
80  Wilmott magazine

Abstract
In this article we discuss some of the Boost libraries that were introduced in 
Part I. The goal of Part I was to categorise and give a global overview of the 
most important Boost libraries. It was written to give some directions on the 
usefulness of the libraries in a given context. The goal of the current article 
is to focus on a number of libraries that in our opinion help promote the 
flexibility, functionality and performance of C++ applications. We introduce 
these libraries and we give some examples to illustrate their applicability.

Keywords 
Boost, multi-paradigm programming, C++, option pricing, software design

1 Some Views on Software Development
We begin our discussion with remarks on some of the technical problems 
that confront developers when they wish to implement flexible and main-
tainable software systems. The discussion is highly simplified and some-
what subjective but it does discuss a number of high-level problems that 
most developers (and project managers) find challenging. Some of the major 
problems are:

•  Problem 1: Modern object-oriented software systems tend to be 
implemented in a bottom-up manner. The resulting object network 
 consists of tightly-coupled modules that are very difficult to modify 
and to extend. Furthermore, it is usually very difficult to use a sub-
set of the functionality precisely because each module is directly 
or indirectly connected to every other module. In graph theory, we 
can say that the object network has approximately one connected 
 component.

•  Problem 2: C++ — in contrast to Fortran — has relatively few de-facto 
standard libraries and supporting software tools for scientific, finan-
cial and engineering applications. This state of affairs has persisted 
well into the twenty-first century. 

•  Problem 3: C++ is a multi-paradigm language but many developers still 
tend to create applications based on large and deep class hierar-
chies that become unstable as more functionality is added to them. 
Developers seem to be less comfortable with the generic programming 
model that C++ supports using templates. Anecdotal evidence suggests 
that fifty percent of quant developers are familiar with C++ but only 
twelve percent use the containers and algorithms from the Standard 
Library.

•  Problem 4: C++ is a systems programming language. Of course, it is used 
to develop application software but the maintainability costs are rela-
tively high. In particular, the fact that C++ does not support interfaces as 

The Boost C++ Libraries: Part II
Daniel J. Duffy
Datasim Education BV, e-mail: dduffy@datasim.nl

first-class objects severely restricts our ability to design and implement 
loosely-coupled software based on system decomposition techniques. 

We now address some of these problems and we attempt to resolve them 
by using C++ in combination with design patterns and appropriate Boost 
libraries.

2 C++ Status Report: Multi-Paradigm Programming 
Language
C++ is a popular language and it allows developers to create flexible appli-
cations by encapsulating domain entities in classes. Furthermore, we can 
create complex classes from simpler ones using the Composition, Aggregation 
and Inheritance mechanisms. In general, these are client-server relationships 
between one class (the client) that uses the services of one or more other classes 
(called server classes) by calling their member functions. This situation leads to 
an Object Connection Architecture (OCA) because all inter-module connections are 
from object to object. The major disadvantage is that all modules and classes 
must be built before the architecture is defined and hence this approach can-
not be used to lay out the plan for a software system. This is in contrast to an 
Interface Connection Architecture (ICA) that defines all connections between com-
ponents of a system using only the interfaces. Interfaces need to specify both 
provided and required features. In general, a feature is a computational element 
of a component, for example a function, port or action. For a detailed intro-
duction to object and interface connection architectures, see Leavens 2000.

The crucial issue is to implement provides and requires interfaces in 
C++. To this end, we use the Boost Function library to implement provides 
interfaces and the Boost Signals library to implement requires interfaces. 
Before we go into the details we describe these interfaces using standard 
UML component diagrams, an example of which is shown in Figure 1. In this 
case component C1 provides the interface I3 to potential clients and it has 
the requires interfaces I1 and I2 from server components C2 and C3, respec-
tively. In other words, C1 offers services but it also requires services from 
other server components. 

We now give a simple example of a class that implements the price func-
tion for the Black Scholes formula and that shows how to implement pro-
vides and requires interfaces. This class also requires the data from another 
interface that we implement as a Boost function. This latter entity is respon-
sible for producing the actual data that is needed by the pricing formula. 
We now describe the C++ setup in detail. The main objective is to show how 
to price a call option by implementing the features that we see in Figure 1. 
In particular the client class Pricer3 provides an interface to compute the 
option price. It communicates with an object that is responsible for creating 
the data that is used by the pricing formula. The client has no knowledge of 

80-86_WILM_Nov_2011_TP_Duffy_Final.indd   8080-86_WILM_Nov_2011_TP_Duffy_Final.indd   80 04/01/12   3:12 PM04/01/12   3:12 PM



Wilmott magazine 81

^

TECHNICAL PAPER

 {
  mySignal.disconnect(&slot);
 }
};

We now customise this class in different ways. In particular, we can implement 
the data source as a global C function, a function object, a class’ member func-
tion or even a lambda function using the features in the new C++ standard. In 
general, this level of customisability is realised by the appropriate use of the 
Boost libraries that support higher order functions. For example, we can imple-
ment the data source as a simple global function and as a function object which 
can be customised for various kinds of options, as the following code shows:

struct Data
{ // Option data

  double T;
  double K;
  double r;
  double sig;
  double b; // Cost of carry
};

void PlainDataSource(Data& val)
{ // Simple data source; standard stock

  val.T = 0.25;
  val.K = 65.0;
  val.r = 0.08;
  val.sig = 0.3;
  val.b = val.r;
 
}

enum OptionType {Stock, Index, Future};

struct GeneralisedDataSource
{ // Allows for different kinds of options;
  // this is a function object

 OptionType optType;

 GeneralisedDataSource() : optType(Stock) {}

 GeneralisedDataSource(OptionType optionType) :   
  optType(optionType) {}
 void operator () (Data& val) 
 {
  val.T = 0.25;
  val.K = 65.0;
  val.r = 0.08;
  val.sig = 0.3;
  val.b = val.r;

the precise implementation of the data source object; this decision has been 
delayed and it for other parts of the software system to implement it:

// One version of an implementation of ICA
// A class that offers an interface and
// requires another interface
struct Pricer3
{

  // Embedded notifier
  boost::signal<void (Data& data)> mySignal;

  // Entity that creates data
  boost::function<void (Data& data)> slot;

 Pricer3(boost::function<void (Data& data)> source) 
  : mySignal(boost::signal<void (Data& data)> ())
 {
  slot = source;
  mySignal.connect(slot);
 }

 double compute(double S)
 {
  // Define the data and slot
  Data data;
 
  // Connect to slot and initialise the data
  mySignal(data);
  
  double tmp = data.sig * sqrt(data.T);

  double d1 = ( log(S/data.K) 
   + (data.b+ (data.sig*data.sig)*0.5 ) *   
    data.T )/ tmp;
  double d2 = d1 - tmp;

  return (S * exp((data.b-data.r)*data.T) * N(d1)) 
   - (data.K * exp(-data.r * data.T)* N(d2));
 }

 ~Pricer3()

Figure 1: UML Component Diagram.

C2C1

C3

I3

I2

I1

Provides

Requires

80-86_WILM_Nov_2011_TP_Duffy_Final.indd   8180-86_WILM_Nov_2011_TP_Duffy_Final.indd   81 04/01/12   3:12 PM04/01/12   3:12 PM



82  Wilmott magazine

  if (optType == Future)
   val.b = 0.0;

  // more options
 }
};

We now use these functions in a test program which we call the major client 
because it is here that we decide to use these functions. The class Pricer3 
knows nothing about these functions and is policy-free in this sense:

int main()
{ // Major client 

 {
  Pricer3 pricer3(PlainDataSource);

  double S = 60.0;
  cout << ''Stock, full generalised version: '' <<  
    pricer3.compute(S);

  GeneralisedDataSource mySource;

 }

 {
  GeneralisedDataSource mySource;
  Pricer3 pricer3(mySource);

  double S = 60.0;
  cout << ''Stock, full generalised version:'' <<   
   pricer3.compute(S);
 }

 return 0;
}

Having completed this self-contained example, we now draw some general 
conclusions on using C++ in a wider context than just the pure object- 
oriented one:

•  We can create classes and code that are independent of any specific 
programming paradigm and developer preferences. It is even pos-
sible to create code that is a mixture of object-oriented and modular 
 programming techniques. 

•  Developing applications using the above two-tier approach leads to 
efficient, reliable and interoperable code. This separation of concerns 
ensures that each class has a single major responsibility, thus leading 
to higher maintainability levels.

•  The results and ideas in the above example can be used to generalise 
the object-oriented design patterns that are described in Gamma 1995. 
In a sense, design patterns based on objects are too restrictive for cer-
tain kinds of applications.

•  The current methods can be used – in combination with system parti-
tioning techniques – to design large systems consisting of components 
that communicate using provided and requires interfaces (Duffy 

2004). We can choose the kind of functions to use based on different 
quality criteria, for example efficiency. In that case using global func-
tions incurs less overhead than using dynamic polymorphism (by vir-
tual functions) in class hierarchies.

We continue with a discussion of some specific Boost libraries. The empha-
sis is on giving an overview of the main features in these libraries and some 
representative examples of use.

3 Statistics Distributions
We give an overview of the univariate statistical distributions and functions 
in the Math Toolkit. The emphasis is on discussing the functionality in the 
toolkit, in particular:

•  Discrete and continuous distributions, their member functions and 
defining properties.

•  Other non-member functions, for example the probability and cumu-
lative density functions, kurtosis and skewness.

•  Some examples to motivate how to use the classes in the toolkit.

All distributions use random variables which are mappings of a probability 
space into some other space, typically a real number. A discrete probability 
distribution is one in which the distribution of the random variable is dis-
crete while a continuous probability distribution is one whose cumulative 
distribution is continuous.
The discrete probability distributions are:

• Bernoulli (a single trial whose outcome is 0 (failure) or 1 (success)).
•  Binomial (used to obtain the probability of observing k successes in N 

trials).
•  Negative Binomial (used to obtain the probability of k failures and r 

successes in k + r trials).
•  Hypergeometric (describes the number of events k from a sample n 

drawn from a total population N without replacement).
•  Poisson (expresses the probability of a number of events occurring in a 

fixed period of time).

The continuous probability distributions are:

• Beta (used in Bayesian statistics applications).
•  Cauchy-Lorentz (used in physics, spectroscopy and to solve differential 

equations).
• Chi Squared (used in statistical tests).
• Exponential (models the time between independent events).
• Extreme Value (models rare events).
•  F (The Fisher F-distribution that tests if two samples have the same 

variance).
• Gamma (and Erlang) (used to model waiting times).
•  Laplace (the distribution of differences between two independent 

 variates with identical exponential distributions).
•  Logistic (used in logistic regression and feedforward neural network 

applications).
•  Log Normal (used when the logarithm of the random variable is 

 normally distributed).
• Noncentral Beta (a generalisation of the Beta Distribution).
•  Noncentral Chi-Squared (a generalisation of the Chi Squared 

Distribution).

80-86_WILM_Nov_2011_TP_Duffy_Final.indd   8280-86_WILM_Nov_2011_TP_Duffy_Final.indd   82 04/01/12   3:12 PM04/01/12   3:12 PM



Wilmott magazine 83

^

TECHNICAL PAPER

•  Noncentral F-distribution (a generalisation of the Fisher  
F distribution).

• Noncentral T (generalisation of Student’s t Distribution).
• Normal (Gaussian) (probably the best known distribution).
• Pareto (compare large and small numbers).
•  Rayleigh (combine two orthogonal components having an absolute 

value).
•  Student’s t (the ‘best’ approximate distribution to an unknown 

 distribution).
•  Triangular (used when a distribution is only vaguely known, for 

 example in software projects).
• Weibull (used in failure analysis models).
•  Uniform (also known as the rectangular distribution and it models a 

probability distribution with a constant probability).

Each of the above distributions is implemented by a corresponding template 
class with two template parameters. The first parameter is the underlying 
data type used by the distribution (the default type if used is double) and 
the second parameter is the so-called policy. In general, a policy is a fine-
grained compile-time mechanism that we can use to customise the behav-
iour of a library. It allows us to change error-handling mechanism or calcula-
tion precision at both program level and at the client site.

The global functions are:

• cdf (cumulative distribution function).
• cdf complement (this is 1 – cdf).
•  hazard (the event rate at time t conditional on survival until time t or 

later; useful when modelling failure in mechanical systems).
•  chf (cumulative hazard function that measures the accumulation of 

hazard over time).
•  kurtosis (a measure of the ‘peakedness’ of a probability distribution).
•  kurtosis_excess (does a distribution have fatter tails than a normal 

 distribution?).
• mean (the expected value).
•  median (the value separating the lower and higher halves of a distribution).
•  mode (the point at which the probability mass or density function 

takes its maximum).
• pdf (probability density function).
•  range (the length of the smallest interval which contains all the data).
• quantile (points taken at regular intervals from the cdf).
•  skewness (a measure of the asymmetry of a probability distribution).
•  support (the smallest closed interval/set whose complement has 

 probability zero).
• variance (how far do values differ from the mean).

We discuss a well-known case. The normal (or Gaussian) distribution is one 
of the most important statistical distributions because of its ability to model 
many kinds of phenomena in diverse areas such as economics, computation-
al finance, physics and the social sciences. In general, the normal distribu-
tion is used to describe variables that tend to cluster around a mean value. 
We now show how to implement the normal  distribution in Boost and we 
show how to call the member and  non-member functions:

// Non-member functions
#include <boost/math/distributions.hpp>
#include <boost/math/distributions/normal.hpp>

#include <iostream>
using namespace std;

int main()
{
  // Don’t forget to tell compiler which namespace
  using namespace boost::math;

  // Default is ‘double’
  normal_distribution<> myNormal(1.0, 10.0);
  cout << "Mean: " << myNormal.mean()
        << ", standard deviation: "
        << myNormal.standard_deviation() << endl;

  // Distributional properties
  double x = 10.25;

  cout << "pdf: " << pdf(myNormal, x) << endl;
  cout << "cdf: " << cdf(myNormal, x) << endl;

  // Choose another data type and now a N(0,1) variate
  normal_distribution<float> myNormal2;
  cout << "Mean: " << myNormal2.mean()
        << ", standard deviation: "
        << myNormal2.standard_deviation() << endl;

  cout << "pdf: " << pdf(myNormal2, x) << endl;
  cout << "cdf: " << cdf(myNormal2, x) << endl;

  // Choose precision
  // Number of values behind the comma
  cout.precision(10);

  // Other properties
  cout << "\n***normal distribution: \n";
  cout << "mean: " << mean(myNormal) << endl;
  cout << "variance: " << variance(myNormal) << endl;
  cout << "median: " << median(myNormal) << endl;
  cout << "mode: " << mode(myNormal) << endl;
  cout << "kurtosis excess: "
         << kurtosis_excess(myNormal) << endl;
  cout << "kurtosis: " << kurtosis(myNormal) << endl;
  cout << "characteristic function: "
         << chf(myNormal, x) << endl;
  cout << "hazard: " << hazard(myNormal, x) << endl;

  return 0;

}

We conclude this section with some remarks on using the current 
functionality in combination with Excel. The primary motive was to 
call Boost functionality from C#. The Microsoft .NET supports the crea-
tion of interoperable applications consisting of both C++ and C# code. 

80-86_WILM_Nov_2011_TP_Duffy_Final.indd   8380-86_WILM_Nov_2011_TP_Duffy_Final.indd   83 04/01/12   3:12 PM04/01/12   3:12 PM



84  Wilmott magazine

To this end, we use the C++/CLI language to create wrapper classes that 
embed native C++ code and that can be called from C#. An example is 
the case of the non-central Chi-squared distribution. We need to use its 
functions by calling them from C#. The corresponding C++/CLI wrapper 
class is:

#include <boost/math/distributions.hpp>

using namespace System;

// Wrapper for the
// boost::math::non_central_chi_squared_distribution
// class. We use the .NET naming conventions
// instead of the original C++ name
public ref class NonCentralChiSquaredDistribution
{
private:
 // The wrapped native class
 boost::math::non_central_chi_squared_distribution<>*  
  m_distribution;

public:
 // Default constructor
 NonCentralChiSquaredDistribution();

 // Constructor with lower and upper value
 NonCentralChiSquaredDistribution(double df, double  
  lambda);

    // Finaliser (called by garbage collector
    // or destructor)
 !NonCentralChiSquaredDistribution();

 // Destructor (Dispose)
 ~NonCentralChiSquaredDistribution();

 // Get the native object
 boost::math::non_central_chi_squared_distribution<>*  
  GetNative();

 double Pdf(double x);
 double Cdf(double x);
};

We are primarily interested in the probability density and cumulative prob-
ability density functions that we have implemented as follows:

double NonCentralChiSquaredDistribution::Pdf(double  x)
{
 return boost::math::pdf(*GetNative(), x);
}
double NonCentralChiSquaredDistribution::Cdf(double  x)
{
 return boost::math::cdf(*GetNative(), x);
}

We see how easy it is to call Boost code from C#. This is a general pattern that 
can also be used in other situations.

The Math Toolkit is well-documented (see www.boost.org) and it contains 
full descriptions of the classes, the corresponding global functions and 
numerous applications. 

4 Special Functions
In this section we introduce a number of software modules from the Boost 
Math Toolkit for the so-called Special Functions. Categories are:

• Gamma and beta functions.
• Factorials and binomial coefficients.
• Error function.
• Orthogonal polynomials.
• Bessel functions.
• Elliptic integrals.
• Zeta functions.
•  Other functions (exponential integrals and sinus cardinal 

 functions).

These functions have many applications in mathematical physics, statistics 
and engineering. For example, a number of statistical distributions are 
defined in terms of gamma and beta functions. Other applications include 
the solution of differential equations, signal processing and eigenvalue 
analysis. The library supports many of the functionality that these applica-
tions need. Using the library in your applications is easy and an advantage is 
that the code is portable. You do not have to write your own library suite or 
use proprietary class libraries.

The Math Tookit has documented these special functions in great detail 
and for this reason we do not repeat the mathematical formulae here. 
Instead, we take the example of the error function and its variants:

#include <boost/math/special_functions/erf.hpp>
#include <cmath>
#include <iostream>
using namespace std;

int main()
{
 using namespace boost::math;

 // Error function
 double z = 2.75;
 cout << "Error function:" << erf(z) << endl;
 z = -3.0;
 cout << "Error function: " << erf(z) << endl;

 // Complement of error function
 z = 2.75;
 cout << "Error function, complement:" << erfc(z) <<  
    endl;
 z = -3.0;
 cout << "Error function, complement:" << erfc(z) <<  
     endl;

80-86_WILM_Nov_2011_TP_Duffy_Final.indd   8480-86_WILM_Nov_2011_TP_Duffy_Final.indd   84 04/01/12   3:12 PM04/01/12   3:12 PM



Wilmott magazine 85

^

TECHNICAL PAPER

 
 // Inverse error function
 double u = 0.5;
 try
{
  // The variable ‘u’ must be in range (-1,1)
  // CHECK THE ERROR MESSAGE
  cout << "erf inverse: " << erf_inv(u) << endl;
  cout << "erf inverse: " << erf_inv(u - 1.0)
         << endl;

  // The variable ‘u’ must be in range (0,2)
  // CHECK THE ERROR MESSAGE
  cout << "erfc inverse: " << erfc_inv(u) << endl;
  cout << "erfc inverse: " << erfc_inv(1.99999)
         << endl;
}
 catch(const std::exception& e)
 {
  cout << e.what() << endl;
 }

 cout << "Give a value: "; double val; cin >> val;   
  double t; cin >> t;

 cout << 0.5 * (1.0 + erf(val/sqrt(4.0*t)));

 return 0;
}

In general, the special functions in Boost are very easy to use and they 
have many applications in engineering, mathematical physics and 
 computational finance.

5 Matrix and Vectors in uBLAS Library
The Boost uBLAS library supports vector and matrix data structures and 
basic linear operations on these structures. The syntax closely reflects math-
ematical notation because operator overloading is used. Furthermore, the 
library uses expression templates to generate efficient code. The library has 
been influenced by a number of other libraries such as ATLAS, BLAS, Blitz++, 
POOMA and MTL. The main design goals are:

• Use mathematical notation.
• Efficiency (time and resource management).
•  Functionality (provide features that appeal to a wide range of applica-

tion areas).
•  Compatibility (array-like indexing and use of STL allocators for storage 

allocation).

The two most important data structures represent vectors and matrices. 
A vector is a one-dimensional structure while a matrix is a two-dimensional 
structure. We can define various vector and (especially) matrix patterns 
that describe how their elements are arranged in memory; examples are 
dense, sparse, banded, triangular, symmetric and Hermitian matrices. 

These patterned matrices are needed in many kinds of applications and 
they can be used directly in code without you having to create them 
 yourself. Furthermore, we can apply primitive operations on vectors and 
matrices:

• Addition of vectors and matrices.
• Scalar multiplication.
• Computed assignments.
• Transformations.
• Norms of vectors and matrices.
• Inner and outer products.

We can use these operations in code and applications. Finally, we can define 
subvectors and submatrices as well as ranges and slices of vectors and 
 matrices.

Vectors and matrices are fundamental to scientific and engineering 
applications and having a well-developed library such as uBLAS with ready-
to-use modules will free up developer time. Seeing that matrix algebra con-
sumes much of the effort in an application we expect that the productivity 
gains are appreciable in general.

uBLAS supports these different kinds of matrix structures and patterns 
as well as the operations that apply to them, for example:

• Patterned matrices, for example symmetric, triangular, banded and 
Hermitian matrices.

• Vector and matrices expressions, for example vector and matrix products 
and norms.

•Vector and matrix proxies, for example creating ranges and slices.

There are many applications of matrix theory. We discuss a particular 
application to the solution of matrix systems, namely LU decomposition. 
The specific problem is given a matrix we wish to decompose it into the 
product of a lower-triangular matrix and an upper-triangular matrix. To this 
end, we can use the patterned matrices in uBLAS, use the algorithm for LU 
 decomposition and map it to C++:

void InitLU(const u::matrix<double>& A,
  u::triangular_matrix<double, u::lower>& L,
  u::triangular_matrix<double, u::upper>& U)
{ // LU decomposition: A -> L*U

 double sum;
 unsigned N = A.size1();

 // Common to make all diagonal elements == 1.0 
 for (unsigned k = 0; k < N; ++k)
 {
  L(k,k) = 1.0;
 }

 for (unsigned j = 0; j < N; ++j)  // Loop over columns
 {
  for (unsigned i= 0; i <= j; ++i) // Columns
  {
   sum = 0.0;
   for (unsigned k = 0; k < i; ++k)

80-86_WILM_Nov_2011_TP_Duffy_Final.indd   8580-86_WILM_Nov_2011_TP_Duffy_Final.indd   85 04/01/12   3:12 PM04/01/12   3:12 PM



86  Wilmott magazine

   {
    sum += L(i,k)*U(k,j);
   }
   U(i,j) = A(i,j) - sum;
  }

  // L
  for (unsigned i = j+1; i < N; ++i) // Rows
  {
   sum = 0.0;
   for (unsigned k = 0; k < j; ++k)
   {
    sum += L(i,k)*U(k,j);
   }
   L(i,j) = (A(i,j) - sum) / U(j,j);
  }
 }
}

In general, uBLAS can be used by code that needs to deploy matrix and 
 vector structures.

6 Conclusion
We have given an overview of some important libraries in Boost. We focused 
on a number of issues that promote the flexibility and applicability of C++ 
applications. In particular, the mathematical libraries are useful when 
 creating C++ applications. 

REFERENCES

Demming, R and Duffy, D.J. 2010. Introduction to the Boost C++ Libraries Volume I- 
Foundations. Datasim Press: Amsterdam.
Demming, R. and Duffy, D.J. 2011. Introductions to the Boost C++ Libraries Volume II – 
Advanced Libraries. Datasim Press: Amsterdam.
Duffy, D.J. 2004. Domain Architectures Models and Architectures for UML Applications 
John Wiley & Sons.
Gamma, E., Helkm, R., Johnson, R. and Llissides, J. 1995. Design Patterns: Abstraction and 
Reuse of Object-Oriented Design. Boston: Addison-Wesley: Boston.
Leavens, G.T. and Sitaraman, M. 2000. Foundations of Component-Based Systems 
Cambridge University Press.

Finally, we give some personal views on how Boost can be used to help 
developers create applications in computational finance. In general, it is 
more effective to use mature and tested libraries rather than creating your 
own libraries unless of course it is in your own area of expertise. To this end, 
a common software design technique is to develop software systems in lay-
ers: software in higher layers use the software in lower layers. In the current 
context quant developers can use the functionality in STL and Boost and 
integrate it into computational finance. Since there are more than one hun-
dred Boost libraries we first need to determine which libraries are suitable 
and second how to use these libraries in applications. By examining the cat-
egories that we discussed in Part I we see that these objectives are feasible. 

Daniel J. Duffy works for Datasim Education BV. His main activities are software design and prac-
tice, and the application of modern numerical methods to option pricing applications. He has a PhD 
in numerical analysis from Trinity College, Dublin.

W

80-86_WILM_Nov_2011_TP_Duffy_Final.indd   8680-86_WILM_Nov_2011_TP_Duffy_Final.indd   86 04/01/12   3:12 PM04/01/12   3:12 PM



SAVE
40%

When you subscribe to Wilmott magazine you will automatically become a member of the Wilmott Book Club and you’ll 
be eligible for 40 per cent discount on specially selected books in each issue. The titles will range from finance to 
narrative non-fiction. For further information, call our Customer Services Department on +44 (0)1243 843294, 
or visit wileyeurope.com/go/wilmott or wiley.com (for North America)

3 Volume Set includes…
•  Introduction to Islamic Banking and Finance

•  The Islamic Banking and Finance Workbook

•  Case Studies in Islamic Banking and Finance

978-1-1199-8996-7 • Paperback • 536 pages 
June 2011 • £90.00 / €108.00  £54.00 / €64.80

2 Volume Set includes…
•  Introduction to Islamic Banking and Finance

•  The Islamic Banking and Finance Workbook

978-1-1199-8995-0 
Paperback • 344 pages • June 2011 
£55.00 / €66.00  £33.00 / €39.60

Book  Club
Share our passion for great writing – with Wiley‘s list of titles for independent thinkers ...

Case Studies in Islamic 
Banking and Finance
Brian Kettell

The first case study based guide to Islamic banking and 
finance. Based around 13 individual cases, the book 
stimulates discussion and 
develops the reader’s 
understanding of Islamic 
finance by contrasting the 
existing theoretical 
knowledge against practical 
examples. Each chapter 
concludes with a set of 
questions designed to test 
the readers understanding 
of each case, with 
suggested solutions at the 
end of the book.

978-0-470-97801-6  Paperback 
192 pages • June 2011 
£39.99 / €48.00  £23.99 / €28.80

Introduction to Islamic 
Banking and Finance
Brian Kettell

Introduction to Islamic Banking and Finance is a complete guide to the key 
characteristics of Islamic banking and finance, and explains how they differ 
from their Western counterparts. It looks at all aspects of Islamic banking, 
including detailed chapters on its creation 
through to explanations of Murabaha and 
Musharaka contracts, Ijara and Istisna’a 
financing methods, as well as Salam and 
Takaful insurance. Finally the book takes a 
look at Sharia’a law and Sharia’a boards, 
indicating the roles and responsibilities 
that come with membership.

978-0-470-97804-7 • Paperback 
192 pages • June 2011 
£34.99 / €42.00  £20.99 / €25.20

The Islamic Banking and Finance 
Workbook
Step-by-Step Exercises to help you Master the 
Fundamentals of Islamic Banking and Finance
Brian Kettell

The first practical workbook of its kind that promotes 
the understanding of Islamic banking and finance, by 
allowing readers to self-test their knowledge of Islamic 
finance and banking concepts. The Workbook includes 
a full answer key and brief chapter summaries and 
learning objectives, making the information that 
readers attain from An Introduction to Islamic Banking 
and Finance that much more valuable.

978-0-470-97805-4 • Paperback 
152 pages • June 2011 
£29.99 / €36.00  £17.99 / €21.60


