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1 Some definitions

Lets fix some notation for the rest of this article. We assume that we have a binomial tree
and the branching is given by the following diagram.

The tree starts at (0, 0). If we are at node (t, j), then it can go to node (t + 1, j + 1) or
(t+ 1, j).
The following notation will be used throughout this article.

• D(1), D(2), . . . , be the (default-free) discount factors over [0, 1], [0, 2], . . . respectively.
We can think of D(t) as the time 0 value of a default-free zero-coupond bond with
maturity t and face value of $1.

• r(t, j) denotes the (risk free) spot rate at (t, j) over [t, t+ 1].

• D(t, j) be the discount factor at (t, j) over [t, t+ 1].

• B(t) be the time t value of a deposit account, earning risk free interest, with B(0) = 1.

• For n ≥ 1, let
Ωn = {(ω1, ω2, . . . , ωn) |ωi = H or T}

Also if 0 ≤ t ≤ n and ~ω ∈ Ωn, we define #t(~ω) to be the number of H in the first t
entries of ~ω.

2 Some results on measureable function over a finite set

Through out this section, Ω is a finite set. Let A1, A2, . . . , Ak be a partition of Ω. Clearly,

{∪i∈IAi | I ⊆ {1, 2, . . . , k}} (1)

is a σ-algebra of Ω. We now show that every σ-algebra on Ω could be constructed in this
way.

Lemma 2.1 Suppose Ω is a finite set and F is a σ-algebra. For any ω ∈ Ω, define

Aω =
⋂

ω ∈ A
A ∈ F

A.

Then
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i) {Aω}ω∈Ω is a partition of Ω.
ii) For any A ∈ F and ω ∈ Ω, Aω ⊆ A or Aω ∩A = ∅.

Note that Aω is the smallest nonempty set in F that contains ω. Also, any element of F
is a (disjoint) union of some Aωs.

Proof i) Let ω1, ω2 ∈ Ω. It suffices to show Aω1
∩ Aω2

= ∅ or Aω1
= Aω2

. Suppose
ω ∈ Aω1

∩ Aω2
. Then Aω ⊆ Aω1

∩ Aω2
⊆ Aω1

. Note that if Aω 6= Aω1
, then Aω1

\Aω would
be in F with

ω1 ∈ Aω1
\Aω and Aω1

\Aω ( Aω1

This contradicts Aω1
is the smallest element in F that contains ω1.

ii) Let A ∈ F , ω ∈ Ω. Suppose ω1 ∈ Aω ∩ A. Then Aω1
⊆ Aω ∩ A ⊆ Aω . By (i),

Aω1
= Aω = Aω ∩A. Hence Aω ⊆ A.

Note that for any A ∈ F , A = ∪ω∈AAω.

The following result will be needed in later sections.

Theorem 2.2 Let (Ω,F ,P) be a probability space and X be a random variable on (Ω,F ,P),
G be a σ-subalgebra of F . Then, for any ω ∈ Ω,

E(X|G)(ω) =

∫
Aω

XdP
P(Aω)

=

∑
ξ∈Aω X(ξ)P(ξ)

P(Aω)

where Aω is as defined in Lemma 2.1 .

Lemma 2.3 f : (Ω,F) −→ R is a measureable function if and only if

f =
∑

i=1

di1Ai

for some d1, d2, . . . , dn ∈ R and Ais are pairwise disjoint elements of F . 1A is the indicator
function on the set A.

Proof (⇒) Let d1, d2, . . . , dn be the distinct images of f . As f is measureable, by Lemma
2.1, each f−1(di) is a disjoint union of Aωs . (Aω is as defined in Lemma 2.1.) Then
f =

∑
i=1 di1f−1(di).

The converse is clear.

Definition 2.4 Let 1 ≤ k ≤ n be positive integers. Define

Ωn = {(ω1, ω2, . . . , ωn) | ωi = H or T}

the sample space of tossing a coin n times. For each ~ξ = (ξ1, ξ2, . . . , ξk) ∈ Ωk, define

A~ξ = {(ω1, ω2, . . . , ωn) ∈ Ωn | ξi = ωi for i = 1, 2, . . . , k}

Note that {A~ξ | ~ξ ∈ Ωk} is a partition of Ωn. We denote this partition by Pk,n. The σ-algebra

(on Ωn) corresponds to Pk,n is denoted by Fk. We define F0 = {∅,Ωn}. Note that Fn is the
power set of Ωn and

F0 ⊂ F1 ⊂ · · · ⊂ Fn.
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Corollary 2.5 Let 1 ≤ k ≤ n be positive integers. Then the following statements are equiv-
latent.
1) f : (Ωn,Fk) −→ R is a measureable function.

2) For any ~ξ ∈ Ωk, f is constant on A~ξ. In other words, for any ~ω1 = (ω11, ω12, . . . , ω1n), ~ω2 =

(ω21, ω22, . . . , ω2n) ∈ Ωn, f( ~ω1) = f( ~ω2) whenever ω1i = ω2i for i = 1, 2, . . . , k.

Proof (⇒) By Lemma 2.3 , f =
∑m
i=1 di1Aξi for some di ∈ R and ξi ∈ Ωk. It is clear that

(2) is satisfied.

(⇐) By assumption f =
∑
ξ∈Ωk

f(ξ)1Aξ . It follows from 2.3 that f is measureable.

Corollary 2.6 Suppose we have a map f : Binomial tree −→ R. For t = 0, 1, 2, . . . , n, f
induces a Ft measuareble map

(Ωn,Ft) −→ R : ~ω 7→ f(t,#t(~ω)) (2)

3 Arbitarge free pricing of a general binomial process

Let ~ω = (ω1, . . . , ωn) ∈ Ωn and t ≤ n. Recall that #t(~ω) to be the number of H in the first
t entries of ~ω. Let P be a probability on (Ωn,Fn). Define

A = {(ξ1, . . . , ξt, H, ξt+2, . . . , ξn) | ξi = ωi for i = 1, 2, . . . , t} (3)

At(~ω) = {(ξ1, ξ2, . . . , ξn) | ξi = ωi for i = 1, 2, . . . , t} (4)

Let

pt(~ω) =

∑
~ξ∈A P(~ξ)

P(At(~ω))
(5)

qt(~ω) = 1− pt(~ω) (6)

We think of pt(~ω) as the probability, under P, of going from node (t,#t(~ω)) to
(t,#t(~ω) + 1) in the binomial tree, given that we arrived at (t,#t(~ω)) via ~ω. Note that pt(~ω)
only depends on the first t entries of ~ω.

Lemma 3.1 Let 0 ≤ i ≤ n − 1 be given. Suppose Xt+1 : (Ωn,Ft+1) −→ R is measureable.
Then, for any ~ω = (ω1, ω2, . . . , ωn) ∈ Ωn

EP(Xt+1 | Fi)(~ω) = Xt+1

(
ω1, . . . , ωt, H

)
· pt(~ω) + Xt+1

(
ω1, . . . , ωt, T

)
· qt(~ω)

Proof Let t and ~ω = (ω1, ω2, . . . , ωn) ∈ Ωn be given. By Theorem 2.2

E(Xt+1 | Ft)(~ω) =

∑
~ξ∈A~ω Xt+1(~ξ)P(~ξ)

P(A~ω)
(7)

where A~ω = {(ξ1, . . . , ξn) | ξi = ωi for i = 1, 2, . . . , t}. Let

A1 = {(ξ1, . . . , ξn) | ξt+1 = H, ξi = ωi for i = 1, 2, . . . , t}
A2 = {(ξ1, . . . , ξn) | ξt+1 = T, ξi = ωi for i = 1, 2, . . . , t}
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Note that A~ω is a disjoint union of A1, A2. Then (7) becomes

E(Xt+1 | Ft)(~ω) =

∑
~ξ∈A1

Xt+1(~ξ)P(~ξ)

P(A~ω)
+

∑
~ξ∈A2

Xt+1(~ξ)P(~ξ)

P(A~ω)

= Xt+1(ω1, . . . .ωt, H) · pt(~ω) + Xt+1(ω1, . . . .ωt, T ) · qt(~ω)

as Xt+1 is Ft+1-measureable.

Theorem 3.2 Suppose {Xi}ni=0 is a (P, {Fi}ni=0) -martingale. If {Yi}ni=0 is a (P, {Fi}ni=0)
-martingale, then for i = 1, 2, . . . , n

φi =
Yi − Yi−1

Xi −Xi−1
: (Ωn,Fi−1) −→ R

is measurable and

Yk = Y0 +

k∑

i=1

φi(Xi −Xi−1) for k = 1, 2, . . . , n

Also, for any ~ω = (ω1, ω2, . . . , ωn) ∈ Ωn,

φi(~ω) =
Ni(ω1, . . . , ωi, H)−Ni(ω1, . . . , ωi, T )

Xi(ω1, . . . , ωi, H)−Xi(ω1, . . . , ωi, T )

Let Bt be the time t value of a deposit account with an initial investment of $1 at time 0.
Recall D(t, j) is the discount factor over [t, t+ 1] at (t, j) of the binomial tree. By Corollary
(2.6), for t ≥ 0,

Dt : (Ωn,Ft) −→ R : ~ω 7→ D(t,#t(~ω)) (8)

is Ft-measureable. Then
Bt = D−1

0 D−1
1 . . . D−1

t−1 (9)

Let S be a security and its value at time t is St and St is Ft-measurable.

Theorem 3.3 Let V be a derivative on S with maturity n. Suppose
1) we are given Vn and it is Fn-measureable,
2) {B−1

t St}nt=0 is a P-martingale.
Then

V0 = EP((1 + r)−nVn)

Proof Let Nt = EP( VnBn | Ft) for t = 0, 1, 2, . . . , n. Note that

N0 = EP(
Vn
Bn
| F0) = EP(

Vn
Bn

) (10)

Nn = EP(
Vn
Bn
| Fn) =

Vn
Bn

(11)

By Theorem , for t = 1, 2, . . . , n,

φt =
Nt −Nt−1

B−1
t Xt −B−1

t−1Xt−1

=
(Nt −Nt−1)Bt

Xt −BtB−1
t−1Xt−1

(12)

We now construct a series of self-financing portfolios with the same payoff as V at time
n. At time t = 0, 1, . . . , n− 1, form the portfolio Πt :

4



• φt+1 units of the security

• Nt − φt+1Xt
Bt

units of Bt

Value of Πt at time [t, t+ 1) :

φt+1Xt + (Nt −
φt+1Xt

Bt
)Bt = NtBt

Value of Πt at time [t+ 1, t+ 2) :

φt+1Xt+1 + (Nt −
φt+1Xt

Bt
)Bt+1

= φt+1Xt+1 +NtBt+1 − φt+1Xt
Bt+1

Bt

= NtBt+1 + φt+1(Xt+1 −Xt
Bt+1

Bt
)

= Nt+1Bt+1 by ( 12 )

The above shows that starting with an initial value N0, the above series of portfolios are
self-financing. Note that the value of Πn−1 at time n is Vn. As the series of portfolios have
the same paid off as V at time n. The value of V and the value of Π0 must be the same at
time 0 to avoid arbitarge. ie

V0 = value of Π0 at time 0 = N0 = EP(
Vn
Bn

)

In fact, we have proved the following.

Theorem 3.4 (Assumption as in (3.3)) For t = 0, 1, . . . , n

Vt = EP(B−1
n Bt0Vn|Ft)

Proof Let 1 ≤ t0 ≤ n− 1 be given. At time t = t0, t0 + 1, . . . , n− 1, form the portfolio Πt as
described in Theorem 3.3. As the value of Πn−1 have the same payoff as V at time n, their
values at time t0 must be the same. i.e

Vt0 = value of Πt0 at time t0

= Bt0Nt0
= Bt0EP(B−1

n Vn | Ft0)

= EP(B−1
t Bt0Vn | Ft0) as Bt0 is Ft0 -measurable

In view of the above results, in order to price a derivative on S, we need to find a
probability that turns {B−1

t St}t into a P-martingale.
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4 Arbitarge-free pricing of binomial process with con-
stant spot rates

Recall that we have a binomial tree and

• (t, j) denotes the node at time t and state j

• r(t, j) is the interest rate over [t, t+ 1] at (t, j)

• D(t, j) is the discount factor at (t, j)over [t, t+ 1].

Note that

D(t, j) =

{
e−r(t,j) if interest is compounded continuously

1
1+r(t,j) if simple interest is used

and

B(t) =

{
ert if interest is compounded continuously
(1 + r)t if simple interest is used

Let S be a security and and we are given St, a Ft-measureable function, the value of S at
time t, for t = 0, 1, . . ..

We now define a probability P on (Ωn,Fn) such that {B−1
t St}nt=0 is a (P, {Ft}nt=0) -

martingale.
For any ~ω = (ω1, . . . , ωn) ∈ Ωn , define pt(~ω), qt(~ω) = 1− pt(~ω), to be the solution of

St(~ω) = Dt(~ω)
(
pt(~ω) · St+1(ω1, . . . , ωt, H) + qt(~ω) · St+1(ω1, . . . , ωt, T )

)
(13)

Define

ft+1(~ω) =

{
pt(~ω) if ωt+1 = H
pt(~ω) if ωt+1 = T

Note that ft+1(~ω) only depends on the first k + 1 entries of ~ω.
Define a probability P on (Ωn,Fn) as follows. For any ~ω = (ω1, . . . , ωn) ∈ Ωn, define

P(~ω) = f1(~ω) · f2(~ω) · · · fn(~ω) (14)

It is easy to check that (5) is satisfied.

Theorem 4.1 {B(t)−1St}nt=0 is a (P, {Ft}nt=0) -martingale.
i.e. EP(B

−1
t+1St+1 | Ft) = B−1

t St

Proof Let 0 ≤ t ≤ n− 1 and ~ω = (ω1, ω2, . . . , ωn) ∈ Ωn. Then

EP(B−1
t+1St+1 | Ft)(~ω)

= B−1
t+1(~ω) · EP(St+1 | Ft)(~ω) as Bt+1 is Ft-measureable

= B−1
t+1(~ω) ·

(
St(ω1, . . . , ωi, H) · pt(~ω) + St(ω1, . . . , ωt, T ) · qt(~ω)

)
by Lemma 3.1

= B−1
t+1(~ω) ·Dt(~ω) · St(~ω) by 14

= B−1
t (~ω) · St(~ω)

We can now price any derivatives on S using Theorem 3.3.
Example (Notation as above). Suppose we have the following.

6



• S(0, 0) = S0.

•
St+1 =

{
dSt if upward branch is taken
uSt otherwise

where d, u are constants with 0 < d < 1 < u. It follows that

St(~ω) = S0

(
n

#t(~ω)

)
u#t(~ω)dn−#t(~ω)

for any ~ω ∈ Ωn.

• r(t, j) = r, a constant.

As the spot rates are constant, the D(t, j)s are also constant. We put D = D(t, j). Then,
for any ~ω ∈ Ωn, (13) gives

pt(~ω) =
(1− dD)

D(u− d)

which is independent of ~ω. In this case, the probability of going from (t,#t(~ω)) to (t +
1,#t(~ω) + 1) is independent of ~ω. Note that Bt = D−t. Let V be a derivative on S, by
Theorem 3.4 is Vt = EP(Dn−tVn | Ft).

5 Arbitarge free pricing of interest rate derivatives over
a binomial tree

Recall that we have a spot rate binomial tree. Let X denote the (default-free) zero-coupond
bond with maturity n + 1(n ≥ 1) and face value of $1. By Theorem (3.4), in order to price
a derivative on X, we need to find a probability on (Ωn,Fn) such that

{B−1
t Xt}nt=0 is a P-martingale. (15)

We can not just copy the argument in section 4 because we do not know Xt, the price of
X at time t. In the following, we shall turn {B−1

t Xt}nt=0 into a martingale in two steps.
Step 1 Find a probability P on (Ωn,Fn) such that

D(n+ 1) = EP(B−1
n Dn)

= EP(D0D1 · · ·Dn) (16)

Step 2 Use P from Step 1 to define Xt for t = 0, 1, . . . , n − 1 such that {B−1
t Xt}nt=0 is a

P-martingale.

Note that if our spot rate binomial tree is generated from Ho-Lee or BDT model, then
P is known (see [1, Chapter 15]). We shall construct a P that satisfies (16) by induction on
n. One application of the construction described below is to verify spot rate binomial trees
generated from Ho-Lee or BDT model. Lets do an example to illusturate how we might go
about finding P that satisifies (16).

Example Case n=3 Suppose the risk neutral probability at (t, j) of going to (t+ 1, j + 1)
is p(t, j). (Then the risk neutral probability at (t, j) of going to (t+ 1, j) is 1− p(t, j). )

7



Then, for n = 0, 1, (16) gives

D(2) = D(0, 0)D(1, 1)p(0, 0) + D(0, 0)D(1, 0)(1− p(0, 0)) (17)

and

D(3) = D(0, 0)D(1, 1)D(2, 2)p(0, 0)p(1, 1) + D(0, 0)D(1, 1)D(2, 1)p(0, 0)(1 − p(1, 1))

+ D(0, 0)D(1, 0)D(2, 1)(1− p(0, 0))p(1, 0)

+ D(0, 0)D(1, 0)D(2, 0)(1− p(0, 0))(1− p(1, 0)) (18)

We can deduce p(0, 0), from (17). If we assume p(1, 1) = p(1, 0), then we can get p(1, 1) from
(18). We now construct P : (Ω2,F2) −→ [0, 1] in the same as (14). Define

f1(~ω) =

{
p(0, 0) if ω1 = H
1− p(0, 0) if ω1 = T

f2(~ω) =

{
p(1, 1) if ω2 = H
1− p(1, 1) if ω2 = T

We define P = f1f2 . (End of Example)

We now describe the construction of a probability Pt : (Ωt,Ft) −→ [0, 1], where t =
1, 2, · · · , n such that

D(t+ 1) = EPt(D0D1 · · ·Dt) (19)

Case n = 1 Let p0 be the solution of

D(2) = D(0, 0)p0D(1, 1) + D(0, 0)(1− p0)D(1, 0) (20)

Define P1 : Ω1 −→ [0, 1] by

P1(ω) =

{
p0 if ω = H
1− p0 if ω = T

(21)

where ω ∈ Ω1 and By (20), (19) is satisfied for t = 1.

Inductive step Suppose we have constructed Pt and (19) holds for some 1 ≤ t < n. Define
Pt+1 : Ωt+1 −→ [0, 1] by

Pt+1(~ω) =

{
Pt(~ω)pt if ωt+1 = H
Pt(~ω)(1− pt) if ωt+1 = T

(22)
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where ~ω = (ω1, . . . , ωt+1) ∈ Ωt+1 and pt is to be determined from (19). Pt(~ω) is defined to
be Pt of the first t entries of ~ω.
We shall choose pt to satisfy (19) :

D(t+ 2) =
∑

~ω∈Ωt+1

Pt+1(~ω)D0(~ω)D1(~ω) . . . Dt+1(~ω) (23)

Let

A = {(ω1, . . . , ωt+1) ∈ Ωt+1 |ωt+1 = H} (24)

B = {(ω1, . . . , ωt+1) ∈ Ωt+1 |ωt+1 = T} (25)

Then (23) becomes

D(t+ 2) =
(∑

~ω∈A
Pt(~ω)D0(~ω)D1(~ω) . . . Dt+1(~ω)

)
pt

+
(∑

~ω∈B
Pt(~ω)D0(~ω)D1(~ω) . . . Dt+1(~ω)

)
(1− pt) (26)

In the above equation, the coefficients of pt and (1− pt) are known. Hence we can work out
pt . As all the steps above are reversible, we have constructed a Pt+1 that satisfies (19). By
induction, we can find a P that satisfies (16).

We now proceed with Step 2. In the following, let P satisfies (16). Recall that X is a
(default-free) zero coupond bond with maturity n+1 and face value $1. Define X0 = D(n+1),
Xn = Dn. For 0 ≤ t < n and ~ω = (ω1, . . . , ωn) ∈ Ωn define

Xt(~ω) = Dt(~ω)
(
pt(~ω) ·Xt+1(ω1, . . . , ωt, H) + qt(~ω) ·Xt+1(ω1, . . . , ωt, T )

)
(27)

where pt(~ω), qt(~ω) are as defined in (13).

Theorem 5.1 {B−1
t Xt}nt=0 is a (P, {Ft}nt=0) -martingale.

i.e. EP(B
−1
t+1St+1 | Ft) = B−1

t St

Proof The same argument in the proof of Theorem 4.1.
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