover in this paper, including

importance sampling, stratified sampling, and adaptive Monte Carlo (see for example Press

et al (1992) for a good discussion of these methods). A final open topic is the application of
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implicit and explicit discretization schemes to problems where the interest rate process

parameters are not given directly, but must be extracted from market data.
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Appendix A

Additional Crude Monte Carlo Simulation Results for CIR Model

1-, 5-, and 10-year Discount Bonds
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Crude Monte Carlo Simulation Results for CIR Model
1-Year Discount Bond, Theoretical Value = 0.9352398

N S B= = =1 1 1,000,000; ,000; ,000

a b r= = = =0 4 01 01 0 060. , . , . , .σ

K 1 2 4 8 16 32 64 128 256

δ 2 1 0.5 0.25 0.125 0.0625 0.03125 0.01563 0.00781

log ( )2 δ 1.00 0.00 -1.00 -2.00 -3.00 -4.00 -5.00 -6.00 -7.00

Euler ê 4.76E-3 1.79E-3 7.87E-4 3.57E-4 1.82E-4 8.68E-5 4.54E-5 3.37E-5 2.93E-5

log | $|2 e -7.71 -9.13 -10.31 -11.45 -12.42 -13.49 -14.43 -14.86 -15.06

$VB

0 2.73E-4 3.18E-4 3.46E-4 3.63E-4 3.60E-4 3.58E-4 3.64E-4 3.61E-4

c0 9.
0 1.43E-5 1.66E-5 1.81E-5 1.89E-5 1.88E-5 1.87E-5 1.90E-5 1.88E-5

| $ |ewc
4.76E-3 1.80E-3 8.04E-4 3.75E-4 2.01E-4 1.06E-4 6.41E-5 5.27E-5 4.81E-5

log | $ |2 ewc
-7.71 -9.11 -10.28 -11.38 -12.28 -13.21 -13.93 -14.21 -14.34

Tcomp
10.90 19.33 35.42 68.87 137.11 274.12 537.30 1065.74 2130.95

log ( )2 Tcomp 3.45 4.27 5.15 6.11 7.10 8.10 9.07 10.06 11.06

Mil- ê -1.42E-3 -2.95E-4 -5.97E-5 -2.27E-5 2.70E-6 -1.47E-7 2.43E-6 1.25E-5 1.88E-5

stein log | $|2 e -9.46 -11.73 -14.03 -15.43 -18.50 -22.70 -18.65 -16.28 -15.70

$VB

-1.42E-3 3.78E-4 3.67E-4 3.70E-4 3.75E-4 3.66E-4 3.61E-4 3.65E-4 3.62E-4

c0 9.
-7.41E-5 1.97E-5 1.91E-5 1.93E-5 1.95E-5 1.91E-5 1.88E-5 1.91E-5 1.89E-5

| $ |ewc
1.49E-3 3.15E-4 7.89E-5 4.20E-5 2.22E-5 1.92E-5 2.13E-5 3.16E-5 3.76E-5

log | $ |2 ewc
-9.39 -11.63 -13.63 -14.54 -15.46 -15.67 -15.52 -14.95 -14.70

Tcomp
14.15 27.62 56.10 103.90 206.21 404.36 822.91 1626.24 3260.38

log ( )2 Tcomp 3.82 4.79 5.81 6.70 7.69 8.66 9.68 10.67 11.67

3rd ê NA 8.44E-5 2.37E-5 -4.07E-6 9.79E-6 2.98E-7 1.72E-6 1.25E-5 2.08E-5

Order log | $|2 e NA -13.53 -15.37 -17.91 -16.64 -21.68 -19.15 -16.29 -15.55

$VB

NA 4.77E-4 4.29E-4 4.23E-4 4.21E-4 4.13E-4 4.02E-4 4.06E-4 4.07E-4

c0 9.
NA 2.49E-5 2.24E-5 2.20E-5 2.20E-5 2.15E-5 2.10E-5 2.12E-5 2.13E-5

| $ |ewc
NA 1.09E-4 4.60E-5 2.61E-5 3.18E-5 2.18E-5 2.27E-5 3.36E-5 4.21E-5

log | $ |2 ewc
NA -13.16 -14.41 -15.22 -14.94 -15.48 -15.43 -14.86 -14.54

Tcomp
NA 34.11 64.13 123.22 243.48 478.95 951.60 1887.33 3842.11

log ( )2 Tcomp NA 5.09 6.00 6.94 7.93 8.90 9.89 10.88 11.91
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Crude Monte Carlo Simulation Results for CIR Model
5-Year Discount Bond, Theoretical Value = 0.6642841

N S B= = =1 1 1,000,000; ,000; ,000

a b r= = = =0 4 01 01 0 060. , . , . , .σ

K 1 2 4 8 16 32 64 128 256

δ 2 1 0.5 0.25 0.125 0.0625 0.03125 0.01563 0.00781

log ( )2 δ 1.00 0.00 -1.00 -2.00 -3.00 -4.00 -5.00 -6.00 -7.00

Euler ê 3.57E-2 -2.67E-2 -1.17E-2 -5.68E-
3

-2.74E-3 -1.38E-3 -6.73E-4 -2.78E-4 -6.93E-5

log | $|2 e -4.81 -5.23 -6.42 -7.46 -8.51 -9.50 -10.54 -11.81 -13.82

$VB

0 2.68E-3 2.12E-3 2.03E-3 2.01E-3 1.95E-3 1.92E-3 1.92E-3 1.90E-3

c0 9.
0 1.40E-4 1.11E-4 1.06E-4 1.05E-4 1.01E-4 9.99E-5 1.00E-4 9.94E-5

| $ |ewc
3.57E-2 2.68E-2 1.18E-2 5.78E-3 2.85E-3 1.48E-3 7.73E-4 3.78E-4 1.69E-4

log | $ |2 ewc
-4.81 -5.22 -6.41 -7.43 -8.46 -9.40 -10.34 -11.37 -12.53

Tcomp
10.90 19.33 35.42 68.87 137.11 274.12 537.30 1065.74 2130.95

log ( )2 Tcomp 3.45 4.27 5.15 6.11 7.10 8.10 9.07 10.06 11.06

Mil- ê -1.19E-1 -1.67E-2 -2.34E-3 -4.58E-
4

-5.78E-5 -2.08E-5 8.09E-6 6.51E-5 1.03E-4

stein log | $|2 e -3.07 -5.90 -8.74 -11.09 -14.08 -15.56 -16.92 -13.91 -13.25

$VB

-1.19E-1 2.15E-3 1.96E-3 1.95E-3 1.97E-3 1.92E-3 1.91E-3 1.92E-3 1.90E-3

c0 9.
-6.21E-3 1.12E-4 1.02E-4 1.02E-4 1.03E-4 1.00E-4 9.95E-5 1.00E-4 9.93E-5

| $ |ewc
1.25E-1 1.68E-2 2.44E-3 5.60E-4 1.61E-4 1.21E-4 1.08E-4 1.65E-4 2.02E-4

log | $ |2 ewc
-3.00 -5.89 -8.68 -10.80 -12.60 -13.01 -13.18 -12.56 -12.27

Tcomp
14.15 27.62 56.10 103.90 206.21 404.36 822.91 1626.24 3260.38

log ( )2 Tcomp 3.82 4.79 5.81 6.70 7.69 8.66 9.68 10.67 11.67

3rd ê NA 1.75E-2 2.48E-3 1.91E-4 6.83E-5 -3.62E-6 7.15E-6 6.62E-5 1.17E-4

Order log | $|2 e NA -5.84 -8.65 -12.35 -13.84 -18.08 -17.09 -13.88 -13.06

$VB

NA 2.28E-3 2.24E-3 2.21E-3 2.21E-3 2.16E-3 2.13E-3 2.13E-3 2.14E-3

c0 9.
NA 1.19E-4 1.17E-4 1.15E-4 1.15E-4 1.13E-4 1.11E-4 1.11E-4 1.12E-4

| $ |ewc
NA 1.76E-2 2.60E-3 3.07E-4 1.84E-4 1.16E-4 1.18E-4 1.77E-4 2.28E-4

log | $ |2 ewc
NA -5.83 -8.59 -11.67 -12.41 -13.07 -13.04 -12.46 -12.10

Tcomp
NA 34.11 64.13 123.22 243.48 478.95 951.60 1887.33 3842.11

log ( )2 Tcomp NA 5.09 6.00 6.94 7.93 8.90 9.89 10.88 11.91
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Crude Monte Carlo Simulation Results for CIR Model
10-Year Discount Bond, Theoretical Value = 0.4125989

N S B= = =1 1 1,000,000; ,000; ,000

a b r= = = =0 4 01 01 0 060. , . , . , .σ

K 1 2 4 8 16 32 64 128 256

δ 2 1 0.5 0.25 0.125 0.0625 0.03125 0.01563 0.00781

log ( )2 δ 1.00 0.00 -1.00 -2.00 -3.00 -4.00 -5.00 -6.00 -7.00

Euler ê -1.26E-2 -2.02E-1 -5.40E-2 -2.35E-2 -1.10E-2 -5.40E-3 -2.64E-3 -1.24E-3 -5.34E-4

log | $|2 e -6.31 -2.30 -4.21 -5.41 -6.50 -7.53 -8.56 -9.65 -10.87

$VB

0 6.24E-3 2.91E-3 2.53E-3 2.43E-3 2.33E-3 2.28E-3 2.28E-3 2.25E-3

c0 9.
0 3.25E-4 1.52E-4 1.32E-4 1.27E-4 1.22E-4 1.19E-4 1.19E-4 1.18E-4

| $ |ewc
1.26E-2 2.03E-1 5.41E-2 2.36E-2 1.12E-2 5.52E-3 2.76E-3 1.36E-3 6.52E-4

log | $ |2 ewc
-6.31 -2.30 -4.21 -5.41 -6.49 -7.50 -8.50 -9.52 -10.58

Tcomp
10.90 19.33 35.42 68.87 137.11 274.12 537.30 1065.74 2130.95

log ( )2 Tcomp 3.45 4.27 5.15 6.11 7.10 8.10 9.07 10.06 11.06

Mil- ê -6.32E-1 -1.16E-1 -7.72E-3 -4.39E-4 5.62E-5 1.50E-5 2.73E-5 8.62E-5 1.29E-4

stein log | $|2 e -0.66 -3.11 -7.02 -11.15 -14.12 -16.02 -15.16 -13.50 -12.92

$VB

-6.32E-1 3.10E-3 2.31E-3 2.29E-3 2.33E-3 2.28E-3 2.26E-3 2.27E-3 2.25E-3

c0 9.
-3.30E-2 1.62E-4 1.20E-4 1.19E-4 1.22E-4 1.19E-4 1.18E-4 1.18E-4 1.17E-4

| $ |ewc
6.65E-1 1.16E-1 7.84E-3 5.59E-4 1.78E-4 1.34E-4 1.45E-4 2.05E-4 2.47E-4

log | $ |2 ewc
-0.59 -3.10 -6.99 -10.81 -12.46 -12.87 -12.75 -12.26 -11.99

Tcomp
14.15 27.62 56.10 103.90 206.21 404.36 822.91 1626.24 3260.38

log ( )2 Tcomp 3.82 4.79 5.81 6.70 7.69 8.66 9.68 10.67 11.67

3rd ê NA 5.59E-2 2.85E-2 2.00E-3 2.13E-4 4.30E-6 1.77E-5 8.72E-5 1.47E-4

Order log | $|2 e NA -4.16 -5.13 -8.96 -12.20 -17.83 -15.79 -13.49 -12.73

$VB

NA 3.22E-3 2.50E-3 2.59E-3 2.61E-3 2.55E-3 2.53E-3 2.52E-3 2.52E-3

c0 9.
NA 1.68E-4 1.31E-4 1.35E-4 1.36E-4 1.33E-4 1.32E-4 1.31E-4 1.32E-4

| $ |ewc
NA 5.60E-2 2.86E-2 2.14E-3 3.49E-4 1.37E-4 1.50E-4 2.19E-4 2.79E-4

log | $ |2 ewc
NA -4.16 -5.13 -8.87 -11.48 -12.83 -12.71 -12.16 -11.81

Tcomp
NA 34.11 64.13 123.22 243.48 478.95 951.60 1887.33 3842.11

log ( )2 Tcomp NA 5.09 6.00 6.94 7.93 8.90 9.89 10.88 11.91
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Appendix B

Discretization Schemes for the Vasicek Model

Euler Scheme:

$ $ ( $ ) ,I I ri i i+ = −1 1 δ (B.1a)

$ $ ( $ ) ~ , , ,..., , $ , $r r r z i K r r Ii i i i t+ += + − + = − = =1 1 0 001 1 1
0

α β δ κ δ (B.1b)

Milstein Scheme:

$ $ $ $ ( $ ) ~ ,I I r r r zi i i i i i+ += − + − − −�
��

�
��1

2 2
11

1

2

1

2
δ α β δ κ δ δ4 9 (B.2a)

$ $ ( $ ) ~ ~

( $ ) , , ,..., , $ , $

r r r z z

r i K r r I

i i i i i

i t

+ + += + − + − −

− = − = =

1 1 1

2 2
0 0

2
1

2
01 1 1

0

α β δ κ δ κα δ δ

α β δ
(B.2b)



IV.65

Appendix C

Additional Efficiency Ratio Results for CIR Model

1-, 2-, and 10-year Discount Bonds
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Efficiency Ratios for Simulation of 1-Year Discount Bond in CIR Model

N S B= = =10 100 100,000; ;

a b r= = = =0 4 01 01 0 060. , . , . , .σ

K 4 8 16 32 64 128 256

δ 0.25 0.125 0.0625 0.03125 0.01563 0.007813 0.003906

Crude Monte Carlo 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Antithetic Variate 6.76 6.12 6.76 6.01 6.52 6.68 8.92

Control Variate 7.30 7.05 7.98 7.34 7.66 7.71 9.85
Antithetic Variate +
Control Variate

5.20 4.63 5.36 4.89 5.37 5.39 7.38

Measure Transformation 3.77 7.06 16.89 30.02 64.55 149.05 263.86
Measure Transformation +
Antithetic Variate

10.17 22.65 53.18 123.94 263.20 532.54 1238.48

Sobol Sequence 4.57 3.62 3.70 2.61 2.08 2.02 2.21
Sobol Sequence +
Control Variate

14.85 9.57 9.27 7.37 8.52 9.17 8.81

Sobol Sequence +
Measure Transformation

14.58 23.88 45.82 63.47 103.10 253.87 470.90

Note: The highest efficiency ratio for each step-size has been highlighted
.



IV.67

Efficiency Ratios for Simulation of 2-Year Discount Bond in CIR Model

N S B= = =10 100 100,000; ;

a b r= = = =0 4 01 01 0 060. , . , . , .σ

K 4 8 16 32 64 128 256

δ 0.25 0.125 0.0625 0.03125 0.01563 0.007813 0.003906

Crude Monte Carlo 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Antithetic Variate 6.01 5.17 5.73 5.08 5.48 5.74 7.51

Control Variate 5.38 5.04 5.68 5.24 5.41 5.42 6.77
Antithetic Variate +
Control Variate

4.13 3.51 4.05 3.68 4.03 4.09 5.55

Measure Transformation 4.11 7.19 16.92 29.48 61.75 120.90 175.80
Measure Transformation +
Antithetic Variate

8.08 17.29 41.29 94.17 184.38 320.54 613.20

Sobol Sequence 4.79 3.54 3.58 2.51 1.99 1.97 2.18
Sobol Sequence +
Control Variate

11.78 7.25 6.93 5.54 6.44 6.75 6.52

Sobol Sequence +
Measure Transformation

14.80 23.67 42.94 58.93 97.62 222.34 345.35

Note: The highest efficiency ratio for each step-size has been highlighted
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Efficiency Ratios for Simulation of 10-Year Discount Bond in CIR Model

N S B= = =10 100 100,000; ;

a b r= = = =0 4 01 01 0 060. , . , . , .σ

K 4 8 16 32 64 128 256

δ 0.25 0.125 0.0625 0.03125 0.01563 0.007813 0.003906

Crude Monte Carlo 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Antithetic Variate 5.29 4.98 5.23 4.87 6.11 6.29 7.26

Control Variate 2.62 3.12 3.29 2.98 3.25 3.22 4.05
Antithetic Variate +
Control Variate

2.20 2.23 2.52 2.26 2.57 2.65 3.40

Measure Transformation 2.21 5.49 11.67 18.26 31.49 36.08 39.28
Measure Transformation +
Antithetic Variate

2.52 6.47 16.21 28.70 47.46 63.11 95.55

Sobol Sequence 4.34 3.41 3.26 2.27 1.83 1.84 2.13
Sobol Sequence +
Control Variate

5.47 4.95 4.41 3.56 4.35 3.84 3.30

Sobol Sequence +
Measure Transformation

6.58 17.40 27.19 32.80 57.93 74.58 83.77

Note: The highest efficiency ratio for each step-size has been highlighted
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Appendix D

Proof of (44) -- Optimal Choice of Likelihood Ratio Process

Let us introduce the adapted process

u t T E r du E I t t Tt
Q

u
t

T

t
Q

T( , ) exp( ) [ ] ,= −�
! 

"
$# = ≤ ≤ ≤I

0
0 τ (D.1)

where It  is given by (12). We note that u t T( , )  can alternatively be written

u t T E r du r du P t T I t t Tt
Q

u u
t

t

t

T

t( , ) exp( ) ( , ) ,= − −�
! 

"
$# = ≤ ≤ ≤II

0
0 τ (D.2)

By the law of conditional iterated expectations

E u s T E E I E I u t T t s Tt
Q Q Q

T s t
Q

T t[ ( , )] [ | ] | [ | ] ( , ) ,= ℑ ℑ = ℑ = ≤ ≤ (D.3)

which implies that u t T( , )  is a martingale under Q. Since we know that P t T h r tT t( , ) ( , )=

and thus u t T h r t IT t t( , ) ( , )= , Ito’s lemma yields

du t T r t I
h r t

r
dWr t t

T t
t( , ) ( , )

( , )= σ ∂
∂

(D.4)

where we have used the martingale property (D.3) of u t T( , )  to set the dt-term in (D.4)

equal to zero. Under the equivalent measure Z, (D.4) becomes (from (38))

du t T r t I
h r t

r
dt r t I

h r t

r
dWr t t

T t
t r t t

T t
t( , ) ( , )

( , )
( , )

( , ) ~
= − +σ ∂

∂
θ σ ∂

∂
(D.5)
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Given the likelihood ratio process (40), Ito’s lemma asserts that the product ξ tu t T( , )

follows (under Z)

d u t T r t I
h r t

r
h r t I dWt t r t t

T t
T t t t t( ( , )) ( , )

( , )
( , )

~ξ ξ σ ∂
∂

θ= +�
��

�
�� (D.6)

Since u t T( , )  is an adapted process, we know from (D.1) (or (D.2)) that u T T IT( , ) =  and

thus

P t T E I E u T Tt
Z

T T t
Z

T( , ) [ ] [ ( , ) ]0 0 0
= =ξ ξ (D.7)

From (D.6), if we set

θ σ ∂
∂t

r t

T t

T tr t

h r t

h r t

r
= − ( , )

( , )

( , )
(D.8)

the product ξ tu t T( , )  becomes non-random under Z . (D.7) then implies that

I u T T u t T u t T P t TT T T tξ ξ ξ= = = =( , ) ( , ) ( , ) ( , )0 0 00
(D.9)

which is obviously non-random as well. Q.E.D.
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Appendix E

Simulation Results for CIR Model using Antithetic Variates and Measure Transform

2-year Discount Bond
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Simulation Results using Antithetic Variates + Measure Transform in CIR Model
2-Year Discount Bond, Theoretical Value = 0.8655244

N S B= = =1 1 1,000,000; ,000; ,000

a b r= = = =0 4 01 01 0 060. , . , . , .σ

K 1 2 4 8 16 32 64 128 256

δ 2 1 0.5 0.25 0.125 0.0625 0.03125 0.01563 0.00781

log ( )2 δ 1.00 0.00 -1.00 -2.00 -3.00 -4.00 -5.00 -6.00 -7.00

Euler ê 1.45E-2 3.04E-3 9.69E-4 3.78E-4 1.65E-4 7.76E-5 3.72E-5 1.83E-5 9.12E-6

log | $|2 e -6.11 -8.36 -10.01 -11.37 -12.57 -13.65 -14.71 -15.73 -16.74

$VB

0 1.16E-4 5.56E-5 2.60E-5 1.35E-5 7.54E-6 4.42E-6 2.70E-6 1.71E-6

c0 9.
0 6.04E-6 2.90E-6 1.35E-6 7.04E-7 3.93E-7 2.30E-7 1.41E-7 8.92E-8

| $ |ewc
1.45E-2 3.04E-3 9.72E-4 3.79E-4 1.66E-4 7.80E-5 3.74E-5 1.85E-5 9.21E-6

log | $ |2 ewc
-6.11 -8.36 -10.01 -11.37 -12.56 -13.65 -14.71 -15.72 -16.73

Tcomp
22.12 35.43 67.81 136.15 263.31 513.01 1022.29 2044.11 4096.38

log ( )2 Tcomp 4.47 5.15 6.08 7.09 8.04 9.00 10.00 11.00 12.00

Mil- ê -9.98E-3 -1.78E-3 -3.68E-4 -8.32E-5 -1.96E-5 -4.76E-6 -1.19E-6 -2.99E-7 -7.62E-8

stein log | $|2 e -6.65 -9.13 -11.41 -13.55 -15.64 -17.68 -19.68 -21.67 -23.65

$VB

2.55E-4 1.10E-4 3.78E-5 1.35E-5 4.67E-6 1.72E-6 6.60E-7 3.21E-7 2.51E-7

c0 9.
1.33E-5 5.74E-6 1.97E-6 7.05E-7 2.44E-7 8.99E-8 3.44E-8 1.67E-8 1.31E-8

| $ |ewc
9.99E-3 1.79E-3 3.70E-4 8.39E-5 1.98E-5 4.84E-6 1.22E-6 3.16E-7 8.93E-8

log | $ |2 ewc
-6.64 -9.13 -11.40 -13.54 -15.62 -17.66 -19.64 -21.59 -23.42

Tcomp
34.51 62.08 123.37 227.11 443.34 892.41 1777.44 3558.20 7082.72

log ( )2 Tcomp 5.11 5.96 6.95 7.83 8.79 9.80 10.80 11.80 12.79

3rd ê NA 8.39E-4 8.77E-5 9.20E-6 1.06E-6 2.15E-7 -9.90E-9 8.00E-10 -6.60E-9

Order log | $|2 e NA -10.22 -13.48 -16.73 -19.85 -22.15 -26.59 -30.22 -27.17

$VB

NA 1.10E-4 4.07E-5 1.65E-5 6.62E-6 2.92E-6 1.43E-6 6.96E-7 4.27E-7

c0 9.
NA 5.75E-6 2.12E-6 8.62E-7 3.45E-7 1.52E-7 7.48E-8 3.63E-8 2.23E-8

| $ |ewc
NA 8.44E-4 8.98E-5 1.01E-5 1.40E-6 3.67E-7 8.47E-8 3.71E-8 2.89E-8

log | $ |2 ewc
NA -10.21 -13.44 -16.60 -19.44 -21.38 -23.49 -24.68 -25.04

Tcomp
NA 79.66 150.12 296.20 580.15 1145.34 2280.14 4547.46 9073.21

log ( )2 Tcomp NA 6.32 7.23 8.21 9.18 10.16 11.15 12.15 13.15
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Simulation Results using Antithetic Variates + Measure Transform in CIR Model
2-Year Discount Bond, Theoretical Value = 0.8655244

N S B= = =10 100 100,000; ;

a b r= = = =0 4 01 01 0 060. , . , . , .σ

K 1 2 4 8 16 32 64 128 256

δ 2 1 0.5 0.25 0.125 0.0625 0.03125 0.01563 0.00781

log ( )2 δ 1.00 0.00 -1.00 -2.00 -3.00 -4.00 -5.00 -6.00 -7.00

Euler ê 1.45E-2 3.06E-3 9.72E-4 3.75E-4 1.70E-4 7.88E-5 3.81E-5 1.95E-5 9.80E-6

log | $|2 e -6.11 -8.35 -10.01 -11.38 -12.52 -13.63 -14.68 -15.65 -16.64

$VB

0 1.24E-3 6.34E-4 2.61E-4 1.51E-4 6.50E-5 4.20E-5 2.84E-5 1.63E-5

c0 9.
0 6.52E-5 3.33E-5 1.37E-5 7.91E-6 3.41E-6 2.21E-6 1.49E-6 8.54E-7

| $ |ewc
1.45E-2 3.12E-3 1.01E-3 3.89E-4 1.78E-4 8.22E-5 4.03E-5 2.10E-5 1.07E-5

log | $ |2 ewc
-6.11 -8.32 -9.96 -11.33 -12.46 -13.57 -14.60 -15.54 -16.52

Tcomp
0.22 0.36 0.69 1.34 2.62 5.11 10.22 20.45 40.93

log ( )2 Tcomp -2.18 -1.47 -0.54 0.42 1.39 2.35 3.35 4.35 5.36

Mil- ê -9.91E-3 -1.77E-3 -3.65E-4 -8.14E-5 -2.00E-5 -4.79E-6 -1.10E-6 -3.63E-7 -3.20E-8

stein log | $|2 e -6.66 -9.14 -11.42 -13.58 -15.61 -17.67 -19.80 -21.39 -24.90

$VB

2.48E-3 1.03E-3 3.70E-4 1.41E-4 4.74E-5 1.62E-5 6.71E-6 3.62E-6 2.48E-6

c0 9.
1.30E-4 5.39E-5 1.94E-5 7.40E-6 2.49E-6 8.50E-7 3.52E-7 1.90E-7 1.30E-7

| $ |ewc
1.00E-2 1.82E-3 3.84E-4 8.88E-5 2.24E-5 5.64E-6 1.45E-6 5.53E-7 1.62E-7

log | $ |2 ewc
-6.64 -9.10 -11.35 -13.46 -15.44 -17.44 -19.40 -20.79 -22.55

Tcomp
0.33 0.60 1.20 2.25 4.45 8.91 17.79 35.56 70.81

log ( )2 Tcomp -1.60 -0.74 0.26 1.17 2.15 3.16 4.15 5.15 6.15

3rd ê NA 8.45E-4 9.69E-5 9.96E-6 2.56E-6 7.63E-8 -2.05E-7 -2.85E-7 8.04E-8

Order log | $|2 e NA -10.21 -13.33 -16.62 -18.58 -23.64 -22.22 -21.74 -23.57

$VB

NA 1.08E-3 3.99E-4 1.77E-4 6.90E-5 2.80E-5 1.35E-5 7.18E-6 4.01E-6

c0 9.
NA 5.68E-5 2.09E-5 9.28E-6 3.62E-6 1.47E-6 7.10E-7 3.77E-7 2.10E-7

| $ |ewc
NA 9.01E-4 1.18E-4 1.92E-5 6.18E-6 1.54E-6 9.15E-7 6.62E-7 2.91E-7

log | $ |2 ewc
NA -10.12 -13.05 -15.67 -17.30 -19.31 -20.06 -20.53 -21.71

Tcomp
NA 0.79 1.48 2.92 5.78 11.45 22.80 45.49 90.69

log ( )2 Tcomp NA -0.34 0.57 1.55 2.53 3.52 4.51 5.51 6.50
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Simulation Results using Antithetic Variates + Measure Transform in CIR Model
2-Year Discount Bond, Theoretical Value = 0.8655244

N S B= = =100 10 10; ;

a b r= = = =0 4 01 01 0 060. , . , . , .σ

K 1 2 4 8 16 32 64 128 256

δ 2 1 0.5 0.25 0.125 0.0625 0.03125 0.01563 0.00781

log ( )2 δ 1.00 0.00 -1.00 -2.00 -3.00 -4.00 -5.00 -6.00 -7.00

Euler ê 1.45E-2 3.05E-3 1.05E-3 2.65E-4 1.88E-4 8.08E-5 4.65E-5 2.14E-5 6.80E-6

log | $|2 e -6.11 -8.36 -9.89 -11.88 -12.38 -13.59 -14.39 -15.51 -17.17

$VB

0 1.50E-2 6.74E-3 1.56E-3 1.12E-3 6.54E-4 2.75E-4 2.99E-4 1.29E-4

c0 9.
0 8.68E-4 3.90E-4 9.03E-5 6.46E-5 3.78E-5 1.59E-5 1.73E-5 7.44E-6

| $ |ewc
1.45E-2 3.92E-3 1.44E-3 3.55E-4 2.52E-4 1.19E-4 6.24E-5 3.87E-5 1.42E-5

log | $ |2 ewc
-6.11 -7.99 -9.44 -11.46 -11.95 -13.04 -13.97 -14.66 -16.10

Tcomp
0.002 0.004 0.007 0.015 0.031 0.052 0.102 0.221 0.428

log ( )2 Tcomp -8.97 -7.97 -7.16 -6.06 -5.01 -4.27 -3.29 -2.18 -1.22

Mil- ê -9.34E-3 -1.62E-3 -2.66E-4 -4.44E-5 -9.07E-6 3.29E-6 -5.37E-7 5.09E-7 -2.57E-7

stein log | $|2 e -6.74 -9.27 -11.88 -14.46 -16.75 -18.21 -20.83 -20.91 -21.89

$VB

3.72E-2 1.25E-2 3.74E-3 1.13E-3 2.23E-4 1.03E-4 7.55E-5 3.49E-5 2.79E-5

c0 9.
2.15E-3 7.24E-4 2.16E-4 6.52E-5 1.29E-5 5.98E-6 4.37E-6 2.02E-6 1.61E-6

| $ |ewc
1.15E-2 2.35E-3 4.82E-4 1.10E-4 2.20E-5 9.28E-6 4.90E-6 2.53E-6 1.87E-6

log | $ |2 ewc
-6.44 -8.73 -11.02 -13.16 -15.47 -16.72 -17.64 -18.59 -19.03

Tcomp
0.003 0.006 0.012 0.022 0.041 0.087 0.189 0.338 0.712

log ( )2 Tcomp -8.38 -7.38 -6.38 -5.51 -4.61 -3.52 -2.40 -1.56 -0.49

3rd ê NA 8.78E-4 1.23E-4 1.80E-5 9.20E-6 2.94E-6 1.87E-6 4.20E-7 -1.40E-6

Order log | $|2 e NA -10.15 -12.99 -15.76 -16.73 -18.37 -19.03 -21.18 -19.45

$VB

NA 1.45E-2 4.15E-3 1.98E-3 6.24E-4 2.50E-4 1.35E-4 7.14E-5 4.56E-5

c0 9.
NA 8.38E-4 2.40E-4 1.15E-4 3.61E-5 1.45E-5 7.83E-6 4.13E-6 2.64E-6

| $ |ewc
NA 1.72E-3 3.63E-4 1.33E-4 4.53E-5 1.74E-5 9.70E-6 4.55E-6 4.04E-6

log | $ |2 ewc
NA -9.19 -11.43 -12.88 -14.43 -15.81 -16.65 -17.75 -17.92

Tcomp
NA 0.008 0.015 0.034 0.065 0.116 0.241 0.456 0.942

log ( )2 Tcomp NA -6.97 -6.06 -4.88 -3.94 -3.11 -2.05 -1.13 -0.09



IV.75

Endnotes

                                                          
1It is well known that the computational expense of Monte Carlo methods grows linearly

with the number of stochastic factors whereas lattice methods are characterized by an

exponential relationship between the number of factors and computational expense. In

general, lattice methods become impractical when the number of factors exceed 2 or 3; for

a discussion of lattices with two state variables, see for example Boyle (1988). For an

application of lattice approaches to mildly path-dependent structures, see Hull and White

(1993).

2For an extensive list of traditional approaches to variance reduction, see the standard

reference Hammersley and Handscomb (1964).

3For a more complete description of short rate processes proposed in the literature, see

Duffie and Kan (1994) or Joergensen (1994), p. 95-99.

4All these studies assume that interest rate evolution can be described by a (risk-neutral)

short rate process of the form dr r t dt cr dWt t t t= +µ γ( , ) . For the US market, the three papers

estimate the exponent γ  to be 1.3438, 1.4999, and 1.13, respectively.

5It is probably slightly confusing that we use P to denote both zero-coupon bond prices and

the real-life probability measure. Fortunately, we will not need the real-life probability

measure at any further point in this paper. Indeed, as mentioned in Harrison and Pliska

(1981), the sole role of the real-life probability measure is to define the null sets.

6These conditions are given by Girsanov’s Theorem (see Karatzas and Shreve (1991), p.

190-201) and roughly require the market price of risk of discount bonds to exist and be

sufficiently well-behaved (Novikov’s condition).

7Being an applied study, this paper will not delve too deeply on technical regularity

conditions. We do point out, however, that the existence of a unique solution to (2) is

ensured if µ r  and σ r  satisfy Lipschitz and linear growth conditions. The delicate issue of
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existence and uniqueness for the Cox-Ingersoll-Ross square-root model (which violates

these conditions) is discussed by Duffie (1992), Appendix E.

8We note that both (4) and (5) can be extended to the case of deterministic parameters and

still be (somewhat) analytically tractable (see Hull and White (1990b) and Pliska (1994)).

9As shown in Cox, Ingersoll, and Ross (1980), p. 391, if the drift parameters of the CIR

process are sufficiently high, the origin becomes inaccessible. In this case, D = ℜ+ \ { }0 .

10For an introduction to Ito-Taylor expansions, see Kloeden and Platen (1992), chapter 5.

11The process V Vs t−  is the representation of the double stochastic integral dW duv
t

u

t

s II .

12We note that the CIR process, similar to geometric Brownian motion (1), can be simulated

bias-free using the known solution to the SDE. As mentioned in section 2, this would

involve generating random draws from the non-central chi-square distribution; a simple

algorithm for generating such draws can be found in Devroye (1986), p. 468-471.

13These parameters are identical to the ones chosen (and justified) by Hull and White

(1990a).

14Notice, that the variance of $
,IK A  will be smaller than the variance of $IK  if just

ρ( $ , $ )I IK K − < 1 which, in practice, will always be the case. As the computation time of the

antithetic method is roughly twice that of crude Monte Carlo, the method, however, does

not necessarily produce any gains in efficiency (see equation (37) for a definition of

efficiency).

15The approach taken in this paper is based on traditional Monte Carlo methods. Newton

(1994) has introduced an SDE-based control variate technique quite different from the one

applied in this paper.

16In the general case where the moments of the short rate might not be explicitly known,

some other matching criteria must be used. For example, in the CIR model an alternative
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"naive" approach could be to simply set κ σ= rt0
 (which actually generates quite

reasonable results).

17Under technical conditions on the short rate process parameters, the existence of such a

function follows from the Feynman-Kac theorem, see for example Duffie (1992), p. 129.

18For an exact definition of discrepancy, see for example Bouleau and Lepingle (1994).

19Using L’Hospital’s rule, one can show that (ln ) /N NK  behaves almost as O N( / )1  for

large N.

20Many contingent claims -- including the simple European puts and calls on zero-coupon

bonds -- have kinks that violate the classical smoothness conditions. In practice, this hardly

represents a problem as we can easily ensure that the conditions are satisfied by introducing

a slight local smoothing of the payout function (as in Duffie (1992), p. 203). More

rigorously, Bally and Talay (1995) show that in many cases it is possible to relax the

classical smoothness conditions.


