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1 Some definitions

Lets fix some notation for the rest of this article. We assume that we have a binomial tree
and the branching is given by the following diagram.

(t+1,j+1)

(t,j) ® (t+1,)

The tree starts at (0,0). If we are at node (¢,7), then it can go to node (¢t + 1,5 + 1) or
(t+1,5).
The following notation will be used throughout this article.

e D(1),D(2),..., be the (default-free) discount factors over [0,1],[0,2],... respectively.
We can think of D(t) as the time 0 value of a default-free zero-coupond bond with
maturity ¢ and face value of $1.

e r(t,7) denotes the (risk free) spot rate at (¢,j) over [t, ¢+ 1].
e D(t,j) be the discount factor at (t,7) over [t,t + 1].
e B(t) be the time t value of a deposit account, earning risk free interest, with B(0) = 1.

e Forn > 1, let
Qp, = {(wi,wa,...,wn) |wi=H or T}

Also if 0 <t < n and J € Q,, we define #,(J) to be the number of H in the first ¢
entries of &.
2 Some results on measureable function over a finite set
Through out this section, € is a finite set. Let A1, As, ..., A be a partition of Q2. Clearly,
{UierAi [T C€{1,2,...,k}} (1)

is a o-algebra of 2. We now show that every o-algebra on €2 could be constructed in this
way.

Lemma 2.1 Suppose Q) is a finite set and F is a o-algebra. For any w € ), define
A,= () A
weA
AeF

Then



1) {Au}wea is a partition of .
ii) Forany A€ F andw € Q, A, CA or A,NA=1.

Note that A, is the smallest nonempty set in F that contains w. Also, any element of F
is a (disjoint) union of some A,s.

Proof i) Let wi,ws € Q. It suffices to show A,, N A,, = 0 or A,, = A,, . Suppose
weA, NA,,. Then A, C A,, NA,, C A,,. Note that if A, # A.,, then A4, \A, would
be in F with

w1 € Ay, \Ay, and A, \A, C Ay,
This contradicts A, is the smallest element in F that contains ws.
ii) Let A € F, w € Q. Suppose w; € A, N A. Then A,, € A, NA C A, . By (i),
Ay, = A, =A,NA Hence A, C A. []

Note that for any A € F, A = Uycad,.

The following result will be needed in later sections.

Theorem 2.2 Let (2, F,P) be a probability space and X be a random variable on (2, F,P),
G be a o-subalgebra of F. Then, for any w € €,

Ja, XAP Yeea, X(EP(E)
P(A.) P(Ay)

E(X|6)(w) =

where A, is as defined in Lemma 2.1 .

Lemma 2.3 f:(Q,F) — R is a measureable function if and only if
f= Z dila,
i=1

for some dy,dso, ... ,d, € R and A;s are pairwise disjoint elements of F. 14 is the indicator
function on the set A.

Proof (=) Let dy,ds,...,d, be the distinct images of f. As f is measureable, by Lemma
2.1, each f~1(d;) is a disjoint union of A,s . (A, is as defined in Lemma 2.1.) Then

f=2im1dily—ray-
The converse is clear. [ ]

Definition 2.4 Let 1 < k < n be positive integers. Define
Q, ={(wi,wa,...,w,) | wi = H or T}
the sample space of tossing a coin n times. For each {: (&1,&2,..., &) € Q, define

Ag: {(whw%"'awn) € Qn|§1 = W fOT”i = 132a"'3k}
Note that {A5| e Qi } is a partition of Q. We denote this partition by Py . The o-algebra
(on Q) corresponds to Py, is denoted by Fi. We define Fo = {0,,}. Note that F, is the
power set of Q, and
FoCFL C---CFn.



Corollary 2.5 Let 1 < k < n be positive integers. Then the following statements are equiv-
latent.

1) f: (Qn, Fr) — R is a measureable function.

2) For any € € Qu, f is constant on Ag. In other words, for any &) = (w11,w12, .- -, Win),Ws =
(wor,waa, ..., wan) € Qp, f(W1) = f(Ws) whenever wi; = way; fori=1,2,...,k.

Proof (=) By Lemma 2.3 , f = Y1, dila,, for some d; € R and & € Q. It is clear that
(2) is satisfied.

(«) By assumption f =} .cq f(§)1a,. It follows from 2.3 that f is measureable. []

Corollary 2.6 Suppose we have a map f : Binomial tree — R. Fort = 0,1,2,...,n, f
induces a F; measuareble map

(U, Ft) — R: G — f(t, #:(J)) (2)

3 Arbitarge free pricing of a general binomial process

Let & = (w1,...,wn) € Q, and t < n. Recall that #(J) to be the number of H in the first
t entries of &J. Let P be a probability on (€, F,). Define

A = {(517...,€t7H7£t+2,...7§n)‘giZwifOI'izl,Q,...,t} (3)
At((‘s) = {(517§2a--~7§n)|§i:Wifori:172a"'7t} (4)
Let
- ZEEAP(E)
@(@) = 1-p(d) (6)

We think of p;(dJ) as the probability, under P, of going from node (¢, #:(J)) to
(t,#+(J) + 1) in the binomial tree, given that we arrived at (¢, #.(J)) via J. Note that p; (&)
only depends on the first ¢ entries of &.

Lemma 3.1 Let 0 < i < n—1 be given. Suppose Xiy1 : (Qn, Frr1) — R is measureable.
Then, for any & = (w1, wa,...,wy) €

E]p(Xt+1 |fz)(ﬁ) = Xt+1(wl7. . ,wt,H) pt((ﬁ) + Xt_H(wl,. N ,wt,T) . qt((ﬁ)

Proof Let ¢t and & = (w1,wa,...,w,) € 2, be given. By Theorem 2.2

— —

> gea, Xt+1(OP(E)
P(Az)

E(Xt1 | Fe) (@) =

where Ag = {(&1,...,&) | & =w; fori=1,2,... t}. Let

Al = {(51,.--,§n)|£t+1:H7£i:wi fOI‘Z'=172,...7t}
A2 = {(517"')5’n>|£t+1:Tagi:wiforizlaQP"at}



Note that Ag is a disjoint union of A;, A;. Then (7) becomes

= = — =

o Xt 1 P . Xt ! P
E(Xip1 | F)@) = Zfemp(gﬁ)( )P(E) n feAzP(A—;)( )P(€)

= Xt+1(w1, N .wt,H) pt((D) + Xt+1(w1, e ‘wt,T) . qt(o?i)

(]

as Xy11 is Fyy1-measureable. []

Theorem 3.2 Suppose {X;} is a (P,{F;}) -martingale. If {Y;}1" o is a (P, {F;}I)
-martingale, then fori=1,2,... . n

o; = % (Qn, Fic1) — R
is measurable and
Yk:YO—i—zk:(bi(Xi—Xi,l) fork=1,2,...,n
i=1
Also, for any & = (w1,wa,...,wn) € Ny,
6:() = Ni(wi,...,wi, H) — Ni(w1,...,w;,T)

Xi(wl,...,wi,H) —Xi(wl,...,wi,T)

Let B; be the time t value of a deposit account with an initial investment of $1 at time 0.
Recall D(t, j) is the discount factor over [¢,¢ + 1] at (¢, ) of the binomial tree. By Corollary
(2.6), for t > 0,

Dy : (U, F) — R: & — D(t, #(J)) (8)
is Fi-measureable. Then
B, =Dy'Dyt...DY (9)

Let S be a security and its value at time ¢ is S; and S; is F;-measurable.

Theorem 3.3 Let V be a derivative on S with maturity n. Suppose
1) we are given V,, and it is F,-measureable,
2) {B; 'S}, is a P-martingale.
Then
Vo = ]E[p((l + r)*"Vn)

Proof Let Ny = Ep(g—’; | ;) for t =0,1,2,...,n. Note that

Vo Vi
No = Ep(—= = Ep(— 1
0 ]P’(Bn | Fo) ]P(Bn) (10)
Vo Vi
N, = Ep(—|F.) =— 11
(5 | F) = - ()
By Theorem , for t =1,2,...,n,
b N, — N, _ (N,=N_1)B, 12)

B7'X, - B Y X,.1 X,-BB X,

We now construct a series of self-financing portfolios with the same payoff as V' at time
n. At time t =0,1,...,n — 1, form the portfolio II; :



® ¢y units of the security
e N; — (b**B—ltX‘ units of By

Value of II; at time [t,¢+1) :

X,
G X+ (N, — 250 B~ N, B,
t
Value of II; at time [t + 1,¢+2) :
X
Grp1 X1 + (N — ¢)t+Bl t)BH—
t
By

= Q1 X1 + NeBipr — G Xy

B
= NeBipi+ ¢pep1 (X1 — Xy grl)
t

= Nip1Bip by (12)

The above shows that starting with an initial value Ny, the above series of portfolios are
self-financing. Note that the value of I1,,_; at time n is V,,. As the series of portfolios have
the same paid off as V' at time n. The value of V' and the value of IIj must be the same at
time O to avoid arbitarge. ie

Vo = value of IIy at time 0 = Ny = EP(%)

n

[]
In fact, we have proved the following.
Theorem 3.4 (Assumption as in (3.3)) Fort=0,1,...,n
V, = Ep(B,, ' By, V| F)

Proof Let 1 <ty <n—1 be given. At time t = to,t9+1,...,n — 1, form the portfolio II; as
described in Theorem 3.3. As the value of IT,,_; have the same payoff as V' at time n, their
values at time ¢y must be the same. i.e

Vi, = value of II;, at time ¢
= By Ny,
B, Es (B, Vi, | Fiy)
= Ep(B;'B,V, | Fi,)  as By, is Fi,-measurable

]

In view of the above results, in order to price a derivative on S, we need to find a
probability that turns {B;*S;}; into a P-martingale.



4 Arbitarge-free pricing of binomial process with con-
stant spot rates
Recall that we have a binomial tree and
e (t,j) denotes the node at time ¢ and state j
e 7(t,7) is the interest rate over [t,t + 1] at (¢, )
e D(t,7) is the discount factor at (¢, j)over [t, ¢+ 1].

Note that
D(t. 1) — e~"(t7)  if interest is compounded continuously
(t.5) = m if simple interest is used
and
B(#) = et if interest is compounded continuously
(1+7)t if simple interest is used

Let S be a security and and we are given S;, a F;-measureable function, the value of S at
time ¢, for t =0,1,....

We now define a probability P on (€,,F,) such that {B;'S;}1, is a (P, {F}1y) -
martingale.
For any & = (w1,...,wn) € Qp , define ps(&J), ¢:(J) = 1 — p:(J), to be the solution of

S,(&) = Dy(@) (pt(u_}) Sei(wry . we H) + (@) - S (w1, - ,wt,T)) (13)
Define ( )
o @) fw=H
ft-i-l(w) - { pt(u_j) if W1 = T

Note that f;11(J) only depends on the first k + 1 entries of &.
Define a probability P on (§2,,,F,) as follows. For any & = (w1,...,w,) € ,, define

P(&) = fu(@) - f2(@) - fu (&) (14)
It is easy to check that (5) is satisfied.

Theorem 4.1 {B(t)"1S;}  is a (P,{F:}1) -martingale.
i.€. E]P’(Bl;llsH»l |ft) = B;ISt

Proof Let 0 <t <n—1and & = (w1,wa,...,wy) € Q. Then
Ep (B} Si41 | Fi) (&)
= B (&) Ep(Sit1|F) (@)  as Byyq is Fr-measureable
= B7L(@)- (St(wl,...,wi,H) (@) + Se(wrs .. wi, T) - qt(@')) by Lemma 3.1
= Bih(@)-Di(@)-Si(@) by 14
= By (@) S(@) []

We can now price any derivatives on S using Theorem 3.3.
Example (Notation as above). Suppose we have the following.



° 5(070) = S().

- dS; if upward branch is taken
17 wS, otherwise

where d,u are constants with 0 < d < 1 < u. It follows that
n - -
Sy(@) = 50( . )u#‘(“)d"_#‘(w)

#1 ()

for any & € Q.
e r(t,7) = r, a constant.

As the spot rates are constant, the D(¢, j)s are also constant. We put D = D(t,5). Then,
for any & € Q,,, (13) gives

(1-dD)

D(u —d)

which is independent of . In this case, the probability of going from (¢, #(J)) to (¢ +

1, #:(dJ) + 1) is independent of &. Note that B, = D~*. Let V be a derivative on S, by
Theorem 3.4 is V; = Ep(D" 'V, | 7).

pe(&) =

5 Arbitarge free pricing of interest rate derivatives over
a binomial tree

Recall that we have a spot rate binomial tree. Let X denote the (default-free) zero-coupond
bond with maturity n 4+ 1(n > 1) and face value of $1. By Theorem (3.4), in order to price
a derivative on X, we need to find a probability on (€, F,,) such that

{B;'X,}", is a P-martingale. (15)

We can not just copy the argument in section 4 because we do not know X;, the price of
X at time ¢. In the following, we shall turn {B; ' X;}7_, into a martingale in two steps.
Step 1 Find a probability P on (£2,,,F,) such that

D(n+1) = Ep(B,'D,)
= Ep(DoD;---D,) (16)

Step 2 Use P from Step 1 to define X; for t = 0,1,...,n — 1 such that {B;'X;}7, is a
P-martingale.

Note that if our spot rate binomial tree is generated from Ho-Lee or BDT model, then
P is known (see [1, Chapter 15]). We shall construct a P that satisfies (16) by induction on
n. One application of the construction described below is to verify spot rate binomial trees
generated from Ho-Lee or BDT model. Lets do an example to illusturate how we might go
about finding P that satisifies (16).

Example Case n=3 Suppose the risk neutral probability at (¢, j) of going to (t + 1,5+ 1)
is p(t, 7). (Then the risk neutral probability at (¢, ) of going to (¢t +1,7) is 1 — p(¢, 7). )



p(1,1)

1 1-p(1,1)
0]
1-p(0,0) 1-p(1.0)
0] 1 2
Then, for n = 0,1, (16) gives
D(2) = D(0,0)D(1,1)p(0,0) + D(0,0)D(1,0)(1 — p(0,0)) (17)
and
D(3) = D(0,0)D(1,1)D(2,2)p(0,0)p(1,1) 4+ D(0,0)D(1,1)D(2,1)p(0,0)(1 — p(1,1))
+  D(0,0)D(1,0)D(2,1)(1 - p(0,0))p(1,0)
+  D(0,0)D(1,0)D(2,0)(1 - p(0,0))(1 = p(1,0)) (18)
f

We can deduce p(0,0), from (17). If we assume p(1,1) = p(1,0), then we can get p(1,1) from
(18). We now construct P : (Q2, F2) — [0, 1] in the same as (14). Define

[ p(0,0) if wy = H
fl(“’)_{ 1—p(0,0) ifwizT

- | p(1,1) ifwy =H
fQ(‘*’)_{ 1—p(1,1) ifwz:T

We define P = f; fo . (End of Example)

We now describe the construction of a probability Py : (¢, F;) — [0,1], where t =
1,2,--- ,n such that

D(t+1) =Ep,(DoD1 -+ Dy) (19)
Case n =1 Let py be the solution of

Define Py : 3 — [0,1] by

| po ifw=H
Pl(w){ 1—py fw=T (21)

where w € ; and By (20), (19) is satisfied for ¢ = 1.

Inductive step Suppose we have constructed P; and (19) holds for some 1 < ¢ < n. Define
Pi1: Q1 — [0,1] by

Pt((;j)pt if Wi41 = H
@

Py (&) = { Pi(@)(1—py) fwipr =T 22)



where J = (w1,...,wit1) € Q41 and p; is to be determined from (19). Py(&) is defined to
be P; of the first ¢t entries of &.
We shall choose p, to satisfy (19) :

D(t+2)= Z Py 41(&) Do () D1(&) - . . Dy11 (&) (23)
GEN 41
Let
A = {(wr,.. o wit1) € Qg |wie = HY (24)
B = {(wl, A ,wt+1) S Qt+1 |wt+1 = T} (25)
Then (23) becomes
D+2) = (Y P@D@Di(@).. D (@) )pe
deA
+ (3 PUE) D@ D) - Dess () (1 p) (26)
seB

In the above equation, the coefficients of p; and (1 — p;) are known. Hence we can work out
pt - As all the steps above are reversible, we have constructed a Py that satisfies (19). By
induction, we can find a P that satisfies (16).

We now proceed with Step 2. In the following, let P satisfies (16). Recall that X is a

(default-free) zero coupond bond with maturity n+1 and face value $1. Define Xg = D(n+1),
X, =D, For 0 <t <nand J = (wy,...,wy,) € Q, define

X(3) = Di(@) (pt((ﬁ) Xy (@1, we H) 4 () ~Xt+1(w1,...,wt,T)) (27)

where py(&), ¢ (&) are as defined in (13).

Theorem 5.1 {B; ' X} is a (P, {F;}1,) -martingale.
i.€. EP(B;115t+1 |ft) = Bt_lSt

Proof The same argument in the proof of Theorem 4.1. []
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