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Abstract :

We show how a discrete random variable on a finite probability space
endowed with a binomial distribution may be close to a random variable on
the continuum, in a way which respects the expectations. As an applica-
tion, we approximate the random variables of a discrete geometric binomial
process by continuous exponentials, and thus derive an option price formula,
which contains the formula of Black and Scholes as a special case.

Keywords : binomial distribution, standard normal distribution, Rie-
mann-sum, shadow, discrete geometric Brownian motion, option pricing.

1 Introduction

The present paper studies continuous approximations of discrete expres-
sions in the context of elementary probability theory. The main result,
Theorem 2.1, is a sort of extension of the De Moivre-Laplace central limit
theorem, and concerns the approximation of the expectation of a random
variable with respect to a binomial distribution by an expectation with re-
spect to the standard normal distribution.

Our study is motivated by the derivation of the Black-Scholes formula
(see [4]) for the pricing of European call options. In [5], J. C. Cox, S. A.
Ross and M. Rubinstein presented an option pricing formula in the form of
a discrete binomial expectation, and then they showed that in the limit it
converged to the Black-Scholes formula.

As a consequence of our main theorem we obtain a pricing formula for
continuous options, of which the Black-Scholes formula is a special case. Our
derivation is both more direct and more general than the derivation of Cox,



Ross and Rubinstein: we reduce their sum formula to a Riemann-sum of
the Black-Scholes integral formula. However, our setting is still their simple
discrete pricing model, and thus avoids entirely the complications of limits
of stochastic processes, continuous stochastic processes and measure theory.
Instead, we apply nonstandard analysis, and following N. G. Cutland, E.
Kopp and W. Willinger [6], we assume that the time steps of the discrete
model are infinitesimal. With respect to their approach to option pricing,
we obtained a further simplification, by avoiding the transitions between a
standard and a nonstandard model, and Loeb-measure theory.

Notations and a presentation of the main result: We start by in-
troducing some conventions and notations, and an informal presentation of
the results.

Let

By (i) = ( ]]V )pj(l -p)N

be the jth binomial coefficient and put

Hp = N-p
op = /N-p(l-p)
J— Hp
r, = —
J 7,
(1.1) Q, = {z; | 7=0,1,...,N}.
dz; = xj41 — %

Notice that the z; are “normalized” with respect to the probability dis-
tribution By ,(j): their mean is 0 and their standard deviation equals 1.
For large N we have the well-known approximation
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It may be expected that the approximation carries over to sums:

1
Z BN,p(l) ~ E . Z €_x’2/2d$2'

i< i<



Thus we sketched a derivation of the De Moivre-Laplace central limit theo-

Z BN,p(i) ~ N (j;—’up)

i< P

where A is the normal distribution function given by

(1.2) N ()

=2y

Our main result concerns expectations of the form

(1.3) Zh ) By (i)

where h is a discrete random variable defined on the z;’s
We show that under a suitable condition the above reasoning can be
extended to this sum, leading to the approximations

1 N
Zh BNJ) E . Zh(wz)e_wf/zdwz
1=0

~

L/OO h(z) e 2y
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where A is a continuous real function, closely related to h. So, indeed we
transformed an expectation with respect to the binomial distribution into an
expectation with respect to the standard normal distribution. We remark
that our formal nonstandard proof will be very similar to the observations
above.

Discrete arithmetic and geometric Brownian motions: Our appli-
cation concerns the approximation of the expectation of a random variable
with respect to a discrete geometric binomial process S(t,z). This process
will be defined on a binomial cone . Let T'> 0, N € IN, and dt > 0 be such
that Ndt =T. Then Wr 4 is the cone given by

dm,neN, 0<m<n<N
(1.4) Wrage =< (t,z) € [0,T] X R and
t=mndt, x=(—n+2m)\dt
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Figure 1: A binomial cone for N = 5.
We call dt the period of the cone and

(1.5) T = {0,dt,2dt, ..., Ndt = T}

the time line of the cone. Notice that Wy 4; is the union of all trajectories of
the discrete arithmetic Brownian motion (“Wiener walk”) on the time line
T. Sometimes we simply write Wy instead of Wr 4;. We write Wy (¢) for the
vertical sections of the cone; they correspond to the values reached at time
t by the sample paths of the discrete arithmetic Brownian motion. Usually
dt is infinitesimal, and then we speak also of an infinitesimal binomial cone.
Notice that in this case the vertical step v/dt, though still infinitesimal is
infinitely large with respect to the horizontal step dt. See also Figure 1.

The process S(t,z), called the discrete geometric Brownian motion, is
defined by induction on Wr. Let Sg >0, p € R, 0 >0and 0 < p < 1. We
put

5(0,0) = So

and fort e T, t < T

(1.6) {S(Hdtvl”r\@) = S(t,2)- (1+ pdt + ov/dt)

S(t+ dt, x—\/%) = S(t,x)-(l—l—,udt—ax/%)

Then indeed the process is defined on Wy 4. We assume that the upper
increment of (1.6) has conditional probability p, and the lower increment



has conditional probability 1 — p, and that the increments are independent
in time. Then S(t, z) is properly defined as a stochastic process, and up to
elementary transformations its random variables S(t) = S(¢, -) have binomial
distributions. In particular

Pr {S(T) = So (1+ pdt + m/%)j (14 pudt - a\/%)N_]} = Bn,(j).

Note that if p = 1/2, then p is the relative conditional expectation, or drift
rate of the process and o2 its relative conditional variance, or volatility.

Expectations and option pricing: In the economic context of option
pricing, the process S(t, z) endowed with the conditional probability p = % is
considered as a model describing the possible movements in time of the price
of a share of some stock; trading is allowed at the times {0, dt, 2dt, ..., T},
the drift rate of the stock price being equal to pu, and its volatility . Given
a real-valued function f, the random variable f(S(7")) models a claim on
that share at the future time 7. For instance, let K > 0. Then the claim

FS(T) = (S(T) - K)*

is called the Furopean call option with exercise date T and with striking price
K. 1t models the payoff of a contract giving its owner the right to buy the
share S at time T for the price K.

In fact, we described a stochastic process which is suitable for the discrete
option pricing model of Cox, Ross and Rubinstein. They argue (see also [4])
that if r is the risk-free rate of interest, the correct price Cy of the claim
[ must be the Present Value (henceforth PV) of the expectation of the
random variable f(S(71')) in a risk-neutral world (that is, the drift rate p of
the process S must be r). Let then

(1.7) E. f(S(T))

denote the expectation of the random variable f(S(7')) in a risk-neutral
world. Then
(1.8) Car = PV, (E, f(S(T)))

Recall that the present value in a risk-neutral world of an asset A equals
its future value A(7') at time 7" discounted at the risk-free rate of interest.
That is to say

PV,(A) = A(T)/(1 + rdt)T/4



If the process S(t, z) is in a risky world, (that is, its drift rate p is different
from r) then it is always possible to adjust its conditional probability p to
some value p(r) which will change its drift rate to the prescribed risk-free
rate of interest r € IR. Note that p(r) must satisfy

p(r)(1+ pdt + oVdt) + (1 — p(r)) (1 + pdt — o/dt) = 1 + rdt

S0

(1.9) p(r) = 5+ EVa

In the remaining, the conditional probability of the process S(t, z) is p(r),
but for convenience, we will write it p.

The expectation (1.7) can be written in the form (1.3); indeed define the
affine transformation v, : Q, — Wr(T') by

(1.10) vp(2) = 2VT [ p(l—p)z+ (p - %) %1

Then we have
N
(1.11) E, f(S(T)) = Zf(S(T7 vp(2;)) BN p ()

J=0

Due to the rapid trading at stock markets, economists prefer a market
model with a continuous time line: the Black-Scholes market, for which
the option price Cy becomes the Black-Scholes formula [4]. Now both the
formulation of a Black-Scholes market model, and a derivation of the Black-
Scholes formula within such a model are very intricate (see [9] for a survey).
Instead, as argued by Cutland, Kopp and Willinger in [6], the Cox-Ross-
Rubinstein model is a good alternative, provided the period dt is infinitesi-
mal: it expresses rapid trading, it has the simplicity of a discrete model, and
the option price Cy almost does not depend on the length of dt. In fact,
the difference between C'y; and the Black-Scholes price (y is infinitesimal
under some natural conditions on the order of magnitude of the parameters
involved. Indeed, using the approximation of v, given in Lemma 2.4, that of
S(T') given in Proposition 2.5, and that of the binomial expectation stated
in the main theorem (Theorem 2.1), we prove that

(L12)PV, (E, f(S(T))) = ‘;_Q_T _ /oo f (Soelr=rHHnTE) =2,



The integral of the right-hand side of (1.12) is the Feynman-Kac formula
(see [9]).

There are three main differences between the work of Cutland, Kopp
and Willinger [6] and our approach. First to estimate S(7') they use a non-
standard [to-calculus, while we use a “method of lines.” Second to relate the
discrete and the continuous they use the Loeb-measure and Loeb-spaces [16],
while we use Riemann-sums, such as sketched above, and the external num-
bers of [13] and [14]. Third, their setting is Robinsonian nonstandard analy-
sis [20], while our setting is axiomatic nonstandard analysis IST [18]. The
main difference is that in the latter approach the infinitesimals are included
within the set of real numbers IR, while in the former approach they are
included in a nonstandard extension of IR.

Outline of this paper: This paper has the following structure. In Section
2 we state and prove our main theorem on the approximation of binomial
expectations by standard normal expectations. We also show how some
expectations in a somewhat more general setting may be reduced to the
main theorem, by a lemma of Girsanov type.

In Section 3 we approximate the discrete random variables of the geo-
metric binomial process S(¢,2) by continuous exponential functions, and
then we state and prove the option pricing formula of continuous or nearly
continuous claims, of which the Black-Scholes formula is a consequence.

The reader is referred to [7] or [17] for an introduction to the axiomatic
nonstandard analysis IST, to [1], [2] or [19] for an account of discrete sto-
chastic processes from a nonstandard point of view, and to [9] or [11] for the
classical option pricing theory.

To simplify our approximative and asymptotic calculations we use a
sort of nonstandard O-calculus; i.e. the calculus of external numbers and
external intervals of [13] and [14]. We recall here some notations: the symbol
@ designates the external set of infinitesimals, the symbol £ the external set
of limited numbers, the symbol @ the external set of positive appreciable
numbers and the symbol ob the external set of all positive infinitely large
numbers.



2 Binomial expectations

2.1 Preliminaries

Our main theorem relates the expectation of a discrete, nearly continuous
random variable to the expectation of a properly continuous random vari-
able. Nonstandard analysis makes it possible to express near-continuity of
a discrete function through the notion of S-continuity, and to describe the
transition from the discrete to the continuous by the notion of shadow.

If the difference between two real numbers » and v is infinitesimal, we
write u ~ v. Otherwise, we write u 2 v. We recall the notion of S-continuity:
a function f: D C IR — IR is S-continuous on D if for all z,y € D

v~y = f(z) = f(y)

Standard continuous functions are S-continuous (see robinson-ans), but we
will see examples of discrete (nonstandard) functions which are S-continuous.

Grosso modo, if A is a set, the shadow or standard part of A is the
standard set °A which is most close to it. We do not state the formal
definition of the shadow, which uses the concept of Standardization [18].
Instead we refer to [7], and give some examples, which illustrate how this
notion may relate the discrete and the continuous.

e Let dt > 0 be infinitesimal, then

°dt =0

e Let T be standard, and assume T = Ndt, where N € N is infinitely
large. The shadow of the discrete “infinitesimal time line (1.5)” is the con-
tinuous time interval [0, 7]

°T = [0, T].

e Assume that 0 ;p; 1, and consider the set Q, of (1.1). Again, the
difference 1/4/p(1 — p)N of two successive members of €, is infinitesimal;

note also that €2, contains negative and positive unlimited numbers. The
shadow of €, is the whole continuum:

°Q, = R



e Let r > 0 be astandard real number, and consider the discrete function
f:T — R defined by
ft) = (1 + rde)t/

Note that we have the Euler approximation
(1+ rdt)!/ ¥ ~ o

Clearly fis S-continuous on T. The shadow of f is the continuous function
°f:[0,T] — IR given by

2.1) ft) =

As will be shown in this paper, the shadow of the random variables of the
geometric binomial process S(t,x) are also continuous exponentials.

e In general, let D C IR. A function f: D — IR is called of class S° if
it is S-continuous and takes limited values at limited arguments of D. The
theorem of the continuous shadow of Robinson (see Theorem 4.5.10 of [20],
and [7]) states that such a function has a shadow

°f: D= R

which is standard continuous, and moreover satisfies for all t € °DnN D

e The last example concerns Riemann-sums. Let sta,b, a < b. Let
dz > 0, N € N be such that b — ¢« = Ndz, and consider a function

fi{a,a+dz,...a+ Ndax=b} - R
Assume dz ~ 0 and f is of class S°. Then
N b
> fla+ jdayde= [ )y
i=0 ¢

We may extend the approximation to the “external integration” of [13]
or [14]; i.e. if f is at least defined for all j such that jdz is limited, we
have, in the sense of external numbers

> fdeydr= [ CHdy

jde=C £



In fact our main theorem will be proved along these lines.

Before presenting the main theorem, we formulate some nonstandard
growth conditions. Recall that a function f : R — IR is of exponential
order at +oo if there are numbers A, K, C such that for all |z| > A

|f(z)] < Ke*

A function f is said to be of S-exponential order if the above numbers may
be taken standard. Expressed in terms of external numbers this becomes

f(z) = Le®

for all positive, infinitely large z. It is an elementary nonstandard exercise
to prove the following property: if f: D C IR — IR is of class S°, and of
S-exponential order, its shadow is of exponential order.

In the same spirit, a function f :]0, co[— IR is said to be of rational growth
in 0 or in +oo if there are constants A > 0, K, r such that f(z) < Ka" for
x> A and constants B > 0, L, s such that f(z) < La® for « < B. If these
constants may be taken standard, then f is said to be of S-rational growth
at 0 and +oo. Also, if f is of class S° and of S-rational growth, its shadow
is of rational growth.

2.2 The main theorem

Theorem 2.1 (Main Theorem) Let N ~ 400, Oépé 1 and Q, be the

probability space given by (1.1) and endowed with the binomial distribution
By . Leth: Q, — IR be a random variable of class S°, and of S-exponential
order in +o0o. Then

(2.2) E(h) ~ \/%/_O;Oh(x) L2y

The proof of the theorem will be divided in two parts: an approximation
of the binomial coeflicients, and the transition of a Riemann-sum into the
Riemann-integral.

Proposition 2.2 Let N ~ +oc, 0 ;p; 1, and 0 < j < N. Then

10



1. for all j = p, + Loy,

23)  Bul) = —-ew [—% - (%) ]

2. for all j = p, £0b-0,
Proof : A straightforward calculation yields
Buylit1) 1= = mp/o+ L/}
Byp(i) 1+ =)l =p)/oi+L/o]
To show (1), note that (2.5) may be simplified to
Bnp(i+1) 1— M £

J— Hp
Op

(2.4) Bn ,(j) = exp (—gé

(2.5)

— = + =
By, (5) o2 O'Z%
So
: [7—up] .
Bn () ( ¢ £ )
2.6) ——-""— = exp log|1—- =+ —
2 By )~ & AR

[j_ﬂp] . . 2
_ IR N U
- 3 | afaz)‘“p( s (2) +@)

To estimate the term By, ([itp]), note first that by the Mass Concentra-
tion Lemma [3] we have

> Bny(i)=1+o0.
j:Mp+£0'p
So
BN,p(j)

1
(27) - By (1)

BN7p (I:ILijI) j:MP‘I'EUp

2
1 | — 1
= o, Z exp (—5 (‘]—U'up) -I-@) T
j:Mp+£0'p p p
= o, (/ e~ 2y + @) =0, - V2r(l+ Q)
L

11



Now (2.6) and (2.7) imply (2.3).
To show (2), assume first that j > p,+L0o,. Then (2.5) may be simplified
Bnp(i+1) L

- <1+ —.
Bn () Op

to

Hence, using the fact that all By ,(j) are infinitesimal

_I_ ,C (j_“P)/z -
BN,p(j) < By, ([‘%D . (1 + —) < exp (,C . ‘M)

Op Op

This implies (2.4). The case where j < p,, + Lo, is treated similarly.

Comment : There are many proofs, both classical and nonstandard, of
the proposition above, or closely related formulae. See for instance [3], [8],
[15] or [10]. The above proof has the advantage of being straightforward,
of avoiding the use of Stirling’s formula, and of estimating the tails of the
binomial distribution.

Proof :[of Theorem 2.1] Using Proposition 2.2 and the additivity of
external integration proved in [13] and [14], we obtain

E(h) =) Bnp()h(z;)

-

o
Il
=]

Z (e_l’?/zh(xj) + @) dz;

j:Mp+£0'p
+ Z e—96|1’]|e@|1’]|
J=pptobop

51 -
5

To estimate the first sum we use an approximation by the Riemann-integral
and to get a (rough) estimate of the second sum, we use the well-known
integral-majoration of decreasing series. We find

1 22 —|z;
E(h) = E_Z h(z;) -e J/dej—|—®~' Z e Jlda:j
Ji=uptLop J=pptopa,
1 / 2
= —— [ °h(z) -7 " /de—|—®—|—®~/ e 1ol dy
V2mJe (=) le|> L

1 o° 2
= — °h(z) e 2de +
\/271'/_00 ( )

12



Comment : There are of course many alternative versions of the above
theorem. What matters, is that the mass (see [3]) of the random variable
h with respect to the binomial distribution is included within £, and that
on this set, the sum XBy ,(j)h(z;) acts as a Riemann-sum. This is for
instance the case when / is the restriction to €2, of a standard Riemann
integrable function which is bounded on every standard interval. Note that
for st A, and i = xj_ 4] We thus obtain the De Moivre-Laplace central

limit theorem
> By~ N4
(i—up)/op<A

where A is given by (1.2).
Further, the main theorem is a consequence of a fundamental theorem
of Loeb-measure theory. Indeed,mutatis mutandis, the finite sequence

{Bva(j) h($])/d$] | J= 0717"'7N}

is a “lifting” of the standard Lebesgue integrable function °h(z) -(3_952/27 and
then, say, Theorem IV.1.16 of [12] applies.

2.3 Relative normalisation

The main theorem concerns random variables on the probability space

Qp:{xh "'7$N}7

i.e. the space on which the probability distribution By , is normalised. We
will consider here a more general case of functions on a space which are easily
transformed into random variables on the normalised probability space €2,,.

Definition 2.3 Let N € IN and Q = {1, ..., yn} be a finite set. The
transformation v, : Q, — 1 defined by

vp(2j) =y

where v, is given by (1.10), is called a normalisation of Q with respect to the
binomial distribution By .
Let f:Q — IR be a function. The random variable f, : Q, — IR defined
by
fol@) = f(vp(2))
is called the relative normalisation of f with respect to the binomial distrib-
ution By .

13



If Q C IR consists of N equidistant points, the normalisation of €2 is an
affine transformation. Next lemma gives an approximation of this trans-
formation in case Q is (the image of) the random variable Wr(T) of the
binomial cone given by (1.4); i.e. the case of N equidistant points at dis-
tance 2v/dt and of mean 0.

Lemma 2.4 Let T > 0 be appreciable, dt > 0 be infinitesimal, and N € IN
be such that Ndt = T. Assume p = %—I— 04\/%, where o is limited. Let v, be
the normalisation of Wy (T') with respect to the binomial distribution By ,.
Then for all x € 2,

vp() ~ 20T + VT
Proof : Notice that at most z = ,C/\/% Hence

vp(x) = 20T 4+ /T(1 — 4a2dt)x = 2aT +VTx + Ldt - x

= 2aT +VTz + 0

The lemma may be seen as a very simple case of the classical Girsanov
Theorem.

Notice that under the above conditions, a real function f defined on €2 is
of class S° and of S-exponential order if and only if its relative normalisation
fp is of class S° and of S-exponential order.

ithmetic

Proposition 2.5 LetT > 0 be appreciable, and W be a binomial cone. Let
S(t,z) be the discrete geometric Brownian motion on Wy with initial value
So > 0, drift rate i and volatility 0. Assume that Sq and o are appreciable,
and that p is limited. Then for all limited x

S(T,x) =~ Sp - lw=o? ()T +or
Furthermore S(T',-) is of S-exponential order at +oc.
Proof : Let N be any unlimited integer, and let dt = T/N. (For

convenience, we will suppose that N is even.) We estimate S(T', z) by going
first horizontally from S(0,0) to S(7,0), and then vertically from S(7',0) to
S(T, ).
For all (¢,z) on Wy
S(t+2dt,z) = S(t,x)- (1 —I—Mdt—I—O'\/%) . (1 + pdt — O'\/%)

= S(t,0) (1+(2u— o+ 0)dt)

14



Hence

S(T,0) = S(0,0)- (14 (21 — % + 2)dt)T/24) ~ g . (=?/29)T 1 1

Also
1—|—,udt—|—0\/%
S(t,z+2Vdt) = St z)-
( ! ) (t,2) 1—|—,udt—0\/%
= S(t,0)- (1+ (20 +0)Vdr)
So

o/ (2V/dt
S(T,z)=S(T,0)- (1 + (20 + @)\/%) /(&) _ S(T,0) - e+
Hence for all limited z
S(T,2) = Sq - eln=o"/2)THow

and for all (T, z) on Wr
S(T,z) =L -e%

which means that S(7',-) is of S-exponential order.

The final theorem gives an infinitesimal approximation of the price Cy of
a claim f(S(T)) in a Black-Scholes market, using the Cox-Ross-Rubinstein
model (see formulae (1.8) and (1.11)) with infinitesimal trading periods.

Theorem 2.6 (Option Pricing Formula) Let T' > 0 be appreciable and
Wy be an infinitesimal binomial cone. Let S(t,z) be the discrete geometric
Brownian motion on Wy with appreciable initial value So > 0, limited drift
rate 1 and appreciable volatility o*. Let r be a limited risk-free rate of
interest. Let f: S(T) — IR be a S-continuous claim of S-rational growth at
0 and at +o0, and let Co = ° (PV,.(L, f(S(T)))) be the shadow of its price.
Then

e—rT
V2

Proof : Let dt be the infinitesimal time period associated to the cone
Wr. Let p := p(r) be the conditional probability which changes the drift
rate of S(¢,z) from p into r. By (1.9)

L
p(r) = 3 + 20“\/%

/OO of (Soe(r—cr2/2)T—|—cr\/Tx) . €_x2/2d$

15



Notice that (r — p)/20 is limited. Hence by Proposition 2.5 and Lemma 2.4,
the relative normalisation of the random variable S(7', -) with respect to the
binomial distribution By , satisfies, for limited z,

Sp(T,z) ~ So-exp<(,u—02/2)T—|-02 (%)T—I—aﬁx)
o~ So-exp((r—az/Q)T+®\/Tx).

Clearly (foS), = foS, is of class S? and of S-exponential order in Foo.
Hence by Theorem 2.1
1 > 2 2
~ o L (r=a? )T +o T\ —22/2
ESST)= 2= | (So-e ) e 2da
Because Cy ~ PV, (E, f(5(T))), formula (2.1) follows from (2.3).

We notice that the pricing formula (2.1) corresponds to the classical for-
mula in case f is (the restriction to S(7") of) a standard continuous function
of rational growth. In particular, we thus obtain the Black-Scholes formula
for the European option.

Corollary 2.7 (Black-Scholes formula) Assume the conditions of The-
orem 2.6 are satisfied. Let Cy be the shadow of the price of a the Furopean
call option (S(T) — K)T with striking price K and exercise date T'. Put

e log(So/K) — (r — 0%/2)T
0= ST

Then
(2.2) Co S0+ N (w0 +oVT) = Ke - N (o) .

Notice that (2.1) and (2.2) become identities if Sy, K, r, ¢ and T are
standard. The formula (2.2) is a straightforward standard transformation
of formula (2.1), which we omit.
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