Arbitrage-free pricing of derivatives over a binomial tree

S H Man 10th May,2003

1 Some definitions

Lets fix some notation for the rest of this article. We assume that we have a binomial tree and the branching is given by the following diagram.

The tree starts at (0,0). If we are at node (t,j), then it can go to node (t+1,j+1) or (t+1,j).

The following notation will be used throughout this article.

- $D(1), D(2), \ldots$, be the (default-free) discount factors over $[0, 1], [0, 2], \ldots$ respectively. We can think of D(t) as the time 0 value of a default-free zero-coupond bond with maturity t and face value of \$1.
- r(t, j) denotes the (risk free) spot rate at (t, j) over [t, t+1].
- D(t, j) be the discount factor at (t, j) over [t, t+1].
- B(t) be the time t value of a deposit account, earning risk free interest, with B(0) = 1.
- For $n \ge 1$, let

$$\Omega_n = \{(\omega_1, \omega_2, \dots, \omega_n) \mid \omega_i = H \text{ or } T\}$$

Also if $0 \le t \le n$ and $\vec{\omega} \in \Omega_n$, we define $\#_t(\vec{\omega})$ to be the number of H in the first t entries of $\vec{\omega}$.

2 Some results on measureable function over a finite set

Through out this section, Ω is a finite set. Let A_1, A_2, \ldots, A_k be a partition of Ω . Clearly,

$$\{\bigcup_{i\in I}A_i \mid I\subseteq\{1,2,\ldots,k\}\}$$
(1)

is a σ -algebra of Ω . We now show that every σ -algebra on Ω could be constructed in this way.

Lemma 2.1 Suppose Ω is a finite set and \mathcal{F} is a σ -algebra. For any $\omega \in \Omega$, define

$$A_{\omega} = \bigcap_{\substack{\omega \in A \\ A \in \mathcal{F}}} A$$

Then

i) $\{A_{\omega}\}_{\omega\in\Omega}$ is a partition of Ω .

ii) For any $A \in \mathcal{F}$ and $\omega \in \Omega$, $A_{\omega} \subseteq A$ or $A_{\omega} \cap A = \emptyset$.

Note that A_{ω} is the smallest nonempty set in \mathcal{F} that contains ω . Also, any element of \mathcal{F} is a (disjoint) union of some $A_{\omega}s$.

Proof i) Let $\omega_1, \omega_2 \in \Omega$. It suffices to show $A_{\omega_1} \cap A_{\omega_2} = \emptyset$ or $A_{\omega_1} = A_{\omega_2}$. Suppose $\omega \in A_{\omega_1} \cap A_{\omega_2}$. Then $A_{\omega} \subseteq A_{\omega_1} \cap A_{\omega_2} \subseteq A_{\omega_1}$. Note that if $A_{\omega} \neq A_{\omega_1}$, then $A_{\omega_1} \setminus A_{\omega}$ would be in \mathcal{F} with

$$\omega_1 \in A_{\omega_1} \setminus A_{\omega} \text{ and } A_{\omega_1} \setminus A_{\omega} \subsetneq A_{\omega_1}$$

This contradicts A_{ω_1} is the smallest element in \mathcal{F} that contains ω_1 . ii) Let $A \in \mathcal{F}, \omega \in \Omega$. Suppose $\omega_1 \in A_{\omega} \cap A$. Then $A_{\omega_1} \subseteq A_{\omega} \cap A \subseteq A_{\omega}$. By (i), $A_{\omega_1} = A_{\omega} = A_{\omega} \cap A$. Hence $A_{\omega} \subseteq A$.

Note that for any $A \in \mathcal{F}$, $A = \bigcup_{\omega \in A} A_{\omega}$.

The following result will be needed in later sections.

Theorem 2.2 Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and X be a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$, \mathcal{G} be a σ -subalgebra of \mathcal{F} . Then, for any $\omega \in \Omega$,

$$\mathbb{E}(X|\mathcal{G})(\omega) = \frac{\int_{A_{\omega}} X d\mathbb{P}}{\mathbb{P}(A_{\omega})} = \frac{\sum_{\xi \in A_{\omega}} X(\xi)\mathbb{P}(\xi)}{\mathbb{P}(A_{\omega})}$$

where A_{ω} is as defined in Lemma 2.1.

Lemma 2.3 $f: (\Omega, \mathcal{F}) \longrightarrow \mathbb{R}$ is a measureable function if and only if

$$f = \sum_{i=1}^{N} d_i 1_{A_i}$$

for some $d_1, d_2, \ldots, d_n \in \mathbb{R}$ and A_i s are pairwise disjoint elements of \mathcal{F} . 1_A is the indicator function on the set A.

Proof (\Rightarrow) Let d_1, d_2, \ldots, d_n be the distinct images of f. As f is measureable, by Lemma 2.1, each $f^{-1}(d_i)$ is a disjoint union of $A_{\omega}s$. (A_{ω} is as defined in Lemma 2.1.) Then $f = \sum_{i=1} d_i 1_{f^{-1}(d_i)}.$ The converse is clear.

Definition 2.4 Let $1 \le k \le n$ be positive integers. Define

 $\Omega_n = \{(\omega_1, \omega_2, \dots, \omega_n) \mid \omega_i = H \text{ or } T\}$

the sample space of tossing a coin n times. For each $\vec{\xi} = (\xi_1, \xi_2, \dots, \xi_k) \in \Omega_k$, define

$$A_{\vec{\xi}} = \{(\omega_1, \omega_2, \dots, \omega_n) \in \Omega_n \mid \xi_i = \omega_i \text{ for } i = 1, 2, \dots, k\}$$

Note that $\{A_{\vec{k}} | \vec{\xi} \in \Omega_k\}$ is a partition of Ω_n . We denote this partition by $P_{k,n}$. The σ -algebra (on Ω_n) corresponds to $P_{k,n}$ is denoted by \mathcal{F}_k . We define $\mathcal{F}_0 = \{\emptyset, \Omega_n\}$. Note that \mathcal{F}_n is the power set of Ω_n and

$$\mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n.$$

Corollary 2.5 Let $1 \le k \le n$ be positive integers. Then the following statements are equivlatent.

1) $f: (\Omega_n, \mathcal{F}_k) \longrightarrow \mathbb{R}$ is a measureable function.

2) For any $\vec{\xi} \in \Omega_k$, f is constant on $A_{\vec{\xi}}$. In other words, for any $\vec{\omega_1} = (\omega_{11}, \omega_{12}, \dots, \omega_{1n}), \vec{\omega_2} = (\omega_{21}, \omega_{22}, \dots, \omega_{2n}) \in \Omega_n$, $f(\vec{\omega_1}) = f(\vec{\omega_2})$ whenever $\omega_{1i} = \omega_{2i}$ for $i = 1, 2, \dots, k$.

Proof (\Rightarrow) By Lemma 2.3, $f = \sum_{i=1}^{m} d_i \mathbf{1}_{A_{\xi_i}}$ for some $d_i \in \mathbb{R}$ and $\xi_i \in \Omega_k$. It is clear that (2) is satisfied.

(\Leftarrow) By assumption $f = \sum_{\xi \in \Omega_k} f(\xi) \mathbf{1}_{A_{\xi}}$. It follows from 2.3 that f is measureable.

Corollary 2.6 Suppose we have a map f: Binomial tree $\longrightarrow \mathbb{R}$. For t = 0, 1, 2, ..., n, f induces a \mathcal{F}_t measuareble map

$$(\Omega_n, \mathcal{F}_t) \longrightarrow \mathbb{R} : \vec{\omega} \mapsto f(t, \#_t(\vec{\omega}))$$
(2)

3 Arbitarge free pricing of a general binomial process

Let $\vec{\omega} = (\omega_1, \ldots, \omega_n) \in \Omega_n$ and $t \leq n$. Recall that $\#_t(\vec{\omega})$ to be the number of H in the first t entries of $\vec{\omega}$. Let \mathbb{P} be a probability on $(\Omega_n, \mathcal{F}_n)$. Define

$$A = \{ (\xi_1, \dots, \xi_t, H, \xi_{t+2}, \dots, \xi_n) | \xi_i = \omega_i \text{ for } i = 1, 2, \dots, t \}$$
(3)

$$A_t(\vec{\omega}) = \{ (\xi_1, \xi_2, \dots, \xi_n) \, | \, \xi_i = \omega_i \, \text{for} \, i = 1, 2, \dots, t \}$$
(4)

Let

$$p_t(\vec{\omega}) = \frac{\sum_{\vec{\xi} \in A} \mathbb{P}(\vec{\xi})}{\mathbb{P}(A_t(\vec{\omega}))}$$
(5)

$$q_t(\vec{\omega}) = 1 - p_t(\vec{\omega}) \tag{6}$$

We think of $p_t(\vec{\omega})$ as the probability, under \mathbb{P} , of going from node $(t, \#_t(\vec{\omega}))$ to $(t, \#_t(\vec{\omega}) + 1)$ in the binomial tree, given that we arrived at $(t, \#_t(\vec{\omega}))$ via $\vec{\omega}$. Note that $p_t(\vec{\omega})$ only depends on the first t entries of $\vec{\omega}$.

Lemma 3.1 Let $0 \le i \le n-1$ be given. Suppose $X_{t+1} : (\Omega_n, \mathcal{F}_{t+1}) \longrightarrow \mathbb{R}$ is measureable. Then, for any $\vec{\omega} = (\omega_1, \omega_2, \dots, \omega_n) \in \Omega_n$

$$\mathbb{E}_{\mathbb{P}}(X_{t+1} | \mathcal{F}_i)(\vec{\omega}) = X_{t+1}(\omega_1, \dots, \omega_t, H) \cdot p_t(\vec{\omega}) + X_{t+1}(\omega_1, \dots, \omega_t, T) \cdot q_t(\vec{\omega})$$

Proof Let t and $\vec{\omega} = (\omega_1, \omega_2, \dots, \omega_n) \in \Omega_n$ be given. By Theorem 2.2

$$\mathbb{E}(X_{t+1} \mid \mathcal{F}_t)(\vec{\omega}) = \frac{\sum_{\vec{\xi} \in A_{\vec{\omega}}} X_{t+1}(\vec{\xi}) \mathbb{P}(\vec{\xi})}{\mathbb{P}(A_{\vec{\omega}})}$$
(7)

where $A_{\vec{\omega}} = \{(\xi_1, \dots, \xi_n) | \xi_i = \omega_i \text{ for } i = 1, 2, \dots, t\}$. Let

$$A_{1} = \{ (\xi_{1}, \dots, \xi_{n}) | \xi_{t+1} = H, \xi_{i} = \omega_{i} \text{ for } i = 1, 2, \dots, t \}$$

$$A_{2} = \{ (\xi_{1}, \dots, \xi_{n}) | \xi_{t+1} = T, \xi_{i} = \omega_{i} \text{ for } i = 1, 2, \dots, t \}$$

Note that $A_{\vec{\omega}}$ is a disjoint union of A_1, A_2 . Then (7) becomes

$$\mathbb{E}(X_{t+1} | \mathcal{F}_t)(\vec{\omega}) = \frac{\sum_{\vec{\xi} \in A_1} X_{t+1}(\vec{\xi}) \mathbb{P}(\vec{\xi})}{\mathbb{P}(A_{\vec{\omega}})} + \frac{\sum_{\vec{\xi} \in A_2} X_{t+1}(\vec{\xi}) \mathbb{P}(\vec{\xi})}{\mathbb{P}(A_{\vec{\omega}})}$$
$$= X_{t+1}(\omega_1, \dots, \omega_t, H) \cdot p_t(\vec{\omega}) + X_{t+1}(\omega_1, \dots, \omega_t, T) \cdot q_t(\vec{\omega})$$

as X_{t+1} is \mathcal{F}_{t+1} -measureable.

Theorem 3.2 Suppose $\{X_i\}_{i=0}^n$ is a $(\mathbb{P}, \{\mathcal{F}_i\}_{i=0}^n)$ -martingale. If $\{Y_i\}_{i=0}^n$ is a $(\mathbb{P}, \{\mathcal{F}_i\}_{i=0}^n)$ -martingale, then for i = 1, 2, ..., n

$$\phi_i = \frac{Y_i - Y_{i-1}}{X_i - X_{i-1}} : (\Omega_n, \mathcal{F}_{i-1}) \longrightarrow \mathbb{R}$$

is measurable and

$$Y_k = Y_0 + \sum_{i=1}^k \phi_i(X_i - X_{i-1})$$
 for $k = 1, 2, ..., n$

Also, for any $\vec{\omega} = (\omega_1, \omega_2, \dots, \omega_n) \in \Omega_n$,

$$\phi_i(\vec{\omega}) = \frac{N_i(\omega_1, \dots, \omega_i, H) - N_i(\omega_1, \dots, \omega_i, T)}{X_i(\omega_1, \dots, \omega_i, H) - X_i(\omega_1, \dots, \omega_i, T)}$$

Let B_t be the time t value of a deposit account with an initial investment of \$1 at time 0. Recall D(t, j) is the discount factor over [t, t+1] at (t, j) of the binomial tree. By Corollary (2.6), for $t \ge 0$,

$$D_t: (\Omega_n, \mathcal{F}_t) \longrightarrow \mathbb{R}: \vec{\omega} \mapsto D(t, \#_t(\vec{\omega}))$$
(8)

is \mathcal{F}_t -measureable. Then

$$B_t = D_0^{-1} D_1^{-1} \dots D_{t-1}^{-1}$$
(9)

Let S be a security and its value at time t is S_t and S_t is \mathcal{F}_t -measurable.

Theorem 3.3 Let V be a derivative on S with maturity n. Suppose

1) we are given V_n and it is \mathcal{F}_n -measureable,

2) $\{B_t^{-1}S_t\}_{t=0}^n$ is a \mathbb{P} -martingale.

Then

$$V_0 = \mathbb{E}_{\mathbb{P}}((1+r)^{-n}V_n)$$

Proof Let $N_t = \mathbb{E}_{\mathbb{P}}(\frac{V_n}{B_n} \mid \mathcal{F}_t)$ for $t = 0, 1, 2, \dots, n$. Note that

$$N_0 = \mathbb{E}_{\mathbb{P}}\left(\frac{V_n}{B_n} \mid \mathcal{F}_0\right) = \mathbb{E}_{\mathbb{P}}\left(\frac{V_n}{B_n}\right) \tag{10}$$

$$N_n = \mathbb{E}_{\mathbb{P}}\left(\frac{V_n}{B_n} \,|\, \mathcal{F}_n\right) = \frac{V_n}{B_n} \tag{11}$$

By Theorem , for $t = 1, 2, \ldots, n$,

$$\phi_t = \frac{N_t - N_{t-1}}{B_t^{-1} X_t - B_{t-1}^{-1} X_{t-1}} = \frac{(N_t - N_{t-1}) B_t}{X_t - B_t B_{t-1}^{-1} X_{t-1}}$$
(12)

We now construct a series of self-financing portfolios with the same payoff as V at time n. At time t = 0, 1, ..., n - 1, form the portfolio Π_t :

- ϕ_{t+1} units of the security
- $N_t \frac{\phi_{t+1}X_t}{B_t}$ units of B_t

Value of Π_t at time [t, t+1):

$$\phi_{t+1}X_t + (N_t - \frac{\phi_{t+1}X_t}{B_t})B_t = N_t B_t$$

Value of Π_t at time [t+1, t+2):

$$\phi_{t+1}X_{t+1} + (N_t - \frac{\phi_{t+1}X_t}{B_t})B_{t+1}$$

$$= \phi_{t+1}X_{t+1} + N_tB_{t+1} - \phi_{t+1}X_t\frac{B_{t+1}}{B_t}$$

$$= N_tB_{t+1} + \phi_{t+1}(X_{t+1} - X_t\frac{B_{t+1}}{B_t})$$

$$= N_{t+1}B_{t+1} \quad \text{by (12)}$$

The above shows that starting with an initial value N_0 , the above series of portfolios are self-financing. Note that the value of Π_{n-1} at time n is V_n . As the series of portfolios have the same paid off as V at time n. The value of V and the value of Π_0 must be the same at time 0 to avoid arbitrage. ie

$$V_0$$
 = value of Π_0 at time $0 = N_0 = \mathbb{E}_{\mathbb{P}}(\frac{V_n}{B_n})$

-		-	
L			
L			

In fact, we have proved the following.

Theorem 3.4 (Assumption as in (3.3)) For t = 0, 1, ..., n

$$V_t = \mathbb{E}_{\mathbb{P}}(B_n^{-1}B_{t_0}V_n|\mathcal{F}_t)$$

Proof Let $1 \le t_0 \le n-1$ be given. At time $t = t_0, t_0 + 1, \ldots, n-1$, form the portfolio Π_t as described in Theorem 3.3. As the value of Π_{n-1} have the same payoff as V at time n, their values at time t_0 must be the same. i.e

$$V_{t_0} = \text{value of } \Pi_{t_0} \text{ at time } t_0$$

$$= B_{t_0} N_{t_0}$$

$$= B_{t_0} \mathbb{E}_{\mathbb{P}}(B_n^{-1} V_n | \mathcal{F}_{t_0})$$

$$= \mathbb{E}_{\mathbb{P}}(B_t^{-1} B_{t_0} V_n | \mathcal{F}_{t_0}) \text{ as } B_{t_0} \text{ is } \mathcal{F}_{t_0}\text{-measurable}$$

In view of the above results, in order to price a derivative on S, we need to find a probability that turns $\{B_t^{-1}S_t\}_t$ into a \mathbb{P} -martingale.

4 Arbitarge-free pricing of binomial process with constant spot rates

Recall that we have a binomial tree and

- (t, j) denotes the node at time t and state j
- r(t, j) is the interest rate over [t, t+1] at (t, j)
- D(t, j) is the discount factor at (t, j) over [t, t+1].

Note that

$$D(t,j) = \begin{cases} e^{-r(t,j)} & \text{if interest is compounded continuously} \\ \frac{1}{1+r(t,j)} & \text{if simple interest is used} \end{cases}$$

and

$$B(t) = \begin{cases} e^{rt} & \text{if interest is compounded continuously} \\ (1+r)^t & \text{if simple interest is used} \end{cases}$$

Let S be a security and and we are given S_t , a \mathcal{F}_t -measureable function, the value of S at time t, for t = 0, 1, ...

We now define a probability \mathbb{P} on $(\Omega_n, \mathcal{F}_n)$ such that $\{B_t^{-1}S_t\}_{t=0}^n$ is a $(\mathbb{P}, \{\mathcal{F}_t\}_{t=0}^n)$ -martingale.

For any $\vec{\omega} = (\omega_1, \dots, \omega_n) \in \Omega_n$, define $p_t(\vec{\omega}), q_t(\vec{\omega}) = 1 - p_t(\vec{\omega})$, to be the solution of

$$S_t(\vec{\omega}) = D_t(\vec{\omega}) \Big(p_t(\vec{\omega}) \cdot S_{t+1}(\omega_1, \dots, \omega_t, H) + q_t(\vec{\omega}) \cdot S_{t+1}(\omega_1, \dots, \omega_t, T) \Big)$$
(13)

Define

$$f_{t+1}(\vec{\omega}) = \begin{cases} p_t(\vec{\omega}) & \text{if } \omega_{t+1} = H\\ p_t(\vec{\omega}) & \text{if } \omega_{t+1} = T \end{cases}$$

Note that $f_{t+1}(\vec{\omega})$ only depends on the first k+1 entries of $\vec{\omega}$. Define a probability \mathbb{P} on $(\Omega_n, \mathcal{F}_n)$ as follows. For any $\vec{\omega} = (\omega_1, \ldots, \omega_n) \in \Omega_n$, define

$$\mathbb{P}(\vec{\omega}) = f_1(\vec{\omega}) \cdot f_2(\vec{\omega}) \cdots f_n(\vec{\omega}) \tag{14}$$

It is easy to check that (5) is satisfied.

Theorem 4.1 $\{B(t)^{-1}S_t\}_{t=0}^n$ is a $(\mathbb{P}, \{\mathcal{F}_t\}_{t=0}^n)$ -martingale. *i.e.* $E_{\mathbb{P}}(B_{t+1}^{-1}S_{t+1} | \mathcal{F}_t) = B_t^{-1}S_t$

Proof Let $0 \le t \le n-1$ and $\vec{\omega} = (\omega_1, \omega_2, \dots, \omega_n) \in \Omega_n$. Then

$$\mathbb{E}_{\mathbb{P}}(B_{t+1}^{-1}S_{t+1} | \mathcal{F}_t)(\vec{\omega})$$

$$= B_{t+1}^{-1}(\vec{\omega}) \cdot \mathbb{E}_{\mathbb{P}}(S_{t+1} | \mathcal{F}_t)(\vec{\omega}) \quad \text{as } B_{t+1} \text{ is } \mathcal{F}_t\text{-measureable}$$

$$= B_{t+1}^{-1}(\vec{\omega}) \cdot \left(S_t(\omega_1, \dots, \omega_i, H) \cdot p_t(\vec{\omega}) + S_t(\omega_1, \dots, \omega_t, T) \cdot q_t(\vec{\omega})\right) \text{ by Lemma 3.1}$$

$$= B_{t+1}^{-1}(\vec{\omega}) \cdot D_t(\vec{\omega}) \cdot S_t(\vec{\omega}) \quad \text{ by 14}$$

$$= B_t^{-1}(\vec{\omega}) \cdot S_t(\vec{\omega}) \quad \square$$

We can now price any derivatives on S using Theorem 3.3. **Example** (Notation as above). Suppose we have the following.

- $S(0,0) = S_0$.
- ٠

$$S_{t+1} = \begin{cases} dS_t & \text{if upward branch is taken} \\ uS_t & \text{otherwise} \end{cases}$$

where d, u are constants with 0 < d < 1 < u. It follows that

$$S_t(\vec{\omega}) = S_0 \binom{n}{\#_t(\vec{\omega})} u^{\#_t(\vec{\omega})} d^{n - \#_t(\vec{\omega})}$$

for any $\vec{\omega} \in \Omega_n$.

• r(t, j) = r, a constant.

As the spot rates are constant, the D(t, j)s are also constant. We put D = D(t, j). Then, for any $\vec{\omega} \in \Omega_n$, (13) gives

$$p_t(\vec{\omega}) = \frac{(1-dD)}{D(u-d)}$$

which is independent of $\vec{\omega}$. In this case, the probability of going from $(t, \#_t(\vec{\omega}))$ to $(t + 1, \#_t(\vec{\omega}) + 1)$ is independent of $\vec{\omega}$. Note that $B_t = D^{-t}$. Let V be a derivative on S, by Theorem 3.4 is $V_t = \mathbb{E}_{\mathbb{P}}(D^{n-t}V_n | \mathcal{F}_t)$.

5 Arbitarge free pricing of interest rate derivatives over a binomial tree

Recall that we have a spot rate binomial tree. Let X denote the (default-free) zero-coupond bond with maturity $n + 1 (n \ge 1)$ and face value of \$1. By Theorem (3.4), in order to price a derivative on X, we need to find a probability on $(\Omega_n, \mathcal{F}_n)$ such that

$$\{B_t^{-1}X_t\}_{t=0}^n$$
 is a \mathbb{P} -martingale. (15)

We can not just copy the argument in section 4 because we do not know X_t , the price of X at time t. In the following, we shall turn $\{B_t^{-1}X_t\}_{t=0}^n$ into a martingale in two steps. **Step 1** Find a probability \mathbb{P} on $(\Omega_n, \mathcal{F}_n)$ such that

$$D(n+1) = \mathbb{E}_{\mathbb{P}}(B_n^{-1}D_n)$$

= $\mathbb{E}_{\mathbb{P}}(D_0D_1\cdots D_n)$ (16)

Step 2 Use \mathbb{P} from Step 1 to define X_t for t = 0, 1, ..., n - 1 such that $\{B_t^{-1}X_t\}_{t=0}^n$ is a \mathbb{P} -martingale.

Note that if our spot rate binomial tree is generated from Ho-Lee or BDT model, then \mathbb{P} is known (see [1, Chapter 15]). We shall construct a \mathbb{P} that satisfies (16) by induction on n. One application of the construction described below is to verify spot rate binomial trees generated from Ho-Lee or BDT model. Lets do an example to illusturate how we might go about finding \mathbb{P} that satisfies (16).

Example Case n=3 Suppose the risk neutral probability at (t, j) of going to (t + 1, j + 1) is p(t, j). (Then the risk neutral probability at (t, j) of going to (t + 1, j) is 1 - p(t, j).)

Then, for n = 0, 1, (16) gives

$$D(2) = D(0,0)D(1,1)p(0,0) + D(0,0)D(1,0)(1-p(0,0))$$
(17)

and

$$D(3) = D(0,0)D(1,1)D(2,2)p(0,0)p(1,1) + D(0,0)D(1,1)D(2,1)p(0,0)(1-p(1,1)) + D(0,0)D(1,0)D(2,1)(1-p(0,0))p(1,0) + D(0,0)D(1,0)D(2,0)(1-p(0,0))(1-p(1,0))$$
(18)

We can deduce p(0,0), from (17). If we assume p(1,1) = p(1,0), then we can get p(1,1) from (18). We now construct $\mathbb{P} : (\Omega_2, \mathcal{F}_2) \longrightarrow [0,1]$ in the same as (14). Define

$$f_1(\vec{\omega}) = \begin{cases} p(0,0) & \text{if } \omega_1 = H \\ 1 - p(0,0) & \text{if } \omega_1 = T \end{cases}$$
$$f_2(\vec{\omega}) = \begin{cases} p(1,1) & \text{if } \omega_2 = H \\ 1 - p(1,1) & \text{if } \omega_2 = T \end{cases}$$

We define $\mathbb{P} = f_1 f_2$. (End of Example)

We now describe the construction of a probability $\mathbb{P}_t : (\Omega_t, \mathcal{F}_t) \longrightarrow [0, 1]$, where $t = 1, 2, \cdots, n$ such that

$$D(t+1) = \mathbb{E}_{\mathbb{P}_t}(D_0 D_1 \cdots D_t) \tag{19}$$

Case n = 1 Let p_0 be the solution of

$$D(2) = D(0,0)p_0D(1,1) + D(0,0)(1-p_0)D(1,0)$$
(20)

Define $\mathbb{P}_1: \Omega_1 \longrightarrow [0,1]$ by

$$\mathbb{P}_1(\omega) = \begin{cases} p_0 & \text{if } \omega = H\\ 1 - p_0 & \text{if } \omega = T \end{cases}$$
(21)

where $\omega \in \Omega_1$ and By (20), (19) is satisfied for t = 1.

Inductive step Suppose we have constructed \mathbb{P}_t and (19) holds for some $1 \leq t < n$. Define $\mathbb{P}_{t+1} : \Omega_{t+1} \longrightarrow [0, 1]$ by

$$\mathbb{P}_{t+1}(\vec{\omega}) = \begin{cases} \mathbb{P}_t(\vec{\omega})p_t & \text{if } \omega_{t+1} = H \\ \mathbb{P}_t(\vec{\omega})(1-p_t) & \text{if } \omega_{t+1} = T \end{cases}$$
(22)

where $\vec{\omega} = (\omega_1, \dots, \omega_{t+1}) \in \Omega_{t+1}$ and p_t is to be determined from (19). $\mathbb{P}_t(\vec{\omega})$ is defined to be \mathbb{P}_t of the first t entries of $\vec{\omega}$.

We shall choose p_t to satisfy (19) :

$$D(t+2) = \sum_{\vec{\omega} \in \Omega_{t+1}} \mathbb{P}_{t+1}(\vec{\omega}) D_0(\vec{\omega}) D_1(\vec{\omega}) \dots D_{t+1}(\vec{\omega})$$
(23)

Let

$$A = \{ (\omega_1, \dots, \omega_{t+1}) \in \Omega_{t+1} \mid \omega_{t+1} = H \}$$
(24)

$$B = \{ (\omega_1, \dots, \omega_{t+1}) \in \Omega_{t+1} | \omega_{t+1} = T \}$$
(25)

Then (23) becomes

$$D(t+2) = \left(\sum_{\vec{\omega}\in A} \mathbb{P}_t(\vec{\omega}) D_0(\vec{\omega}) D_1(\vec{\omega}) \dots D_{t+1}(\vec{\omega})\right) p_t + \left(\sum_{\vec{\omega}\in B} \mathbb{P}_t(\vec{\omega}) D_0(\vec{\omega}) D_1(\vec{\omega}) \dots D_{t+1}(\vec{\omega})\right) (1-p_t)$$
(26)

In the above equation, the coefficients of p_t and $(1 - p_t)$ are known. Hence we can work out p_t . As all the steps above are reversible, we have constructed a \mathbb{P}_{t+1} that satisfies (19). By induction, we can find a \mathbb{P} that satisfies (16).

We now proceed with Step 2. In the following, let \mathbb{P} satisfies (16). Recall that X is a (default-free) zero coupond bond with maturity n+1 and face value \$1. Define $X_0 = D(n+1)$, $X_n = D_n$. For $0 \le t < n$ and $\vec{\omega} = (\omega_1, \ldots, \omega_n) \in \Omega_n$ define

$$X_t(\vec{\omega}) = D_t(\vec{\omega}) \Big(p_t(\vec{\omega}) \cdot X_{t+1}(\omega_1, \dots, \omega_t, H) + q_t(\vec{\omega}) \cdot X_{t+1}(\omega_1, \dots, \omega_t, T) \Big)$$
(27)

where $p_t(\vec{\omega}), q_t(\vec{\omega})$ are as defined in (13).

Theorem 5.1 $\{B_t^{-1}X_t\}_{t=0}^n$ is a $(\mathbb{P}, \{\mathcal{F}_t\}_{t=0}^n)$ -martingale. *i.e.* $E_{\mathbb{P}}(B_{t+1}^{-1}S_{t+1} | \mathcal{F}_t) = B_t^{-1}S_t$

Proof The same argument in the proof of Theorem 4.1. \Box

References

[1] R Jarrow and S Turnbull, Derivative Securities, South-Western College Publishing