
90 Wilmott magazine

The Boost C++ Libraries Overview
and Applicability to Computational
Finance: Part I
Daniel J. Duffy
Datasim Education BV, e-mail: dduffy@datasim.nl

1 Introduction and Objectives
In this article we give an overview of the Boost C++ libraries (at the moment
of writing there are approximately 100 specific libraries in the Boost suite)
and what they have to offer. In particular, we focus our attention on the
functionality that we think is of value in computational finance applica-
tions. This article functions as a roadmap and can be used as an aid to help
the reader first of all determine if Boost has implemented the functionality
that she is interested in and second how to learn and apply the appropriate
library once it has been found.

One of the criticisms of C++ in the past is that is has little support for
extended functionality in the form of libraries. It was often necessary for
developers to create their own dedicated data structures and related func-
tionality as necessary precursor to writing applications (for example, Duffy
2004). With the emergence of Boost we are now able to concentrate on the
application while much of the lower-level plumbing can be delegated to one
or more Boost libraries.

This article is a general overview of the Boost C++ libraries and it is meant
to create awareness of the library.

2 History of Boost
Boost is a suite of free peer-reviewed portable C++ source libraries. The
goal of these libraries is that they be useful, compatible with STL, and
used in a wide range of applications. These libraries increase programmer
productivity and mitigate reinvention of the software wheel. Long-term
maintenance costs are drastically reduced because Boost is developed and
supported by teams of professional developers. Finally, Boost runs on most
operating systems, including UNIX and Windows.

Boost has its own license and it encourages both commercial and non-
commercial use. The authors of Boost see the license as being more business-
friendly than other license agreements. For more information on this and
other technical issues (e.g., software downloads and installation) related to
Boost, we refer the reader to www.boost.org.

3 Library Classification
There are approximately 100 Boost libraries. Each library realises some con-
cern in software development. These concerns are related to a number of

software categories, as shown in Figures 1 and 2. In general, a given library
addresses one or more concerns and hence can be classified in one or more
categories. For convenience, we place each library in one category. We fur-
ther partition the categories into context-dependent groups that are (in
our opinion) useful in computational finance (the libraries in Figure 1) and
those libraries that are nonetheless important but which developers may
not use on a regular basis (the libraries in Figure 2).

The next subsections provide a high-level overview of each library in
Figures 1 and 2 and describe each library in such a way that the reader can
determine if the library is useful for the job at hand. Having determined
that the library is useful, the developer can then examine prototypical
examples of use and discussions on the general applicability of the library.
For more details on how to use these libraries, see Demming 2010, Demming
2011, and the online documentation on www.boost.org.

The list of libraries in Figures 1 and 2 does not includes all the libraries
in Boost. The Boost website (www.boost.org) provides a complete and up-to-
date list.

3.1 Essential Libraries
We now refer to Figure 1. The Math category contains libraries for a number of
topics in applied and numerical mathematics, including:

 • Special Functions, for example Bessel, gamma, factorial and error
functions;

 • Orthogonal polynomials;
 • Approximately 30 univariate statistical distributions;
 • Matrix library for a range of matrix and vector structures and associ-
ated operations.

 • Random number generators;
 • Support for Interval Analysis and interval arithmetic;
 • Classes to represent integers and rational numbers;
 • Functions to compute greatest common divisor and least common
multiple of two numbers;

 • Non-linear solvers (for example, the Newton–Raphson method).

The libraries in the Data Structures category extend the range of capabili-
ties in C++ and they help us to directly use advanced data structures in C++

WILM_Sept_2011_TP_Duffy.indd 90WILM_Sept_2011_TP_Duffy.indd 90 25/10/11 10:18 AM25/10/11 10:18 AM

Wilmott magazine 91

^

TECHNICAL PAPER

code. Some of these data structures are fundamental improvements on and
replacements for existing structures in C and C++ while others are more
advanced and have many applications:

 • Any: this class models heterogeneous data; it is a type-safe generalisa-
tion of void* in C.

 • Date and Time: contains a set of generic modules that support a wide
range of operations on date and time classes. This library is very useful
in applications that need dates and times.

 • Dynamic BitSet: this class represents a set of bits. The number of bits
in instances of this class is dynamic and can be set in the constructor.
This is in contrast to std::bitset<N> in which the number of bits is
fixed at compile-time.

 • Interval Container: this library has functionality for defining interval
sets and maps. It has many applications to scheduling problems.

 • Tuple: this class groups a fixed number of objects of different types
into one logical whole. It is a sequence of values and it can be seen as a
generalisation of std::pair.

 • Uuid: this is a class that models a universally unique identifier and
it can be used in applications in which we wish to assign unique ‘tag’
numbers to certain objects.

 • Variant: a type-safe class that can hold objects of different types and
sizes at different times. It is similar to the (unsafe) C union but is type-
safe.

These data structures are of general applicability and their use promotes
code robustness and readability.

The libraries in the Containers categories are suitable for advanced math-
ematical applications in which structured data needs to be processed. In the
past developers tended to create these data structures themselves or used
proprietary libraries:

 • Array: this is an STL-compliant container for fixed-sized (that is, at
compile time) vectors.

 • Circular buffer: an STL-compliant container that never overflows. It is
typically used in producer-consumer applications.

Figure 1: Essential libraries.

Boost I

Math Datastructures Containers
Higher-Order

Functions

Integer
Interval
Math Common Factor
Random
Rational
Solvers
Special Functions
Statistical Distributions
uBLAS

Any
Date Time
Dynamic Bitset
Interval Container
Tuple
Uuid
Variant

Array
Circular Buffer
Graph(BGL)
Multi-Array
Property Map
Property Tree

Bind
Function
Functional/Factory
Functional/Hash
Signals
Signals2

Figure 2: Supporting libraries.

Boost II

Concurrent
Programming

Text
Processing

Input
Output Memory

Asio
Thread
Interprocess

Regex
String Algo
Tokenizer
Xpressive

Assign
Serialization
Iostreams

Flyweight
Pool
Smart Pointer

WILM_Sept_2011_TP_Duffy.indd 91WILM_Sept_2011_TP_Duffy.indd 91 25/10/11 10:18 AM25/10/11 10:18 AM

92 Wilmott magazine

The libraries that deal with multi-threading and network programming
allow developers to create efficient and scalable software systems. The most
important libraries are:

 • Asio: a portable library for network programming (including
sockets) with support for TCP/UDP protocols, IP addressing and name
resolution.

 • Thread: a library that enables the creation of efficient applications on
multi-processor shared memory computers. This library allows the
creation of lightweight processes or threads.

 • Interprocess: a library that supports shared memory, memory mapped
files, process-shared mutexes, condition variables, containers and
allocators. This library allows communication between heavyweight
processes.

In some cases developers may need to create applications that process
text and string data in some way. There are many situations in which text
needs to created, processed and exported to different formats. The libraries
in the Text Processing category have similarities with activities in compiler
theory, lexical analysis and parsing:

 • Regex: a library that supports the creation of regular expressions,
regular expression matching, searching for strings in a regular expres-
sion and replacing matches of a regular expression in a character
sequence. In general, this library is used for static (that is, defined at
compile-time) regular expressions.

 • String Algo: STL has little support for string manipulation. The String
Algorithm library fills this gap. It has support for a wide range of text
and string manipulation functions.

 • Tokenizer: this small library allows developers to break a string or
other sequence of characters into so-called tokens. Examples of tokens
are keywords, identifiers and punctuation symbols.

 • Xpressive: a library that supports lexical analysis and the creation of
regular expression objects. Both static (compile-time) and dynamic
(run-time) regular expressions can be created. Nested expressions and
semantic actions are also supported. A semantic action is a C++ function
that is called whenever the parser successfully recognises a portion of
the input.

For completeness, we should mention the Boost Spirit library that is an
object-oriented, recursive-descent parser and output generation library for
C++. It allows you to write grammars and format descriptions using a format
similar to Extended Backus Naur Form (EBNF) directly in C++. This looks like
a promising library for computational finance applications, for example
creating payoff definition languages in C++.

There are a number of useful libraries to realise input-output:

 • Assign: the ability to initialise data in STL containers using comma-
separated lists of data. We see this as a convenience library and it speeds
up development when testing and debugging code. It also makes the
code more readable in general.

 • Serialization: this library has functionality to save objects and data to
persistent storage and to reconstruct the original objects from a persist-
ent representation. It supports the serialisation of STL containers and

 • Graph (BGL): this library contains a massive amount of functionality
for graphs, graph operations and graph algorithms. It has many
applications.

 • Multi-Array: this library offers functionality for modelling
N-dimensional arrays. It can be used in applications in which the
concept of n-dimensional geometry plays a role.

 • Property Map: Concepts that define interfaces that map key objects
to value objects. This library plays an important and supporting role
when developing BGL applications.

 • Property Tree: this is a tree data structure that is suitable for storing
configuration data.

There are many applications in computational finance of the libraries in
the Containers category that we shall discuss later.

Finally, the libraries in the Higher-Order Functions category represent
major improvements and extensions to how functions are defined and used
in C++ and STL. Furthermore, their use allows us to apply modern design
methods to create flexible and extendible software systems:

 • Bind: this is a generalisation of the function bind in STL. It supports
arbitrary function objects, function pointers and member function
pointers. It also supports function composition and the binding of
function arguments.

 • Function: this very important library implements function object
wrappers for deferred calls or callbacks.

 • Functional/Factory: this library contains function object templates
for dynamic and static object creation. It is the Boost equivalent of the
Gamma (GOF) Factory Method pattern. One of the disadvantages of
OOP patterns is the amount of boilerplate code that needs to be writ-
ten. Using Functional/Factory we can achieve the same ends with less
code and without having to define extra classes.

 • Functional/Hash: a hash function that can be extended to hash user-
defined types.

 • Signals: this is a library that implements event-notification patterns,
such as the GOF Observer, Mediator and Chain of Responsibility. The dif-
ference however, is that Signals is based on a delegates mechanism (as
with C#) rather than using inheritance as is the case with GOF.

 • Signals2: This is the thread-safe version of Signals and it implements
signals and slot callback mechanisms.

There are many ways to use these libraries in applications, both on a
standalone basis and in combination with each other and with libraries for
data types and containers.

3.2 Supporting Libraries
The libraries that we discussed in the previous section are of direct rel-
evance to quant developers in our opinion, in particular libraries for math-
ematical and higher-order functions are useful. Most of the productivity
gains will be realised by using these libraries.

In this section we discuss a number of libraries which certainly do have
applications but may be needed on an incidental basis only. We refer to
Figure 2 and we classify the libraries into four main categories for concur-
rent and network programming, text and string processing, input-output
and memory management.

WILM_Sept_2011_TP_Duffy.indd 92WILM_Sept_2011_TP_Duffy.indd 92 25/10/11 10:18 AM25/10/11 10:18 AM

W

Wilmott magazine 93

TECHNICAL PAPER

other complex objects. Furthermore, the library supports XML and
binary formats.

 • Iostreams: this library provides a framework for defining streams,
stream buffers and i/o filters.

Finally, Boost has several libraries (the first two of which are rather spe-
cialised) that allow developers to control how memory is created and man-
aged, for example:

 • Flyweight: this library is an implementation of the GOF Flyweight
design pattern to manage large numbers of highly redundant objects.

 • Pool: pool allocation is a memory allocation scheme that is very fast,
but limited in its usage. Using pools gives you more control over how
memory is used in a program.

 • Smart Pointer: smart pointers are objects which store pointers to
dynamically allocated (heap) objects. They behave much like built-in
C++ pointers except that they automatically delete the object pointed
to at the appropriate time. There are six smart pointer class templates
in this library.

We have now completed our short overview of a number of major librar-
ies in Boost. We now need to determine if we can use them in applications
and if so how to align them to current developer work practices and what
the consequences are.

4 Applicability of Boost to Computational Finance
In this section we motivate why using the Boost libraries promotes code
reliability and programmer productivity. Furthermore, we also discuss
some of the other advantages such as run-time code efficiency as well
as code portability and maintainability. In general, the advantages of
adopting Boost should outweight the choice of creating (and maintain-
ing) home-grown software libraries. To this end, we determine which
components in a software system to create and which components to out-
source to Boost. In a sense this is the approach taken in the past by Fortran
developers who developed modular applications by using Fortran libraries
such as NAG and IMSL as supporting tools. The advantage of this approach
is that quant developers can concentrate on the job at hand while using
modular libraries as black boxes. We would like to engender the same work
practices in C++.

We now describe how to decide on which Boost libraries in a particular
context. There are a number of dimensions to this problem and we enumer-
ate them in order to separate concerns. To this end, we use the following
steps as a general guideline:

 • S1: what is the problem we wish to solve? For example, we may be
interested in creating a Monte Carlo engine, a Finite Difference solver
or a network application.

 • S2: which libraries and library categories from Boost (see Figures 1 and 2)
will be most useful in the current application?

REFERENCES
Demming, R. and Duffy, D.J. 2010. Introduction to the Boost C++ Libraries Volume I –
Foundations. Datasim Press: Amsterdam.
Demming, R. and Duffy, D.J. 2011. Introduction to the Boost C++ Libraries Volume II –
Advanced Libraries. Datasim Press: Amsterdam.
Duffy, D.J. and Kienitz, J. 2009. Monte Carlo frameworks Building Customisable High
performance C++ Applications Wiley: Chichester.
GOF: Gamma, E., Helm, R., Johnson, R. and Vlissides, J. 1995. Design Patterns: Abstraction
and Reuse of Object-Oriented Design. Boston: Addison-Wesley: Boston.
Josuttis, N. M. 1999. The C++ Standard Library. Addison-Wesley: Boston.
Josuttis, N. M. and Vandervoorde, D. 2003. C++ Templates. Addison-Wesley: Boston.

 • S3: determine how to use the chosen libraries from step S2 in new and/
or existing applications.

 • S4: design and implement the application using the Boost libraries.

The main effort in this project consists in executing steps S3 and S4.
Steps S3 and S4 are concerned with software design and we can deploy
Design Patterns (see GOF, 1995) in combination with object-oriented, gener-
ic and modular programming models. These issues will be discussed in Part
II of this article when we discuss how to design and implement the following
applications using C++ in combination with Boost, STL and generic design
patterns:

 • One-Factor and Two-Factor Alternating Direction Explicit (ADE) meth-
od for European and American option pricing.

 • A generic Monte Carlo Framework for option pricing that generalises
and extends the object-oriented engines in Duffy 2009.

 • Creating matrix solvers (such as LU decomposition and the Conjugate
Gradient Method (CGM)) using uBLAS library as substrate.

 • Using the noncentral ChiSquared distribution to compute CIR (Cox-
Ingersoll-Ross) bond prices.

We also discuss the advantages of using the Boost libraries. Some code
examples can be found on www.datasimfinancial.com.

Conclusion
In this first part of a two-part series of articles on the Boost C++ libraries and
their applications to computational finance, we gave an overview of what we
think are the most important and useful libraries that quant developers can use
in their applications. We also discussed the process that describes the steps to be
taken when actually using the Boost libraries. In Part II we discuss this process
in some detail when we discuss a number of relevant code applications.

Daniel J. Duffy works for Datasim Education. His main activities are software design and practise
and the application of modern numerical methods to option pricing applications. He has a PhD in
numerical analysis from Trinity College, Dublin.

WILM_Sept_2011_TP_Duffy.indd 93WILM_Sept_2011_TP_Duffy.indd 93 25/10/11 10:18 AM25/10/11 10:18 AM

