
MATH 337, by T. Lakoba, University of Vermont 140

15 The Heat equation in 2 and 3 spatial dimensions

In this Lecture, which concludes our treatment of parabolic equations, we will develop numerical
methods for the Heat equation in 2 and 3 dimensions in space. We will present the details of
these developments for the 2-dimensional case, while for the 3-dimensional case, we will mention
only those aspects which cannot be straightforwardly generalized from 2 to 3 spatial dimensions.

Since this Lecture is quite long, here we give a brief preview of its results. First, we will
explain how the solution vector can be set up on a 3-dimensional grid (two dimensions in space
and one in time). We will discuss both the conceptual part of this setup and its implementation
in Matlab. Then we will present the simple explicit scheme for the 2D Heat equation and will
show that it is even more time-inefficient than it was for the Heat equation in one dimension.
In search of a time-efficient substitute, we will analyze the naive version of the Crank-Nicolson
scheme for the 2D Heat equation, and will discover that that scheme is not time-efficient either!
We will then show how a number of time-efficient generalizations of the Crank-Nicolson scheme
to 2 and 3 dimensions can be constructed. These generalizations are known under the common
name of Alternating Direction methods, and are a particular case of an even more general class
of so-called operator-splitting methods. In Appendix 1 we will point out a relation between
these methods and the IMEX methods mentioned in Lecture 14, as well as with the predictor-
corrector methods considered in Lecture 3. Finally, we will also describe that prescribing
boundary conditions (even the Dirichlet ones) for those time-efficient schemes is not always a
trivial matter, and demonstrate how they can be prescribed.

15.1 Setting up the solution vector on a three-dimensional grid

In this Lecture, we study the following IBVP:

ut = uxx + uyy 0 < x < 1, 0 < y < Y t > 0 ; (15.1)

u(x, y, t = 0) = u0(x, y) 0 ≤ x ≤ 1 0 ≤ y ≤ Y ; (15.2)

u(0, y, t) = g0(y, t), u(1, y, t) = g1(y, t), 0 ≤ y ≤ Y, t ≥ 0 ; (15.3)

u(x, 0, t) = g2(x, t), u(x, Y, t) = g3(x, t), 0 ≤ x ≤ 1, t ≥ 0 . (15.4)

We will always assume that the boundary conditions are consistent with the initial condition:

g0(y, 0) = u0(0, y), g1(y, 0) = u0(1, y), g2(x, 0) = u0(x, 0), g3(x, 0) = u0(x, Y ), (15.5)

and, at the corners of the domain, with each other:

g0(0, t) = g2(0, t), g0(Y, t) = g3(0, t), g3(1, t) = g1(Y, t), g1(0, t) = g2(1, t), for t > 0.
(15.6)



MATH 337, by T. Lakoba, University of Vermont 141

The figure on the right shows the two-dimensional
spatial domain, where the Heat equation (15.1)
holds, as well as the domain’s boundary, where the
boundary conditions (15.3), (15.4) are specified.
Note that we have allowed the lengths of the do-
main in the x and y directions to be different (if
Y 6= 1). Although, in principle, one can always
make Y = 1 by a suitable scaling of the spatial co-
ordinates, we prefer not to do so in order to allow,
later on, the step sizes in x and y to be the same.
The latter is simply the matter of convenience. 0 1

0

Y

y 

x

 D =[0,1]×[0,Y]

∂ D 
g

1
 g

0
 

g
2
 

g
3
 

m=5
m=4

m=0

m=3
m=2

m=1
l=5

l=3
l=1

l=0

l=4
l=2

t

yx

Two levels of 2D−spatial grid for M=5, L=5

16

4
3

2
1

9
15

6
5

7
8

14
10

11
12

13
n

n+1

To discretize the Heat equation (15.1), we cover domain D with a two-dimensional grid. As
we have just noted above, in what follows we will assume that the step sizes in the x and y

directions are the same and equal h. We also discretize the time variable with a step size κ. Then
the three-dimensional grid for the 2D Heat equation consists of points (x = mh, y = lh, t = nκ),
0 ≤ m ≤ M = 1/h, 0 ≤ l ≤ L = Y/h, and 0 ≤ n ≤ N = tmax/κ. Two time levels of such a grid
for the case M = 5 and L = 5 are shown in the figure above.

We will denote the solution on the above grid as

Un
ml = u(mh, lh, nκ) , 0 ≤ m ≤ M, 0 ≤ l ≤ L, 0 ≤ n ≤ N. (15.7)

We expect that any numerical scheme that we will design will give some recurrence relation



MATH 337, by T. Lakoba, University of Vermont 142

between Un+1
ml and Un

ml (and, possibly, Un−1
ml etc.). As long as our grid is rectangular, the array

of values Un
ml at each given n can be conveniently represented as an (M + 1)× (L + 1) matrix.

In this Lecture, we will consider only this case of a rectangular grid. Then, to step from level
n to level (n + 1), we just apply the recurrence formula to each element of the matrix Un

ml.
For example:

for m = 2 : mmax-1

for ell = 2 : ellmax-1

Unew(m,ell) = a*U(m,ell) + b*U(m+1,ell-1);

end

end

U(2:mmax-1, 2:ellmax-1) = Unew(2:mmax-1, 2:ellmax-1);

If we want to record and keep the value of the solution at each time level, we can instead use:
U(m,ell,n+1) = a*U(m,ell,n) + b*U(m+1,ell-1,n); .

On the other hand, if the spatial domain in not rectangular, as occurs in many practical
problems, then defining Un

ml as a matrix is not possible, or at least not straightforward. In this
case, one needs to reshape the two-dimensional array Un

ml into a one-dimensional vector. Even
though it will not be needed for the purposes of this lecture or homework, we will still illustrate
the idea and implementation behind this reshaping. For simplicity, we will consider the case
where the grid is rectangular. This reshaping can be done in more than one way. Here we will
consider only the so-called lexicographic ordering. In this ordering, the first (M−1) components
of the solution vector ~U will be the values Um,1 with m = 1, 2, . . . , M−1. (Here, for brevity, we
have omitted the superscript n, and also inserted a comma between the subscripts pertaining
to the x and y axes for visual convenience.) The next M − 1 components will be Um,2 with
m = 1, 2, . . . , M − 1, and so on. The resulting vector is:

~U =




U1,1

U2,1

·
·
UM−1,1

U1,2

U2,2

·
·
UM−1,2

·
·
·
U1,L−1

U2,L−1

·
·
UM−1,L−1








1st row of 2D level
(along y = 1 · h (i.e. l = 1))





2nd row of 2D level
(along y = 2 · h (i.e. l = 2))





(L− 1)th row of 2D level
(along y = (L− 1) · h (i.e. l = L− 1))

(15.8)

An example of lexicographic ordering of the nodes of one time level is shown in the figure on
the previous page for M = 5 and L = 5 (see the numbers next to the filled circles on the lower
level).



MATH 337, by T. Lakoba, University of Vermont 143

Let us now show how one can set up one time level of the grid and construct a vector of the
form (15.8), using built-in commands in Matlab. In order to avoid possible confusion, we will
define the domain D slightly differently than was done above. Namely, we let x ∈ [0, 2] and
y ∈ [3, 4]. Next, let us discretize the x coordinate as

>> x=[0 1 2]

x =

0 1 2

and the y coordinate as

>> y=[3 4]

y =

3 4

(Such a coarse discretization is quite sufficient for the demonstration of how Matlab commands
can be used.) Now, let us construct a two-dimensional grid as follows:

>> [X,Y]=meshgrid(x,y)

X =

0 1 2

0 1 2

Y =

3 3 3

4 4 4

Thus, entries of matrix X along the rows equal the values of x, and these entries do not change
along the columns. Similarly, entries of matrix Y along the columns equal the values of y, and
these entries do not change along the rows.

Here is a function Z of two variables x and y, constructed with the help of the above matrices
X and Y:

>> Z=100*Y+X

Z =

300 301 302

400 401 402

Now, if we need to reshape matrix Z into a vector, we simply say:

>> Zr=reshape(Z,prod(size(Z)),1)

Zr =

300

400

301

401

302

402

(Note that

>> size(Z)

ans =

2 3



MATH 337, by T. Lakoba, University of Vermont 144

and command prod simply computes the product of all entries of its argument.) If we want to
go back and forth between using Z and Zr, we can use the reversibility of command reshape:

>> Zrr=reshape(Zr,size(X,1),size(X,2))

Zrr =

300 301 302

400 401 402

which, of course, gives you back the Z. Finally, if you want to plot the two-dimensional function
Z(x, y), you can type either mesh(x,y,Z) or mesh(X,Y,Z). You may always look up the
help for any of the above (or any other) commands if you have questions about them.

15.2 Simple explicit method for the 2D Heat equation

Construction of the simple explicit scheme for the 2D Heat equation is a fairly straightforward
matter. Namely, we discretize the terms in (15.1) in the standard way:

ut → Un+1
m,l − Un

m,l

κ
≡ δtU

n
m,l

κ
,

uxx → Un
m+1,l − 2Un

m,l + Un
m−1,l

h2
≡ δ2

xU
n
m,l

h2
,

uyy → Un
m,l+1 − 2Un

m,l + Un
m,l−1

h2
≡ δ2

yU
n
m,l

h2
,

(15.9)

and substitute these expressions into (15.1) to obtain:

Un+1
ml = Un

ml + r
(
δ2
xU

n
ml + δ2

yU
n
ml

)

≡ (
1 + rδ2

x + rδ2
y

)
Un

ml .
(15.10)

Three remarks about notations in (15.9) and
(15.10) are in order. First,

r =
κ

h2
,

as before. Second, we will use the notations Um,l

and Uml (i.e. with and without a comma between
m and l) interchangeably; i.e., they denote the
same thing. Third, the operators δ2

x and δ2
y will

be used extensively in this Lecture.

The stencil for the simple explicit scheme (15.10)
is shown on the right. Implementation of this
scheme is discussed in a homework problem.

o 

o 

o o o 

o 

m, l 

m, l−1 

m−1, l 

m, l+1 

m+1, l 

LEVEL   n 

LEVEL   n+1

Next, we perform the von Neumann stability analysis of scheme (15.10). To this end, we
use the fact that the solution of this constant-coefficient difference equation is satisfied by the
Fourier harmonics

Un
ml = ρn eiβmh eiγlh, (15.11)



MATH 337, by T. Lakoba, University of Vermont 145

which we substitute into (15.10) to find the amplification factor ρ. In this calculation, as well as
in many other calculations in the remainder of this Lecture, we will use the following formulae:

δ2
x

[
eiβmh eiγlh

]
= −4 sin2

(
βh

2

) [
eiβmh eiγlh

]
, (15.12)

δ2
y

[
eiβmh eiγlh

]
= −4 sin2

(
γh

2

) [
eiβmh eiγlh

]
. (15.13)

(You will be asked to confirm the validity of these formulae in a homework problem.) Substi-
tuting (15.11) into (15.10) and using (15.12) and (15.13), one finds

ρ = 1− 4r

(
sin2 βh

2
+ sin2 γh

2

)
. (15.14)

The harmonics most prone to instability are, as for the one-dimensional Heat equation, those
with the highest spatial frequency, and for which

sin2 βh

2
= sin2 γh

2
= 1 .

For these harmonics, the stability condition |ρ| ≤ 1 implies

r ≤ 1

4
or, equivalently, κ ≤ h2

4
. (15.15)

Thus, in order to ensure the stability of the simple explicit scheme (15.10), one has to impose a
restriction on the time step κ that is twice as strong as the analogous restriction in the case of
the one-dimensional Heat equation. Therefore, the simple explicit scheme is computationally
inefficient, and our next step is, of course, to look for a computationally efficient scheme. As
the first candidate for that position, we will analyze the Crank-Nicolson scheme.

15.3 Naive generalization of Crank-Nicolson scheme for the 2D Heat
equation

Our main finding in this subsection will be that a naive generalization of the CN method (13.6)
is also computationally inefficient. The underlying analysis will allow us to formulate specific
properties that a computationally efficient scheme must possess.

The naive generalization to two dimensions of the CN scheme, (13.5) or (13.6), is:

Un+1
ml = Un

ml +
r

2

(
δ2
x + δ2

y

) (
Un

ml + Un+1
ml

)
, (15.16)

or, equivalently, (
1− r

2
δ2
x −

r

2
δ2
y

)
Un+1

ml =
(
1 +

r

2
δ2
x +

r

2
δ2
y

)
Un

ml . (15.17)

Following the lines of Lecture 13, one can show that the accuracy of this scheme is O(κ2 + h2).
Also, the von Neumann analysis yields the following expression for the error amplification
factor:

ρ =
1− 2r

(
sin2 βh

2
+ sin2 γh

2

)

1 + 2r
(
sin2 βh

2
+ sin2 γh

2

) , (15.18)

so that |ρ| ≤ 1 for any r and hence the CN scheme (15.17) is unconditionally stable.



MATH 337, by T. Lakoba, University of Vermont 146

We will now demonstrate that scheme (15.16) / (15.17) is computationally inefficient. To
that end, we need to exhibit the explicit matrix form of that scheme. We begin by rewriting
(15.16) in the form26:

(1 + 2r)Un+1
m,l −

r

2

(
Un+1

m+1,l + Un+1
m−1,l

)− r

2

(
Un+1

m,l+1 + Un+1
m,l−1

)

= (1− 2r)Un
m,l +

r

2

(
Un

m+1,l + Un
m−1,l

)
+

r

2

(
Un

m,l+1 + Un
m,l−1

)
.

(15.19)

To write down Eqs. (15.19) for all m and l in a compact form, we will need the following
notations:

A =




2r −r/2 0 · · 0
−r/2 2r −r/2 0 · 0
· · · · · ·
0 · 0 −r/2 2r −r/2
0 · · 0 −r/2 2r




, ~U; l =




U1,l

U2,l

·
UM−2,l

UM−1,l




, (15.20)

and

~Bk =




(gk)1

(gk)2

·
·
(gk)M−1




, for k = 2, 3; ~bn
l =




(g0)
n
l + (g0)

n+1
l

0
·
0

(g1)
n
l + (g1)

n+1
l




. (15.21)

Using these notations, one can recast Eq. (15.19) in a matrix form. Namely, for l = 2, . . . , L−2
(i.e. for layers with constant y and which are not adjacent to the boundaries), Eq. (15.19)
becomes:

(I + A)~Un+1
; l − r

2
I ~Un+1

; l+1 −
r

2
I ~Un+1

; l−1 = (I − A)~Un
; l +

r

2
I ~Un

; l+1 +
r

2
I ~Un

; l−1 +
r

2
~bn

l , (15.22)

where I is the (M − 1)× (M − 1) identity matrix. Note that Eq. (15.22) is analogous to Eq.
(13.9), although the meanings of notation A is different in these two equations. Continuing,
for the layer with l = 1 one obtains:

(I + A)~Un+1
; l − r

2
I ~Un+1

; l+1 −
r

2
~Bn+1

2 = (I − A)~Un
; l +

r

2
I ~Un

; l+1 +
r

2
~Bn

2 +
r

2
~bn

l . (15.23)

The equation for l = L− 1 has a similar form. Combining now all these equations into one, we
obtain:

(I +A)~Un+1 = (I − A)~Un + Bn, (15.24)

where ~U has been defined in (15.8), I is the [(M−1)(L−1)]× [(M−1)(L−1)] identity matrix,
and

A =




A − r
2
I O · · O

− r
2
I A − r

2
I O · O

· · · · · ·
O · O − r

2
I A − r

2
I

O · · O − r
2
I A




, Bn =
r

2




~Bn
2 + ~Bn+1

2 + ~bn
1

~bn
2

·
~bn

L−2

~Bn
3 + ~Bn+1

3 + ~bn
L−1




. (15.25)

26Recall our convention to use notations Uml and Um,l interchangeably.



MATH 337, by T. Lakoba, University of Vermont 147

In (15.25), O stands for the (M − 1) × (M − 1) zero matrix; hopefully, the use of the same
character here and in the O-symbol (e.g., O(h2)) will not cause any confusion.

Now, the [(M − 1)(L − 1)] × [(M − 1)(L − 1)] matrix A in (15.25) is block-tridiagonal,
but not tridiagonal. Namely, it has only 5 nonzero diagonals or subdiagonals, but the outer
subdiagonals are not located next to the inner subdiagonals but separated from them by a band
of zeros, with the band’s width being (M − 2). Thus, the total width of the central nonzero
band in matrix A is 2(M − 2) + 3. Inverting such a matrix is not a computationally efficient
process in the sense that it will require not O(ML), but O(ML)2 or O(ML)3 operations. In
other words, the number of operations required to solve Eq. (15.25) is much greater than the
number of unknowns.27

Let us summarize what we have established about the CN method (15.17) for the 2D Heat
equation. The method: (i) has accuracy O(κ2 + h2), (ii) is unconditionally stable, but (iii)
requires much more operations per time step than the number of unknown variables. We are
satisfied with features (i) and (ii), but not with (iii). In the remainder of this Lecture, we will
be concerned with constructing methods that do not have the deficiency stated in (iii). For
reference purposes, we will now repeat the properties that we want our “dream scheme” to
have.

In order to be considered computationally efficient, the scheme:

(i) must have accuracy O(κ2 + h2) (or better);

(ii) must be unconditionally stable;

(iii) must require the number of operations per time step
that is proportional to the number of the unknowns.

(15.26)

In the next subsection, we will set the ground for obtaining such schemes.

15.4 Derivation of a computationally efficient scheme

In this section, we will derive a scheme which we will use later on to obtain methods that
satisfy all the three conditions (15.26). Specifically, we pose the problem as follows: Find a
scheme that (a) reduces to the Crank-Nicolson scheme (13.6) in the case of the one-dimensional
Heat equation and (b) has the same order of truncation error, i.e. O(κ2 + h2); or, in other
words, satisfies property (i) of (15.26). Of course, there are many (probably, infinitely many)
such schemes. A significant contribution by computational scientists in the 1950’s was finding,
among those schemes, the ones which are unconditionally stable (property (ii)) and could be
implemented in a time-efficient manner (property (iii)). In the remainder of this section, we

27One might have reasoned that, since A in (15.25) is block-tridiagonal, then one could solve Eq. (15.24) by
the block-Thomas algorithm. This well-known generalization of the Thomas algorithm presented in Lecture 8
assumes that the coefficients ak, bk, ck and αk, βk in (8.18) and (8.19) are (M − 1)× (M − 1) square matrices.
Then formulae (8.21)–(8.23) of the Thomas algorithm are straightforwardly generalized by assigning the matrix
sense to all the operations in those formulae.

However, this naive idea of being able to solve (15.24) by the block-Thomas algorithm does not work. Indeed,
consider the defining equation for α2 in (8.21). It involves β−1

1 . While matrix β1 = b1 is tridiagonal, its inverse
β−1

1 is full. Hence α2 is also a full matrix. Then by the last equation in (8.21), all subsequent βk’s are also
full matrices. But then finding the inverse of each βk in (8.21)–(8.23) would require O(M3) operations, and
this would have to be repeated O(L) times. Thus, the total operation count in this naive approach is O(M3L),
which renders the approach computationally inefficient.



MATH 337, by T. Lakoba, University of Vermont 148

will concentrate on the derivation of a scheme, alternative to (15.17), that has property (i).
We postpone the discussion of implementation of that scheme, as well as demonstration of the
unconditional stability of such implementations, until the next section.

Since we want to obtain a scheme that reduces to the Crank-Nicolson method for the
one-dimensional Heat equation, it is natural to start with its naive 2D generalization, scheme
(15.17). Now, note the following: When applied to the solution of the discretized equation,
operators 1

κ
δt,

1
h2 δ

2
x, and 1

h2 δ
2
y (see (15.9)) produce quantities of order O(1) (that is, not O(κ),

O(κ−1), or anything else):

δ2
x

h2
Un

ml = O(1),
δt

κ
Un

ml = O(1),
δt

κ

δ2
x

h2
Un

ml = O(1), etc. (15.27)

Before we proceed with the derivation, we will pause and make a number of comments about
handling operators in equations. Note that the operators mentioned before (15.27) are simply
the discrete analogues of the continuous operators ∂/∂t, ∂2/∂x2, and ∂2/∂y2, respectively. In
the discrete case, the latter two operators become matrices; for example, in the one-dimensional
case, operator δ2

x coincides with matrix A in (13.10)28. Therefore, when reading about, or
writing yourself, formulae involving operators (which you will have to do extensively in the
remainder of this Lecture), think of the latter as matrices. From this simple observation there
follows an important practical conclusion: If a formula involves a product of two oper-
ators, the order of the operators in the product must not be arbitrarily changed,
because different operators, in general, do not commute. This is completely analogous
to the fact that for two matrices A and B,

AB 6= BA in general.

(But, of course,
A + B = B + A,

and the same is true about any two operators.)
We conclude this detour about operator notations with two remarks.

Remark 1 One can show that operators δ2
x and δ2

y actually do commute, as do their continuous
prototypes. However, we will not use this fact in our derivation, so that the latter remains valid
for more general operators that do not necessarily commute.
Remark 2 Any two operators, which are (arbitrary) functions of the same primordial operator,
commute. That is, if O is any operator and f(·) and g(·) are any two functions, then

f(O) g(O) = g(O) f(O) . (15.28)

For example, (
a + bδ2

x

) (
c + dδ2

x

)
=

(
c + dδ2

x

) (
a + bδ2

x

)
(15.29)

for any scalars a, b, c, d.

We now return to the derivation of a suitable modification of (15.17). From (15.27) it follows
that

δ2
x

h2

δ2
y

h2

δt

κ
Un

ml = O(1), and so, for instance,
κ2

4

δ2
x

h2

δ2
y

h2

Un+1
ml − Un

ml

κ
= O(κ2) . (15.30)

28In the two-dimensional case, the matrices for δ2
x and δ2

y are more complicated and depend on the order in
which the grid points are arranged into the vector ~U. Fortunately for us, we will not require the corresponding
explicit forms of δ2

x and δ2
y.



MATH 337, by T. Lakoba, University of Vermont 149

The accuracy of scheme (15.17) is O(κ2 + h2), and therefore we can add to it any term of
the same order without changing the accuracy of the scheme. Let us use this observation and
add the term appearing on the l.h.s. of the second equation in (15.30) to the l.h.s. of scheme
(15.17), whose both sides are divided by κ. The result is:

Un+1
ml − Un

ml

κ
+

κ2

4

δ2
x

h2

δ2
y

h2

Un+1
ml − Un

ml

κ
=

1

2h2

(
δ2
x + δ2

y

) (
Un+1

ml + Un
ml

)
. (15.31)

Note that scheme (15.31) still has the accuracy O(κ2 + h2).
Next, we rewrite the last equation in the equivalent form:

(
1− r

2
δ2
x −

r

2
δ2
y +

r

2
δ2
x

r

2
δ2
y

)
Un+1

ml =
(
1 +

r

2
δ2
x +

r

2
δ2
y +

r

2
δ2
x

r

2
δ2
y

)
Un

ml . (15.32)

The operator expressions on both sides of the above equation can be factored, resulting in

(
1− r

2
δ2
x

) (
1− r

2
δ2
y

)
Un+1

ml =
(
1 +

r

2
δ2
x

) (
1 +

r

2
δ2
y

)
Un

ml . (15.33)

Note that when factoring the operator expressions, we did not change the order of operators in
their product.

Scheme (15.33) is the main result of this section. In the next section, we will show how
this scheme can be implemented in a time-efficient manner. The methods that do so are called
the Alternating Direction Implicit (ADI) methods. Here we preview the basic idea common
to all of them. Namely, the computations are split in 2 (for the 2D case, and 3, for the 3D
case) steps. In the first step, one applies an implicit method in the x-direction and an explicit
method in the y-direction, producing an intermediate solution. The operations count for this
step is as follows: One needs to solve (L − 1) tridiagonal (M − 1) × (M − 1) systems; this
can be done with O(ML) operations. In the second step, one applies an implicit method in
the y-direction and an explicit method in the x-direction, which can also be implemented with
O(ML) operations. Hence the total operations count is also O(ML).

15.5 Alternating Direction Implicit methods

Peaceman–Rachford method

For this ADI method, the two steps mentioned at the end of the previous section are
implemented as follows:

(a) :
(
1− r

2
δ2
x

) ∗
Uml =

(
1 +

r

2
δ2
y

)
Un

ml ,

(b) :
(
1− r

2
δ2
y

)
Un+1

ml =
(
1 +

r

2
δ2
x

) ∗
Uml .

(15.34)

Let us first show that this method is equivalent to (15.33). This will imply that it satisfies
property (i) of the “dream scheme” conditions (15.26). Indeed, let us apply the operator

(
1− r

2
δ2
x

)



MATH 337, by T. Lakoba, University of Vermont 150

to both sides of (15.34b). Then we obtain the following sequence of equations:

(
1− r

2
δ2
x

) (
1− r

2
δ2
y

)
Un+1

ml =
(
1− r

2
δ2
x

) (
1 +

r

2
δ2
x

) ∗
Uml

(15.29)
=

(
1 +

r

2
δ2
x

) (
1− r

2
δ2
x

) ∗
Uml

(15.34a)
=

(
1 +

r

2
δ2
x

) (
1 +

r

2
δ2
y

)
Un

ml, (15.35)

which proves that (15.34) is equivalent to (15.33).
It is easy to see that the Peaceman–Rachford method (15.34) possesses property (iii) of

(15.26), i.e. is computationally efficient. Indeed, in order to compute each of the L − 1 sub-
vectors

~∗
U; l =

[ ∗
U1,l,

∗
U2,l . . . ,

∗
UM−2,l,

∗
UM−1,l

]T

, (15.36)

of the intermediate solution
∗
Uml, one needs to solve a tridiagonal (M−1)×(M−1) system given

by Eq. (15.34a) for each l. Thus, the step described by (15.34a) requires O(ML) operations.
Specifically, for l = 2, . . . , L− 2 (i.e. away from the boundaries), such a system has the form

(
1− r

2
δ2
x

) ~∗
U; l = ~Un

; l +
r

2

[
~Un

; l+1 − 2~Un
; l + ~Un

; l−1

]
, 2 ≤ l ≤ L− 2 , (15.37)

where ~Un
; l is defined in (15.20). The counterpart of (15.37) for the boundary rows (with l = 1

and l = L − 1) will be given in the next section. Continuing, the operator δ2
x in (15.37) is an

(M −1)× (M −1) tridiagonal matrix, whose specific form depends on the boundary conditions
and will be discussed in the next section. Note that the operator δ2

y on the r.h.s. of (15.34a) is
not a matrix. Indeed, if it were a matrix, it would have been (L − 1) × (L − 1), because the
discretization along the y-direction contains L− 1 inner (i.e. non-boundary) points. However,
it would then have been impossible to multiply such a matrix with the (M − 1)-component
vectors ~Un

; l. Therefore, in (15.34a), δ2
y is interpreted not as a matrix but as the operation of

addition and subtraction of vectors ~Un
; l, as shown on the r.h.s. of (15.37).

Similarly, after all components of the intermediate solution have been determined, it remains
to solve (M − 1) equations (15.34b) for the unknown vectors

~Um; = [Um,1, Um,2 . . . , Um,L−2, Um,L−1]
T , m = 1, . . . , M − 1 . (15.38)

Each of these equations is an (L− 1)× (L− 1) tridiagonal system of the form

(
1− r

2
δ2
y

)
~Un+1

m; =
~∗
Um; +

r

2

[
~∗
Um+1; − 2

~∗
Um; +

~∗
Um−1;

]
, 1 ≤ m ≤ M − 1 , (15.39)

where
~∗
Um; are defined similarly to ~Um; . Note that now the interpretations of operators δ2

x and
δ2
y have interchanged. Namely, the δ2

y on the l.h.s. of (15.39) is an (L − 1) × (L − 1) matrix,
while the δ2

x has to be interpreted as an operation of addition and subtraction of (L − 1)-

component vectors
~∗
Um;. The solution of M − 1 tridiagonal systems (15.39), and hence the

implementation of step (15.34b), requires O(ML) operations, and thus the total operations
count for the Peaceman–Rachford method is O(ML).



MATH 337, by T. Lakoba, University of Vermont 151

Finally, it remains to show that the Peaceman–Rachford method is unconditionally stable,
i.e. has property (ii) of (15.26). This can be done as follows. Equations (15.34) have constant
(in x and y) coefficients and hence their solution can be sought in the form:

Un
ml = ρn eiβmh eiγlh ,

∗
Uml=

∗
ρ ρn eiβmh eiγlh . (15.40)

Substituting (15.40) into (15.34) and using (15.12) and (15.13), one obtains:

∗
ρ=

1− Y

1 + X
,

ρ =
∗
ρ ·1−X

1 + Y
=

1−X

1 + X
· 1− Y

1 + Y
,

(15.41)

where we have introduced two more shorthand notations:

X = 2r sin2 βh

2
, Y = 2r sin2 γh

2
. (15.42)

From the second of Eqs. (15.41) it follows that |ρ| ≤ 1 for all harmonics (i.e., for all β and γ),
because ∣∣∣∣

1−X

1 + X

∣∣∣∣ ≤ 1 for all X ≥ 0. (15.43)

This shows that the Peaceman–Rachford method for the 2D Heat equation is unconditionally
stable. Altogether, the above has shown that this method satisfies all the three conditions
(15.26) of a “dream scheme”.

A drawback of the Peaceman–Rachford method is that its generalization to 3 spatial dimen-
sions is no longer unconditionally stable. Below we provide a sketch of proof of this statement.

For the 3D Heat equation
ut = uxx + uyy + uzz, (15.44)

the generalization of the Peaceman–Rachford method is:

(a) :
(
1− r

3
δ2
x

) ∗
Umlj =

(
1 +

r

3
δ2
y +

r

3
δ2
z

)
Un

mlj ,

(b) :
(
1− r

3
δ2
y

) ∗∗
Umlj =

(
1 +

r

3
δ2
x +

r

3
δ2
z

) ∗
Umlj ,

(c) :
(
1− r

3
δ2
z

)
Un+1

mlj =
(
1 +

r

3
δ2
x +

r

3
δ2
y

) ∗∗
Umlj ,

(15.45)

where δ2
z is defined similarly to δ2

x and δ2
y . Substituting into (15.45) the ansätze

Un
mlj = ρn eiβmh eiγlh eiξjh ,

∗
Umlj=

∗
ρ ρn eiβmh eiγlh eiξjh ,

∗∗
Umlj=

∗∗
ρ ρn eiβmh eiγlh eiξjh ,

(15.46)
one obtains, similarly to (15.41):

ρ =

(
1− 2

3
(Y + Z)

) (
1− 2

3
(X + Z)

) (
1− 2

3
(X + Y )

)
(
1 + 2

3
X

) (
1 + 2

3
Y

) (
1 + 2

3
Z

) , (15.47)

where X and Y have been defined in (15.42) and Z is defined similarly. The amplification
factor (15.47) is not always less than 1 in magnitude. For example, when X, Y , and Z are all
large numbers (and hence r is large), the value of the amplification factor is ρ ≈ −8 (you will



MATH 337, by T. Lakoba, University of Vermont 152

be asked to verify this in a QSA), and hence the 3D Peaceman–Rachford method (15.45) is not
unconditionally stable.

An alternative ADI method that has an unconditionally stable generalization to 3 spatial
dimensions is described next.

Douglas method, a.k.a. Douglas–Gunn method29

The equations of this method are:

(a) :
(
1− r

2
δ2
x

) ∗
Uml =

(
1 +

r

2
δ2
x + rδ2

y

)
Un

ml ,

(b) :
(
1− r

2
δ2
y

)
Un+1

ml =
∗
Uml −r

2
δ2
y Un

ml .
(15.48)

Let us now demonstrate that all the three properties (15.26) hold for the Douglas method.
To demonstrate property (i), it is sufficient to show that (15.48) is equivalent to scheme

(15.33). One can do so following the idea(s) of (15.35); you will be asked to provide the details
in a homework problem.

To demonstrate property (ii), one proceeds similarly to the lines of (15.40) and (15.41).
Namely, substituting (15.40) into (15.48) and using Eqs. (15.12), (15.13), and (15.42), one
finds:

∗
ρ=

1−X − 2Y

1 + X
,

ρ =

∗
ρ +Y

1 + Y
=

1−X

1 + X
· 1− Y

1 + Y
.

(15.49)

Thus, the amplification factor for the Douglas method in 2D is the same as that factor of the
Peaceman–Rachford method, and hence the Douglas method is unconditionally stable in 2D.

Finally, property (iii) for the Douglas method is established in complete analogy with how
that was done for the Peaceman–Rachford method (see the text around Eqs. (15.36)–(15.39)).

Let us now show that the generalization of the Douglas method to 3D is also unconditionally
stable. The corresponding equations have the form:

(a) :
(
1− r

2
δ2
x

) ∗
Umlj =

(
1 +

r

2
δ2
x + rδ2

y + rδ2
z

)
Un

mlj ,

(b) :
(
1− r

2
δ2
y

) ∗∗
Umlj =

∗
Umlj −r

2
δ2
y Un

mlj ,

(c) :
(
1− r

2
δ2
z

)
Un+1

mlj =
∗∗
Umlj −r

2
δ2
z Un

mlj , .

(15.50)

Using the von Neumann analysis, one can show that amplification factor for (15.50) is

ρ = 1− 2(X + Y + Z)

(1 + X)(1 + Y )(1 + Z)
, (15.51)

so that, clearly, ρ ≤ 1. Using techniques from multivariable Calculus, it is easy to show that
also ρ ≥ −1, and hence the 3D Douglas method is unconditionally stable.

29This method was proposed by J. Douglas for the two- and three-dimensional Heat equation in [“On the
numerical integration of uxx + uyy = ut by implicit methods,” J. Soc. Indust. Appl. Math. 3 42–65 (1955)]
and in [“Alternating direction methods for three space variables,” Numerische Mathematik 4 41–63 (1962)]. A
general form of such methods was discussed by J. Douglas and J. Gunn in [“A general formulation of alternating
direction methods, I. Parabolic and hyperbolic problems,” Numerische Mathematik 6 428–453 (1964)].



MATH 337, by T. Lakoba, University of Vermont 153

To conclude this subsection, we mention two more methods for the 2D Heat equation.

D’yakonov method
The equations of this method are

(a) :
(
1− r

2
δ2
x

) ∗
Uml =

(
1 +

r

2
δ2
x

) (
1 +

r

2
δ2
y

)
Un

ml ,

(b) :
(
1− r

2
δ2
y

)
Un+1

ml =
∗
Uml .

(15.52)

One can show, similarly to how that was done for the Peaceman–Rachford and Douglas meth-
ods, that the D’yakonov method possesses all the three properties (15.26).

Fairweather-Mitchell scheme
This scheme is

(
1− θ0δ

2
x

) (
1− θ0δ

2
y

)
Un+1

ml =
(
1 + (1− θ0)δ

2
x

) (
1 + (1− θ0)δ

2
y

)
Un

ml ,

θ0 =
r

2
− 1

12
.

(15.53)

This scheme improves scheme (15.33) in the same manner in which the Crandall method
“(13.17)+(13.19)” for the 1D Heat equations improves the Crank-Nicolson method. Conse-
quently, its accuracy is O(κ2 + h4), and the scheme is stable. As far as implementing this
scheme in a time-efficient manner, this can be done straighforwardly by using suitable modifi-
cations of the Peaceman–Rachford or D’yakonov methods.

Generalizations
In Appendix 1 we will present two important generalizations.
First, we will take an another look at the Douglas method (15.48) and thereby observe its

relation to the predictor-corrector methods considered in Lecture 3 and to the IMEX methods
mentioned in Lecture 14.

Second, we will show how one can construct an unconditionally stable method whose global
error is of the order O(κ2 + h2), for a parabolic-type equation with a mixed derivative term,
e.g.:

ut = a(xx)uxx + a(xy)uxy + a(yy)uyy ; (15.54)

here a(xx) etc. are coefficients, and the term with the mixed derivatives is underlined. Our
construction will utilize the first generalization considered in Appendix 1. It is worth pointing
out that construction of a scheme with aforementioned properties for (15.54) was not a trivial
problem. This is attested by the fact that it was solved more than 30 years after the pioneering
works by Peaceman, Rachford, Douglas, and others on the Heat equation (15.1). The paper30

where this problem was solved, is posted on the course website.

A good reference on finite difference methods in two and three spatial dimensions is a book
by A.R. Mitchell and G.F. Griffiths, “The Finite Difference Method in Partial Differential
Equations” (Wiley, 1980).

30I.J.D. Craig and A.D. Sneyd, “An alternating-direction implicit scheme for parabolic equations with mixed
derivatives,” Computers and Mathematics with Applications 16(4), 341–350 (1988).



MATH 337, by T. Lakoba, University of Vermont 154

15.6 Boundary conditions for the ADI methods

Here we will show how to prescribe boundary conditions for the intermediate solution
∗
Uml

appearing in the ADI methods considered above. We will do so for the Dirichlet boundary
conditions (15.3) and (15.4) and for the Neumann boundary conditions

ux(0, y, t) = g0(y, t), ux(1, y, t) = g1(y, t), 0 ≤ y ≤ Y, t ≥ 0 ; (15.55)

uy(x, 0, t) = g2(x, t), uy(x, Y, t) = g3(x, t), 0 ≤ x ≤ 1, t ≥ 0 . (15.56)

The corresponding generalizations for the mixed boundary conditions (14.3) can be obtained
straightforwardly. Note that the counterpart of the matching conditions (15.5) between the
boundary conditions on one hand and the initial condition one the other, for the Neumann
boundary conditions has the form:

g0(y, 0) = (u0)x(0, y), g1(y, 0) = (u0)x(1, y),

g2(x, 0) = (u0)y(x, 0), g3(x, 0) = (u0)y(x, Y ) .
(15.57)

The counterpart of the requirement (15.6) that the boundary conditions match at the corners
of the domain follows from the relation uxy(x, y) = uyx(x, y) and has the form:

(g0)y(0, t) = (g2)x(0, t), (g0)y(Y, t) = (g3)x(0, t),

(g3)x(1, t) = (g1)y(Y, t), (g1)y(0, t) = (g2)x(1, t), for t > 0.
(15.58)

Peaceman–Rachford method

Dirichlet boundary conditions

Note that in order to solve Eq. (15.34a) for the
∗
Uml

with 1 ≤ {m, l} ≤ {(M−1), (L−1)}, one requires

the values of
∗
U0,l and

∗
UM,l with 1 ≤ l ≤ L−1. The

corresponding nodes are shown as open circles in
the figure on the right. Note that one does not need

the other boundary values,
∗
Um,0 and

∗
Um,L, to solve

(15.34b), because the l.h.s. of the latter equation
is only defined for 1 ≤ l ≤ L− 1. Hence, one does

not need (and cannot determine) the values
∗
Um,0

and
∗
Um,L in the Peaceman–Rachford method.

m=M

m=0

x y

g
2
 

g
0
 

g
1
 

g
3
 

Thus, how does one find the required boundary values
∗
U0,l and

∗
UM,l? To answer this

question, note that the term in (15.34a) that produces
∗
U0,l and

∗
UM,l is: r

2
δ2
x

∗
Uml (with m = 1

and m = M−1). Let us then eliminate this term using both Eqs. (15.34). The most convenient
way to do so is to rewrite these equations in an equivalent form:

(
1− r

2
δ2
x

) ∗
Uml =

(
1 +

r

2
δ2
y

)
Un

ml ,

(
1 +

r

2
δ2
x

) ∗
Uml =

(
1− r

2
δ2
y

)
Un+1

ml ,



MATH 337, by T. Lakoba, University of Vermont 155

and then add them. The result is:
∗
Uml=

1

2

(
Un

ml + Un+1
ml

)
+

r

4
δ2
y

(
Un

ml − Un+1
ml

)
. (15.59)

Now, this equation, unlike (15.34a), can be evaluated for m = 0 and m = M , yielding

∗
U{0,M}, l =

1

2

(
Un
{0,M}, l + Un+1

{0,M}, l

)
+

r

4
δ2
y

(
Un
{0,M}, l − Un+1

{0,M}, l

)

=
1

2

(
(g{0,1})

n
l + (g{0,1})

n+1
l

)
+

r

4
δ2
y

(
(g{0,1})

n
l − (g{0,1})

n+1
l

)
(15.60)

=
1

2

(
(g{0,1})

n
l + (g{0,1})

n+1
l

)
+

r

4
·

([
(g{0,1})

n
l+1 − 2(g{0,1})

n
l + (g{0,1})

n
l−1

]− [
(g{0,1})

n+1
l+1 − 2(g{0,1})

n+1
l + (g{0,1})

n+1
l−1

])

≡ (G{0,1})l ,

1 ≤ l ≤ L− 1 .

It is now time to complete the discussion about the implementations of operators r
2
δ2
x and

r
2
δ2
y in each of the equations (15.34). Recall that we started this discussion after Eq. (15.36),

but were unable to complete it then because we did not have the information about boundary
conditions. Let us begin with Eq. (15.34a). There, operator r

2
δ2
x is the following (M − 1) ×

(M − 1) matrix:
On the r.h.s. of (15.34a):

r

2
δ2
x =




−r r
2

0 · · 0
r
2
−r r

2
0 · 0

· · · · · ·
0 · 0 r

2
−r r

2

0 · · 0 r
2
−r




,
(15.61)

which has been obtained in analogy with matrix A in (13.10). Operator δ2
y should be interpreted

not as a matrix but as an operation of adding and subtracting (M − 1)-component vectors,
as was shown on the r.h.s. of (15.37). Below we present the generalization of (15.37) for the
boundary rows l = 1 and l = L− 1:

On the r.h.s. of (15.34a):

(
1 + r

2
δ2
y

)
~Un

; l = ~Un
; l + r

2

[
~Un

; l+1 − 2~Un
; l + ~Un

; l−1

]
, 2 ≤ l ≤ L− 2 ;

(
1 + r

2
δ2
y

)
~Un

; 1 = ~Un
; 1 + r

2

[
~Un

; 2 − 2~Un
; 1 + ~Bn

2

]
,

(
1 + r

2
δ2
y

)
~Un

; L−1 = ~Un
; L−1 + r

2

[
~Bn

3 − 2~Un
; L−1 + ~Un

; L−2

]
,

(15.62)

where ~B2 and ~B3 have been defined in (15.21). Note that the r.h.s. of (15.34a) also contains

terms contributed by
∗
U{0,M}, l, as we will explicitly show shortly.

In Eq. (15.34b), as has been mentioned earlier, the interpretations of δ2
x and δ2

y are reversed.
Namely, now r

2
δ2
y has the form given by the r.h.s. of (15.61); the dimension of this matrix is

(L− 1)× (L− 1). Operator δ2
x is implemented as was shown on the r.h.s. of (15.39); below we

show its form for completeness of the presentation:

On the r.h.s. of (15.34b):

(
1 + r

2
δ2
x

) ~∗
Um; =

~∗
Um; +

r

2

[
~∗
Um+1; − 2

~∗
Um; +

~∗
Um−1;

]
. 1 ≤ m ≤ M − 1 ;

(15.63)



MATH 337, by T. Lakoba, University of Vermont 156

Let us now summarize the above steps in the form of an algorithm.

Algorithm of solving the 2D Heat equation with Dirichlet boundary conditions
by the Peaceman–Rachford method:

The following steps need to be performed inside the loop over n (i.e., advancing in time).
Suppose that the solution has been computed at the nth time level.

Step 1 (set up boundary conditions):
Define the boundary conditions at the (n + 1)th time level:

U
(n+1)
{0, M}, l =

(
g{0, 1}

)(n+1)

l
, 0 ≤ l ≤ L; U

(n+1)
m, {0, L} =

(
g{2, 3}

)(n+1)

m
, 1 ≤ m ≤ M−1 . (15.64)

(Recall that the boundary conditions match at the corners; see (15.6).)
Next, determine the necessary boundary values of the intermediate solution:

∗
U{0,M}, l= (G{0,1})l , 1 ≤ l ≤ L− 1 , (15.65)

where (G{0,1})l are defined in (15.60).

Step 2:
For each l = 1, . . . , L− 1, solve the tridiagonal system

(
1− r

2
δ2
x

) ~∗
U; l = ~Un

; l +
r

2

[
~Un

; l+1 − 2~Un
; l + ~Un

; l−1

]
+

r

2

~∗
b; l ,

1 ≤ l ≤ L− 1,

(15.66)

where r
2
δ2
x is an (M − 1)× (M − 1) matrix of the form (15.61),

~∗
U; l =




∗
U1,l
∗
U2,l

·
∗
UM−2,l
∗
UM−1,l




, ~Un
; l =




Un
1,l

Un
2,l

·
Un

M−2,l

Un
M−1,l




,
~∗
b; l =




(G0)l

0
·
0

(G1)l




.




see
(15.20)

and
(15.36)




Note that ~Un
; 0 ≡ ~Bn

2 and ~Un
; L ≡ ~Bn

3 are determined from the boundary conditions on the nth
time level.

Thus, combining the results of (15.64), (15.65), and (15.66), one has the following values of
the intermediate solution:

∗
Um,l for 0 ≤ m ≤ M, 1 ≤ l ≤ L− 1 .

Step 3:
The solution Un+1

m,l with 1 ≤ {m, l} ≤ {M − 1, L− 1} is then determined from

(
1− r

2
δ2
y

)
~Un+1

m; =
~∗
Um; +

r

2

[
~∗
U

n

m+1 ; − 2
~∗
Um; +

~∗
Um−1 ;

]
+

r

2
~bn+1

m; ,

1 ≤ m ≤ M − 1.

(15.67)



MATH 337, by T. Lakoba, University of Vermont 157

Here r
2
δ2
y is the (L− 1)× (L− 1) matrix of the form (15.61), and

~∗
Um; =




∗
Um,1
∗
Um,2

·
∗
Um,L−2
∗
Um,L−1




, ~Un+1
m; =




Un+1
m,1

Un+1
m,2

·
Un+1

m,L−2

Un+1
m,L−1




, ~bn+1
m; =




(g2)
n+1
m

0
·
0

(g3)
n+1
m




. (15.68)

This completes the process of advancing the solution by one step in time.

Neumann boundary conditions

This case is technically more involved than the case of Dirichlet boundary conditions. There-
fore, here we only list the steps of the algorithm of advancing the solution from the nth to the
(n+1)st time level, while relegating the detailed derivation of these steps to Appendix 2. Also,
note that you will not need to use this algorithm in any of the homework problems. It is pre-
sented here so that you would be able to use it whenever you have to solve a problem of this
kind in your future career.

Algorithm of solving the 2D Heat equation with Neumann boundary conditions
by the Peaceman–Rachford method:

Step 1 (set up boundary conditions):
Given the solution Un

m,l with 0 ≤ {m, l} ≤ {M, L}, find the values at the virtual nodes, Un
−1,l

and Un
M+1,l with −1 ≤ l ≤ L + 1 and Un

m,−1 and Un
m,L+1 with 0 ≤ m ≤ M , from (15.94) and

(15.95) of Appendix 2:

Un
−1,l = Un

1,l − 2h(g0)
n
l , Un

M+1,l = Un
M−1,l + 2h(g1)

n
l , 0 ≤ l ≤ L ;

Un
m,−1 = Un

m,1 − 2h(g2)
n
m , Un

m,L+1 = Un
m,L−1 + 2h(g3)

n
m , 0 ≤ m ≤ M ;

(15.94)

Un
−1,−1 = Un

1,−1 − 2h(g0)
n
−1 , Un

M+1,−1 = Un
M−1,−1 + 2h(g1)

n
−1 ,

Un
−1,L+1 = Un

1,L+1 − 2h(g0)
n
L+1 , Un

M+1,L+1 = Un
M−1,L+1 + 2h(g1)

n
L+1 .

(15.95)

Define auxiliary functions given by (15.97) and (15.98) of Appendix 2, which will later be

used to compute the boundary values of the intermediate solution
∗
U :

For 0 ≤ l ≤ L:

(G0)l =
1

2

(
(g0)

n
l + (g0)

n+1
l

)
+

r

4

([
(g0)

n
l+1 − 2(g0)

n
l + (g0)

n
l−1

]− [
(g0)

n+1
l+1 − 2(g0)

n+1
l + (g0)

n+1
l−1

])
,

(15.97)

(G1)l =
1

2

(
(g1)

n
l + (g1)

n+1
l

)
+

r

4

([
(g1)

n
l+1 − 2(g1)

n
l + (g1)

n
l−1

]− [
(g1)

n+1
l+1 − 2(g1)

n+1
l + (g1)

n+1
l−1

])
,

(15.98)

(Note that the form of G0 and G1 above is the same as in the case of the Dirichlet boundary
conditions — see (15.60), — although the meanings of g0 and g1 are different in these two
cases.)



MATH 337, by T. Lakoba, University of Vermont 158

Step 2:
For each 0 ≤ l ≤ L, solve the linear system, whose form follows from (15.92) and (15.99) of
Appendix 2: (

1− r

2
δ2
x

) ~∗
U; l = ~Un

; l +
r

2

[
~Un

; l+1 − 2~Un
; l + ~Un

; l−1

]
+

r

2

~∗
b; l ,

0 ≤ l ≤ L,

(15.69)

where r
2
δ2
x is an (M + 1)× (M + 1) matrix of the form




−r r 0 · · 0
r
2
−r r

2
0 · 0

· · · · · ·
0 · 0 r

2
−r r

2

0 · · 0 r −r




, (15.70)

(here the terms that differ from the corresponding matrix for Dirichlet boundary conditions are
included in the box),

~∗
U; l =




∗
U0,l
∗
U1,l

·
∗
UM−1,l
∗
UM,l




, ~Un
; l =




Un
0,l

Un
1,l

·
Un

M−1,l

Un
M,l




,
~∗
b; l =




−2h(G0)l

0
·
0

2h(G1)l




, (15.71)

and G0 and G1 are defined in (15.97) and (15.98) (see above and in Appendix 2).
Having thus determined the following values of the intermediate solution:

∗
Um,l for 0 ≤ {m, l} ≤ {M,L},

find the values ∗
U−1,l and

∗
UM+1,l for 0 ≤ l ≤ L

from (15.97) and (15.98) of Appendix 2:

∗
U−1,l=

∗
U1,l −2h(G0)l, 0 ≤ l ≤ L, (15.97′)

∗
UM+1,l=

∗
UM−1,l +2h(G1)l, 0 ≤ l ≤ L. (15.98′)

Thus, upon completing Step 2, one has the following values of the intermediate solution

∗
Um,l for −1 ≤ m ≤ M + 1 and 0 ≤ l ≤ L,

which are shown in Appendix 2 to be necessary and sufficient to find the solution on the (n+1)st
time level.

Step 3:
The solution at the new time level, Un+1

m,l with 0 ≤ {m, l} ≤ {M,L}, is determined from
(15.85), (15.88), and (15.89) of Appendix 2, which constitute the following (L + 1) × (L + 1)
linear systems for each of the m = 0, . . . , M :

(
1− r

2
δ2
y

)
~Un+1

m; =
~∗
Um; +

r

2

[
~∗
U

n

m+1 ; − 2
~∗
Um; +

~∗
Um−1 ;

]
+

r

2
~bn+1

m; ,

0 ≤ m ≤ M.

(15.72)



MATH 337, by T. Lakoba, University of Vermont 159

Here r
2
δ2
y is the (L + 1)× (L + 1) matrix of the form (15.70), and

~∗
Um; =




∗
Um,0
∗
Um,1

·
∗
Um,L−1
∗
Um,L




, ~Un+1
m; =




Un+1
m,0

Un+1
m,1

·
Un+1

m,L−1

Un+1
m,L




, ~bn+1
m; =




−2h(g2)
n+1
m

0
·
0

2h(g3)
n+1
m




. (15.73)

This completes the process of advancing the solution by one step in time.

We conclude this subsection with the counterparts of Eq. (15.60) for the Douglas and
D’yakonov methods. You will be asked to derive these results in a homework problem. We
will not state any results for Neumann boundary conditions for the Douglas and D’yakonov
methods.

Douglas method

The Dirichlet boundary conditions for the intermediate solution
∗
U have the form:

∗
U{0,M},l= Un+1

{0,M},l +
r

2
δ2
y

(
Un
{0,M},l − Un+1

{0,M},l

)
, 1 ≤ l ≤ L− 1 . (15.74)

D’yakonov method

The Dirichlet boundary conditions for the intermediate solution
∗
U have the form:

∗
U{0,M},l=

(
1− r

2
δ2
y

)
Un+1
{0,M},l , 1 ≤ l ≤ L− 1 . (15.75)

15.7 Appendix 1: A generalized form of the ADI methods, and
a second-order ADI method for the parabolic equation with
mixed derivatives, Eq. (15.54)

A brief preview of this section was done at the end of Section 15.5. The presentation below is
based on the papers by K.J. in ’t Hout and B.D. Welfert, “Stability of ADI schemes applied to
convection-diffusion equations with mixed derivative terms,” Applied Numerical Mathematics
57, 19–35 (2007) and by I.J.D. Craig and A.D. Sneyd, “An alternating-direction implicit scheme
for parabolic equations with mixed derivatives,” Computers and Mathematics with Applications
16(4), 341–350 (1988). Both papers are posted on the course website.

Let us begin by writing a general form of the equation that included the Heat equation
(15.1) as a special case:

ut = F ≡ F (0) + F (1) + F (2) , (15.76)

where F (1) and F (2) are terms that contain only the derivatives of u with respect to x and y,
respectively, and F (0) contains all other terms (e.g., nonlinear or with mixed derivatives). For
example, in (15.54),

F (0) = a(xy)(x, y)uxy, F (1) = a(xx)(x, y)uxx, F (2) = a(yy)(x, y)uyy .



MATH 337, by T. Lakoba, University of Vermont 160

Next, note that the Douglas method (15.48), which we repeat here for the reader’s conve-
nience: (

1− r

2
δ2
x

) ∗
Uml =

(
1 +

r

2
δ2
x + rδ2

y

)
Un

ml ,

(
1− r

2
δ2
y

)
Un+1

ml =
∗
Uml −r

2
δ2
y Un

ml ,
(15.48)

can be written in an equivalent, but different form:

W (0) = Un + rδ2
xU

n + rδ2
yU

n,

W (1) = W (0) +
1

2
(rδ2

xW
(1) − rδ2

xU
n),

W (2) = W (1) +
1

2
(rδ2

yW
(2) − rδ2

yU
n),

U (n+1) = W (2) .

(15.77)

Here, for brevity, we have omitted the subscripts {m, l} in Un
m,l etc. The correspondence of

notations of (15.48) and (15.77) is:

W
(1)
(15.77) =

∗
U (15.48) .

In the notations introduced in (15.76), this can be written as

W (0) = Un + κF (Un),

W (k) = W (k−1) +
1

2
κ
(
F (k)(W (k))− F (k)(Un)

)
, k = 1, 2;

U (n+1) = W (2) .

(15.78)

Recall that F used in the first equation above is defined in (15.76).
Let us make two observations about scheme (15.78). First, it can be interpreted as a

predictor-corrector method, which we considered in Lecture 3. Indeed, the first equation in
(15.78) predicts the value of the solution at the next time level by the simple Euler method.
The purpose of each of the subsequent steps is to stabilize the predictor step by employing an
implicit modified Euler step in one particular direction (i.e., along either x or y). Indeed, if
we set F (0) = F (2) = 0 in (15.76), then (15.78) reduces to the implicit modified Euler method.
You will be asked to verify this in a QSA.

Second, (15.78) is seen to be closely related to the IMEX family of methods; see scheme
(14.51) in Lecture 14.

For F (0) 6= 0, method (15.78) has accuracy O(κ+h2) (for F (0) = 0, its accuracy is O(κ2+h2),
as we know from the discussion of the Douglas method in Section 15.5). It is of interest and
of considerable practical significance to construct an extension of this scheme that would have
accuracy O(κ2 + h2) even when F (0) 6= 0. Two such schemes were presented in the paper by
in ’t Hout and Welfert, who generalized schemes presented earlier by other researchers. The
first scheme is:

W (0) = Un + κF (Un),

W (k) = W (k−1) +
1

2
κ
(
F (k)(W (k))− F (k)(Un)

)
, k = 1, 2;

V (0) = W (0) +
1

2
κ
(
F (0)(W (2))− F (0)(Un)

)
,

V (k) = V (k−1) +
1

2
κ
(
F (k)(V (k))− F (k)(Un)

)
, k = 1, 2;

U (n+1) = V (2) .

(15.79)



MATH 337, by T. Lakoba, University of Vermont 161

After one round of prediction and correction, accomplished by the first two lines of this scheme,
it proceeds to do another round of prediction and correction, given by the third and fourth lines.
It appears that it is this second round that brings the accuracy of the scheme up to the order
O(κ2). Intuitively, the reason why this is so can be understood by making an analogy of these
two rounds with the two steps of the modified explicit Euler method. Specifically, in a QSA
you will be asked to show that the scheme (15.79) with F (1) = F (2) = 0 reduces to the modified
explicit Euler method.

The second scheme proposed by in ’t Hout and Welfert is obtained from (15.79) by replacing
F (0) in its third line by F .

Stability of the above schemes, as well as of the generalized Douglas scheme (15.78), has
been investigated by in ’t Hout and Welfert. In particular, they showed that schemes (15.78)
and (15.79) are unconditionally stable for the so-called convection-diffusion equation

ut = c(x)ux + c(y)uy + a(xx)uxx + a(xy)uxy + a(yy)uyy, (15.80)

where all the coefficients may depend on x and y, and the quadratic form a(xx)x2 + a(xy)xy +
a(yy)y2 is positive definite. The third scheme, mentioned after (15.79), can also be made
unconditionally stable upon replacing the coefficient 1/2 in the second and fourth lines by any
number θ ≥ 3/4.

Below we will specify scheme (15.79) for the case of equation (15.80) with c(x) = c(y) = 0:

W (0) = Un + r
(
a(xx)δ2

x + a(xy)δxy + a(yy)δ2
y

)
Un,

(
1− 1

2
ra(xx)δ2

x

)
W (1) = W (0) − 1

2
ra(xx)δ2

xU
n,

(
1− 1

2
ra(yy)δ2

y

)
W (2) = W (1) − 1

2
ra(yy)δ2

yU
n,

V (0) = W (0) +
1

2
r
(
a(xy)δxyW

(2) − a(xy)δxyU
n
)
,

(
1− 1

2
ra(xx)δ2

x

)
V (1) = V (0) − 1

2
ra(xx)δ2

xU
n,

(
1− 1

2
ra(yy)δ2

y

)
U (n+1) = V (1) − 1

2
ra(yy)δ2

yU
n .

(15.81)

Here all the coefficients are evaluated at node (m, l), and the mixed-derivative operator is:

δxyUm,l =
1

4h2

(
Um+1,l+1 + Um−1,l−1 − Um−1,l+1 − Um+1,l−1

)
. (15.82)

Scheme (15.81) was originally proposed by Craig and Sneyd in their paper cited above.
There, it was given by their Eq. (7) in more condensed notations, which we will write as:

(
1− 1

2
ra(xx)δ2

x

)(
1− 1

2
ra(yy)δ2

y

)
W (2) =

(
1 +

1

2
ra(xx)δ2

x

)(
1 +

1

2
ra(yy)δ2

y

)
Un + ra(xy)δxyU

n,

(
1− 1

2
ra(xx)δ2

x

)(
1− 1

2
ra(yy)δ2

y

)
Un+1 =

(
1 +

1

2
ra(xx)δ2

x

)(
1 +

1

2
ra(yy)δ2

y

)
Un

+
1

2
ra(xy)δxy

(
W (2) + Un

)
.

(15.83)
In order to turn the Graig–Sneyd scheme (15.81) into a practical algorithm, one needs to

specify what boundary conditions for its auxiliary variables are needed and how those can



MATH 337, by T. Lakoba, University of Vermont 162

be found. I have been unable to find an answer to this question in the published literature;
therefore below I present my own answer. Let us start at the first line of (15.81). Its left-hand
side can be computed only at the interior grid points, i.e., for 1 ≤ m ≤ M−1 and 1 ≤ l ≤ L−1,
since the calculation of the terms on the right-hand side requires boundary values of Un along
the entire perimeter of the computational domain. Next, to determine W (1) in the second line,
we need its boundary values W

(1)
{0,M}, l for 1 ≤ l ≤ L − 1. Those can be found from the third

line with m = 0 and m = M if one knows the boundary values W
(2)
{0,M}, l for all l, i.e., for

0 ≤ l ≤ L. Thus, we focus on specifying or finding these latter boundary values. It turns out
that one cannot find them. Indeed, the fourth line of (15.81) does not provide any information

about W
(2)
{0,M}, l but rather, to aggravate the matters, requires the values W

(2)
m, {0,L} at the other

boundary in order to compute δ2
xyW

(2) for all interior points 1 ≤ m ≤ M − 1, 1 ≤ l ≤ L − 1.
One can also verify that none of these boundary values can be computed if we start from the
last line of (15.81), either. Thus, the only option remains to specify the values of W (2) along
the entire perimeter of the computational domain.

This option is consistent with the form (15.83) of the Craig–Sneyd scheme. Indeed, then
the first line of that scheme is nothing but the inhomogeneous version of (15.33) (with the
inhomogeneity being the δxyU

n-term), and we know that to solve it, the boundary values of
the variable on the left-hand side must be specified.

The way to specify the boundary values of W (2) appears to be to let them equal those of
Un+1:

W
(2)
{0,M}, l = Un+1

{0,M}, l , 0 ≤ l ≤ L;

W
(2)
m, {0,L} = Un+1

m, {0,L} , 1 ≤ m ≤ M − 1.
(15.84)

To see that, let the mixed-derivative term in (15.81) vanish: a(xy) = 0. Then from the fourth
line of that scheme, V (0) = W (0), and then W (2) simply coincides with Un+1 at all nodes.

To summarize, we list the steps of implementing the algorithm (15.81), (15.84) into a code.

Step 1: Define the boundary values Un+1
{0,M}, l and W

(2)
{0,M}, l for 0 ≤ l ≤ L. Next, compute the

boundary values V
(1)
{0,M}, l and W

(1)
{0,M}, l for 1 ≤ l ≤ L−1 from the last and third lines of (15.81),

respectively.

Step 2: Define the boundary values Un+1
m, {0,L} and W

(2)
m, {0,L} for 1 ≤ m ≤ M − 1.

Step 3: Find the variables on the left-hand sides of the first two lines of (15.81). This can be

done because the required boundary values of W (1) have been computed in Step 1.

Step 4: Find W (2) at all the interior points from the third line of (15.81). This can be done

because the required boundary values of W (2) have been defined in Step 2.

Step 5: Find the variables on the left-hand sides of the fifth and sixth lines of (15.81). This

can be done because the required boundary values of V (1) have been computed in Step 1 and
the required boundary values of W (2) have been defined in Steps 1 and 2.

Step 6: Find Un+1 at all the interior points from the last line of (15.81). This can be done
because the required boundary values have been defined in Step 2.

Generalization of the Craig–Sneyd scheme (15.81) to three spatial dimensions is straight-
forward. Craig and Sneyd also generalized it to a system of coupled equations of the form
(15.80); see “An alternating direction implicit scheme for parabolic systems of partial differen-
tial equations,” Computers and Mathematics with Applications 20(3), 53–62 (1990). Also, in ’t



MATH 337, by T. Lakoba, University of Vermont 163

Hout and Welfert published a follow-up paper to their paper cited above; it is: “Unconditional
stability of second-order ADI schemes applied to multi-dimensional diffusion equations with
mixed derivative terms,” Applied Numerical Mathematics 59, 677–692 (2009). There, they
consider a more restricted class of equations than (15.80) (diffusion only, no convection), but in
exchange are able to prove unconditional stability of a certain scheme in any number of spatial
dimensions. This has applications in, e.g., financial mathematics.

15.8 Appendix 2: Derivation of the Peaceman–Rachford algorithm
for the 2D Heat equation with Neumann boundary conditions

In order for you to understand the details of this derivation better, it is recommended that you
first review the corresponding derivation for the Crank-Nicolson method in Sec. 14.1, since it
is that derivation on which the present one is based. It should also help you to draw a single
time level and refer to that drawing throughout the derivation.

We begin by determining which boundary values of the intermediate solution
∗
U are required

to compute the solution Un+1
ml , 0 ≤ {m, l} ≤ {M, L} at the new time level. To that end, let us

write down Eq. (15.34b) in a detailed form:

Un+1
m,l −

r

2

[
Un+1

m,l+1 − 2Un+1
m,l + Un+1

m,l−1

]
=

∗
Um,l +

r

2

[ ∗
Um+1,l −2

∗
Um,l +

∗
Um−1,l

]
. (15.85)

We need to determine the solution on the l.h.s. for 0 ≤ {m, l} ≤ {M, L}. First, we note that
we can set l = 0 in (15.85) despite the fact that Un+1

m,−1 will then appear in the last term on the
l.h.s., and that value is not part of the solution. To eliminate that value, we use the boundary
condition at y = 0:

Un+1
m,1 − Un+1

m,−1

2h
= (g2)

n+1
m , ⇒ Un+1

m,−1 = Un+1
m,1 − 2h(g2)

n+1
m , 0 ≤ m ≤ M . (15.86)

Similarly, at y = Y , we have

Un+1
m,L+1 − Un+1

m,L−1

2h
= (g3)

n+1
m , ⇒ Un+1

m,L+1 = Un+1
m,L−1 + 2h(g3)

n+1
m , 0 ≤ m ≤ M . (15.87)

Therefore, Eq. (15.85) for l = 0 and l = L is replaced by the respective equations:

Un+1
m,0 −

r

2

[
2Un+1

m,1 − 2Un+1
m,0 − 2h(g2)

n+1
m

]
=

∗
Um,0 +

r

2

[ ∗
Um+1,0 −2

∗
Um,0 +

∗
Um−1,0

]
; (15.88)

Un+1
m,L −

r

2

[
2h(g3)

n+1
m − 2Un+1

m,L + 2Un+1
m,L−1

]
=

∗
Um,L +

r

2

[ ∗
Um+1,L −2

∗
Um,L +

∗
Um−1,L

]
. (15.89)

Thus, in order to determine from (15.85), (15.88), and (15.89) the solution Un+1
m,l for all 0 ≤

{m, l} ≤ {M, L}, we will need to know

∗
Um,l for −1 ≤ m ≤ M + 1 and 0 ≤ l ≤ L. (15.90)

The difficulty that we need to overcome is the determination of the boundary values

∗
U−1,l and

∗
UM+1,l for 0 ≤ l ≤ L. (15.91)



MATH 337, by T. Lakoba, University of Vermont 164

Now let us see which of the values
∗
Um,l we can determine directly from (15.34a). To that

end, let us write down that equation in a detailed form, similarly to (15.85):

∗
Um,l −r

2

[ ∗
Um+1,l −2

∗
Um,l +

∗
Um−1,l

]
= Un

m,l +
r

2

[
Un

m,l+1 − 2Un
m,l + Un

m,l−1

]
. (15.92)

From this equation, we see that in order to determine the values required in (15.90), we need
to know

Un
ml for −1 ≤ m ≤ M + 1 and −1 ≤ l ≤ L + 1. (15.93)

While those values for 0 ≤ {m, l} ≤ {M,L} are known from the solution on the nth time level,
the values Un

m,l for {m, l} = −1 and {m, l} = {M + 1, L + 1} are not, and hence they need to
be found from the boundary conditions. This is done similarly to (15.86) and (15.87):

Un
−1,l = Un

1,l − 2h(g0)
n
l , Un

M+1,l = Un
M−1,l + 2h(g1)

n
l , 0 ≤ l ≤ L ;

Un
m,−1 = Un

m,1 − 2h(g2)
n
m , Un

m,L+1 = Un
m,L−1 + 2h(g3)

n
m , 0 ≤ m ≤ M .

(15.94)

Once the values in (15.94) have been found, we determine the values at the corners:

Un
−1,−1 = Un

1,−1 − 2h(g0)
n
−1 , Un

M+1,−1 = Un
M−1,−1 + 2h(g1)

n
−1 ,

Un
−1,L+1 = Un

1,L+1 − 2h(g0)
n
L+1 , Un

M+1,L+1 = Un
M−1,L+1 + 2h(g1)

n
L+1 .

(15.95)

Note that the smoothness of the solution at the corners is ensured by the matching conditions
(15.58). Thus, with (15.94) and (15.95), we have all the values required in (15.93).

We now turn back to (15.92). From it, we see that with all the values (15.93) being known,
the l.h.s. of (15.92) can be determined from an (M + 1)× (M + 1) system of equations only if
we know the values in (15.91). To determine these values, we use Eq. (15.59) in the following
way: we subtract that equation with m → (m− 1) from the same equation with m → (m + 1)
and divide the result by (2h). For m = 0, this yields:

∗
U1,l −

∗
U−1,l

2h
=

1

2

(
Un

1,l − Un
−1,l

2h
+

Un+1
1,l − Un+1

−1,l

2h

)
+

r

4
·

([
Un

1,l+1 − Un
−1,l+1

2h
− 2

Un
1,l − Un

−1,l

2h
+

Un
1,l−1 − Un

−1,l−1

2h

]

+

[
Un

1,l+1 − Un
−1,l+1

2h
− 2

Un
1,l − Un

−1,l

2h
+

Un
1,l−1 − Un

−1,l−1

2h

])
,

for 0 ≤ l ≤ L.

(15.96)

If we can find each term on the r.h.s. of this equation, then we know the value of the term

on the l.h.s. and hence can determine
∗
U−1,l. But each of these terms can be found from the

boundary conditions! Upon this observation, (15.96) can be rewritten as follows:

∗
U1,l −

∗
U−1,l

2h
=

1

2

(
(g0)

n
l + (g0)

n+1
l

)
+

r

4
·

([
(g0)

n
l+1 − 2(g0)

n
l + (g0)

n
l−1

]

+
[
(g0)

n+1
l+1 − 2(g0)

n+1
l + (g0)

n+1
l−1

])
,

≡ (G0)l ,

for 0 ≤ l ≤ L.

(15.97)



MATH 337, by T. Lakoba, University of Vermont 165

Similarly,
∗
UM+1,l −

∗
UM−1,l

2h
=

1

2

(
(g1)

n
l + (g1)

n+1
l

)
+

r

4
·

([
(g1)

n
l+1 − 2(g1)

n
l + (g1)

n
l−1

]

+
[
(g1)

n+1
l+1 − 2(g1)

n+1
l + (g1)

n+1
l−1

])
,

≡ (G1)l ,

for 0 ≤ l ≤ L.

(15.98)

Using Eqs. (15.97) and (15.98), the linear systems given, for each l = 0, . . . , L, by Eqs. (15.92)
with 1 ≤ m ≤ M − 1, can be supplemented by the following equations for m = 0 and m = M :

∗
U0,l −r

2

[
2

∗
U1,l −2

∗
U0,l −2h(G0)l

]
= Un

0,l +
r

2

[
Un

0,l+1 − 2Un
0,l + Un

0,l−1

]
,

∗
UM,l −r

2

[
2h(G1)l − 2

∗
UM,l +2

∗
UM−1,l

]
= Un

M,l +
r

2

[
Un

M,l+1 − 2Un
M,l + Un

M,l−1

]
,

0 ≤ l ≤ L .

(15.99)

From (15.99) and the remaining equations in (15.92) one can determine

∗
Um,l for 0 ≤ {m, l} ≤ {M,L}, (15.100)

and the remaining values (15.91) are determined from (15.97) and (15.98).

15.9 Questions for self-assessment

1. According to the lexicographic ordering, which quantity appears earlier in the vector ~U
in Eq. (15.8): U2,5 or U5,2?

2. Verify Eq. (15.14).

3. Verify Eq. (15.15).

4. Verify Eq. (15.19).

5. What is the length of vector ~bn
l in Eq. (15.21)?

6. Write down Eq. (15.19) for l = 2. Then verify that it is equivalent to Eq. (15.22) for the
same value of l.

7. Obtain the analog of Eq. (15.23) for l = L− 1.

8. What is the length of vector Bn in Eq. (15.25)?

9. Why is the CN scheme (15.16) computationally inefficient?

10. State the three properties that a computationally efficient scheme for the 2D Heat equa-
tion must have.

11. What is the order of the truncation error of scheme (15.31)?



MATH 337, by T. Lakoba, University of Vermont 166

12. Verify that (15.33) is equivalent to (15.32).

13. What is the order of the truncation error of scheme (15.33)?

14. Make sure you can justify each step in (15.35).

15. What is the order of the truncation error of scheme (15.34)?

16. Explain in detail why (15.34) is computationally efficient (that is, which systems need to
be solved at each step).

17. Obtain both equations in (15.41).

18. Why does one want to look for alternatives to the Peaceman–Rachford method?

19. Make sure you can obtain (15.47).

20. Produce an example of r, β, γ, and ξ such that the corresponding amplification factor
(15.47) is greater than 1 in magnitude.

21. Explain in detail why (15.48) is computationally efficient (that is, which systems need to
be solved at each step).

22. Consider the Peaceman–Rachford method for the Heat equation with Dirichlet boundary
conditions. Explain which boundary values of the intermediate solution one requires, and
why one does not need other boundary values.

23. Verify that the scheme (15.78) with F (0) = F (2) = 0 reduces to the modified implicit
Euler method.

24. Verify that the scheme (15.79) with F (1) = F (2) = 0 reduces to the modified explicit Euler
method.

25. Make sure you can follow the argument made around (15.84).


